With the increasing capabilities of large language models (LLMs), in-context learning (ICL) has emerged as a new paradigm for natural language processing (NLP), where LLMs make predictions based on contexts augmented with a few examples. It has been a significant trend to explore ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress and challenges of ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques, including training strategies, prompt designing strategies, and related analysis. Additionally, we explore various ICL application scenarios, such as data engineering and knowledge updating. Finally, we address the challenges of ICL and suggest potential directions for further research. We hope that our work can encourage more research on uncovering how ICL works and improving ICL.
Knowledge Graph (KG) inductive reasoning, which aims to infer missing facts from new KGs that are not seen during training, has been widely adopted in various applications. One critical challenge of KG inductive reasoning is handling low-resource scenarios with scarcity in both textual and structural aspects. In this paper, we attempt to address this challenge with Large Language Models (LLMs). Particularly, we utilize the state-of-the-art LLMs to generate a graph-structural prompt to enhance the pre-trained Graph Neural Networks (GNNs), which brings us new methodological insights into the KG inductive reasoning methods, as well as high generalizability in practice. On the methodological side, we introduce a novel pretraining and prompting framework ProLINK, designed for low-resource inductive reasoning across arbitrary KGs without requiring additional training. On the practical side, we experimentally evaluate our approach on 36 low-resource KG datasets and find that ProLINK outperforms previous methods in three-shot, one-shot, and zero-shot reasoning tasks, exhibiting average performance improvements by 20%, 45%, and 147%, respectively. Furthermore, ProLINK demonstrates strong robustness for various LLM promptings as well as full-shot scenarios.
Large Language Models (LLMs), often show strong performance on English tasks, while exhibiting limitations on other languages. What is an LLM’s multilingual capability when it is trained only on certain languages? The underlying mechanism remains unclear. This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective by conducting an exhaustive analysis across 101 languages. Through the investigation of the performance gap before and after embedding fine-tuning, we discovered four distinct quadrants. By delving into each quadrant we provide actionable and efficient guidelines for tuning these languages. Extensive experiments reveal that existing LLMs possess multilingual capabilities that surpass our expectations, and we can significantly improve the multilingual performance of LLMs based on these attributes of each quadrant .
In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.
Graphical User Interface (GUI) agents are designed to automate complex tasks on digital devices, such as smartphones and desktops. Most existing GUI agents interact with the environment through extracted structured data, which can be notably lengthy (e.g., HTML) and occasionally inaccessible (e.g., on desktops). To alleviate this issue, we propose a novel visual GUI agent – SeeClick, which only relies on screenshots for task automation. In our preliminary study, we have discovered a key challenge in developing visual GUI agents: GUI grounding – the capacity to accurately locate screen elements based on instructions. To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data. Along with the efforts above, we have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments. After pre-training, SeeClick demonstrates significant improvement in ScreenSpot over various baselines. Moreover, comprehensive evaluations on three widely used benchmarks consistently support our finding that advancements in GUI grounding directly correlate with enhanced performance in downstream GUI agent tasks. The model, data and code will be open-sourced.
Although Large Language Models (LLMs) demonstrate remarkable ability in processing and generating human-like text, they do have limitations when it comes to comprehending and expressing world knowledge that extends beyond the boundaries of natural language(e.g., chemical molecular formula). Injecting a collection of symbolic data directly into the training of LLMs can be problematic, as it disregards the synergies among different symbolic families and overlooks the need for a balanced mixture of natural and symbolic data. In this work, we tackle these challenges from both a data and framework perspective and introduce Symbol-LLM series models. First, we curated a data collection consisting of 34 tasks and incorporating 20 distinct symbolic families, intending to capture the interrelations and foster synergies between symbols. Then, a two-stage tuning framework succeeds in injecting symbolic knowledge without loss of the generality ability. Extensive experiments on both symbol- and NL-centric tasks demonstrate the balanced and superior performances of Symbol-LLM series models.
Despite the surprising few-shot performance of in-context learning (ICL), it is still a common practice to randomly sample examples to serve as context. This paper advocates a new principle for ICL: self-adaptive in-context learning. The self-adaption mechanism is introduced to help each sample find an in-context example organization (i.e., selection and permutation) that can derive the correct prediction, thus maximizing performance. To validate the effectiveness of self-adaptive ICL, we propose a general select-then-rank framework and instantiate it with new selection and ranking algorithms. Upon extensive evaluation on eight different NLP datasets, our self-adaptive ICL method achieves a 40% relative improvement over the common practice setting. Further analysis reveals the enormous potential of self-adaptive ICL that it might be able to close the gap between ICL and finetuning given more advanced algorithms. Our code will be released to facilitate future research.
In recent years, In-context Learning (ICL) has gained increasing attentionand emerged as the new paradigm for large language model (LLM) evaluation. Unlike traditional fine-tuning methods, ICL instead adapts the pre-trained models to unseen tasks without any parameter updates. However, the implementation of ICL is sophisticated due to the diverse retrieval and inference methods involved, as well as the varying pre-processing requirements for different models, datasets, and tasks. A unified and flexible framework for ICL is urgently needed to ease the implementation of the aforementioned components. To facilitate ICL research, we introduce OpenICL, an open-source toolkit for ICL and LLM evaluation. OpenICL is research-friendly with a highly flexible architecture that users can easily combine different components to suit their needs. It also provides various state-of-the-art retrieval and inference methods to streamline the process of adapting ICL to cutting-edge research. The effectiveness of OpenICL has been validated on a wide range of NLP tasks, including classification, QA, machine translation, and semantic parsing. As a side-product, we found OpenICL to be an efficient yet robust tool for LLMs evaluation. OpenICL is released at https://github.com/Shark-NLP/OpenICL.
Explaining the black-box predictions of NLP models naturally and accurately is an important open problem in natural language generation. These free-text explanations are expected to contain sufficient and carefully-selected evidence to form supportive arguments for predictions. Thanks to the superior generative capacity of large pretrained language models (PLM), recent work built on prompt engineering enables explanations generated without specific training. However, explanations generated through single-pass prompting often lack sufficiency and conciseness, due to the prompt complexity and hallucination issues. To discard the dross and take the essence of current PLM’s results, we propose to produce sufficient and concise explanations via the information bottleneck (EIB) theory. EIB regenerates explanations by polishing the single-pass output of PLM but retaining the information that supports the contents being explained by balancing two information bottleneck objectives. Experiments on two different tasks verify the effectiveness of EIB through automatic evaluation and thoroughly-conducted human evaluation.
Diffusion models have gained prominence in generating high-quality sequences of text. Nevertheless, current approaches predominantly represent discrete text within a continuous diffusion space, which incurs substantial computational overhead during training and results in slower sampling speeds. In this paper, we introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space, thereby enhancing its capacity to recover conditional signals. During the sampling phase, we employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process. Comprehensive experimental evaluations reveal that our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster, rendering it significantly closer to practical application.
Previous studies have shown that large language models (LLMs) like GPTs store massive factual knowledge in their parameters. However, the stored knowledge could be false or outdated. Traditional knowledge editing methods refine LLMs via fine-tuning on texts containing specific knowledge. However, with the increasing scales of LLMs, these gradient-based approaches bring large computation costs. The trend of model-as-a-service also makes it impossible to modify knowledge in black-box LMs. Inspired by in-context learning (ICL), a new paradigm based on demonstration contexts without parameter updating, we explore whether ICL can edit factual knowledge. To answer this question, we give a comprehensive empirical study of ICL strategies. Experiments show that in-context knowledge editing (IKE), without any gradient and parameter updating, achieves a competitive success rate compared to gradient-based methods on GPT-J (6B) but with much fewer side effects, including less over-editing on similar but unrelated facts and less knowledge forgetting on previously stored knowledge. We also apply the method to larger LMs with tens or hundreds of parameters like OPT-175B, which shows the scalability of our method. The code is available at https://github.com/pkunlp-icler/IKE.
We propose knowledge internalization (KI), which aims to complement the lexical knowledge into neural dialog models. Instead of further conditioning the knowledge-grounded dialog (KGD) models on externally retrieved knowledge, we seek to integrate knowledge about each input token internally into the model’s parameters. To tackle the challenge due to the large scale of lexical knowledge, we adopt the contrastive learning approach and create an effective token-level lexical knowledge retriever that requires only weak supervision mined from Wikipedia. We demonstrate the effectiveness and general applicability of our approach on various datasets and diversified model structures.
There is a growing interest in dataset generation recently due to the superior generative capacity of large pre-trained language models (PLMs). In this paper, we study a flexible and efficient zero-short learning method, ZeroGen.Given a zero-shot task, we first generate a dataset from scratch using PLMs in an unsupervised manner. Then, we train a tiny task model (e.g., LSTM) under the supervision of the synthesized dataset. This approach allows highly efficient inference as the final task model only has orders of magnitude fewer parameters comparing to PLMs (e.g., GPT2-XL).Apart from being annotation-free and efficient, we argue that ZeroGen can also provide useful insights from the perspective of data-free model-agnostic knowledge distillation, and unreferenced text generation evaluation. Experiments and analysis on different NLP tasks, namely, text classification, question answering, and natural language inference, show the effectiveness of ZeroGen.
Recently, dataset-generation-based zero-shot learning has shown promising results by training a task-specific model with a dataset synthesized from large pre-trained language models (PLMs). The final task-specific model often achieves compatible or even better performance than PLMs under the zero-shot setting, with orders of magnitude fewer parameters.However, synthetic datasets have their drawbacks. They have long being suffering from the low-quality issue (e.g., low informativeness, redundancy). This explains why the massive synthetic data does not lead to better performance – a scenario we would expect in the human-labeled data. To improve the quality in dataset synthesis, we propose a progressive zero-shot dataset generation framework, ProGen, which leverages the feedback from the task-specific model to guide the generation of new training data via in-context examples.Extensive experiments on five text classification datasets demonstrate the effectiveness of the proposed approach. We also show ProGen achieves on-par or superior performance with only 1% synthetic dataset size, when comparing to baseline methods without in-context feedback.
Traditional training paradigms for extractive and abstractive summarization systems always only use token-level or sentence-level training objectives. However, the output summary is always evaluated from summary-level which leads to the inconsistency in training and evaluation. In this paper, we propose a Contrastive Learning based re-ranking framework for one-stage summarization called CoLo. By modeling a contrastive objective, we show that the summarization model is able to directly generate summaries according to the summary-level score without additional modules and parameters. Extensive experiments demonstrate that CoLo boosts the extractive and abstractive results of one-stage systems on CNN/DailyMail benchmark to 44.58 and 46.33 ROUGE-1 score while preserving the parameter efficiency and inference efficiency. Compared with state-of-the-art multi-stage systems, we save more than 100 GPU training hours and obtaining 3x 8x speed-up ratio during inference while maintaining comparable results.
Naturalness and expressiveness are crucial for audiobook speech synthesis, but now are limited by the averaged global-scale speaking style representation. In this paper, we propose an unsupervised multi-scale context-sensitive text-to-speech model for audiobooks. A multi-scale hierarchical context encoder is specially designed to predict both global-scale context style embedding and local-scale context style embedding from a wider context of input text in a hierarchical manner. Likewise, a multi-scale reference encoder is introduced to extract reference style embeddings at both global and local scales from the reference speech, which is used to guide the prediction of speaking styles. On top of these, a bi-reference attention mechanism is used to align both local-scale reference style embedding sequence and local-scale context style embedding sequence with corresponding phoneme embedding sequence. Both objective and subjective experiment results on a real-world multi-speaker Mandarin novel audio dataset demonstrate the excellent performance of our proposed method over all baselines in terms of naturalness and expressiveness of the synthesized speech.
Transformers have advanced the field of natural language processing (NLP) on a variety of important tasks. At the cornerstone of the Transformer architecture is the multi-head attention (MHA) mechanism which models pairwise interactions between the elements of the sequence. Despite its massive success, the current framework ignores interactions among different heads, leading to the problem that many of the heads are redundant in practice, which greatly wastes the capacity of the model. To improve parameter efficiency, we re-formulate the MHA as a latent variable model from a probabilistic perspective. We present cascaded head-colliding attention (CODA) which explicitly models the interactions between attention heads through a hierarchical variational distribution. We conduct extensive experiments and demonstrate that CODA outperforms the transformer baseline, by 0.6 perplexity on Wikitext-103 in language modeling, and by 0.6 BLEU on WMT14 EN-DE in machine translation, due to its improvements on the parameter efficiency.
A neural multimodal machine translation (MMT) system is one that aims to perform better translation by extending conventional text-only translation models with multimodal information. Many recent studies report improvements when equipping their models with the multimodal module, despite the controversy of whether such improvements indeed come from the multimodal part. We revisit the contribution of multimodal information in MMT by devising two interpretable MMT models. To our surprise, although our models replicate similar gains as recently developed multimodal-integrated systems achieved, our models learn to ignore the multimodal information. Upon further investigation, we discover that the improvements achieved by the multimodal models over text-only counterparts are in fact results of the regularization effect. We report empirical findings that highlight the importance of MMT models’ interpretability, and discuss how our findings will benefit future research.
Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languages, the augmented data sets are often noisy, and thus impede the performance of SLU models. In this paper we focus on mitigating noise in augmented data. We develop a denoising training approach. Multiple models are trained with data produced by various augmented methods. Those models provide supervision signals to each other. The experimental results show that our method outperforms the existing state of the art by 3.05 and 4.24 percentage points on two benchmark datasets, respectively. The code will be made open sourced on github.
Unlike non-conversation scenes, emotion recognition in dialogues (ERD) poses more complicated challenges due to its interactive nature and intricate contextual information. All present methods model historical utterances without considering the content of the target utterance. However, different parts of a historical utterance may contribute differently to emotion inference of different target utterances. Therefore we propose Fine-grained Extraction and Reasoning Network (FERNet) to generate target-specific historical utterance representations. The reasoning module effectively handles both local and global sequential dependencies to reason over context, and updates target utterance representations to more informed vectors. Experiments on two benchmarks show that our method achieves competitive performance compared with previous methods.
By introducing a small set of additional parameters, a probe learns to solve specific linguistic tasks (e.g., dependency parsing) in a supervised manner using feature representations (e.g., contextualized embeddings). The effectiveness of such probing tasks is taken as evidence that the pre-trained model encodes linguistic knowledge. However, this approach of evaluating a language model is undermined by the uncertainty of the amount of knowledge that is learned by the probe itself. Complementary to those works, we propose a parameter-free probing technique for analyzing pre-trained language models (e.g., BERT). Our method does not require direct supervision from the probing tasks, nor do we introduce additional parameters to the probing process. Our experiments on BERT show that syntactic trees recovered from BERT using our method are significantly better than linguistically-uninformed baselines. We further feed the empirically induced dependency structures into a downstream sentiment classification task and find its improvement compatible with or even superior to a human-designed dependency schema.