Zhiyong Huang
2024
Zero-shot Cross-lingual Alignment for Embedding Initialization
Xi Ai
|
Zhiyong Huang
Findings of the Association for Computational Linguistics: ACL 2024
For multilingual training, we present CrossInit, an initialization method that initializes embeddings into similar geometrical structures across languages in an unsupervised manner. CrossInit leverages a common cognitive linguistic mechanism, Zipf’s law, which indicates that similar concepts across languages have similar word ranks or frequencies in their monolingual corpora. Instead of considering point-to-point alignments based on ranks, CrossInit considers the same span of consecutive ranks in each language as the Positive pairs for alignment, while others out of the span are used as Negative pairs. CrossInit then employs Contrastive Learning to iteratively refine randomly initialized embeddings for similar geometrical structures across languages. Our experiments on Unsupervised NMT, XNLI, and MLQA showed significant gains in low-resource and dissimilar languages after applying CrossInit.
MMCode: Benchmarking Multimodal Large Language Models for Code Generation with Visually Rich Programming Problems
Kaixin Li
|
Yuchen Tian
|
Qisheng Hu
|
Ziyang Luo
|
Zhiyong Huang
|
Jing Ma
Findings of the Association for Computational Linguistics: EMNLP 2024
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available.