Zhiyuan Fan
2024
Exploring the Potential of Dense Information in Multimodal Alignment
Zhiyuan Fan
|
Zhihong Chen
|
Benyou Wang
Findings of the Association for Computational Linguistics: ACL 2024
Despite the success of data augmentation in improving CLIP model, existing methods that utilize LLM or SAM to enrich the information in captions still suffer from several limitations, including insufficient detail and excessive hallucinations, ultimately resulting in compromised alignment and masking the true potential of dense information. This can lead to erroneous conclusions about CLIP’s ability to handle rich data, impeding the development of more effective models. To address the limitations of existing methods, we introduce a novel pipeline that generates highly detailed, factually accurate captions for images, which facilitates in-depth analysis of the potential for dense information in multimodal alignment. Contrary to previous findings, our investigation revealed that lengthening captions boosts performance across diverse benchmarks, even surpassing the effectiveness of meticulously crafted hard negative samples. Building on these insights, DELIP is introduced, demonstrably enhancing both foundational multimodal alignment and compositional reasoning abilities. Finally, we explore strategies to expand the context window of the text encoder, unlocking the potential of richer data for CLIP and paving the way for advancements in leveraging dense information for multimodal alignment.
SedarEval: Automated Evaluation using Self-Adaptive Rubrics
Zhiyuan Fan
|
Weinong Wang
|
Xing W
|
Debing Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
The evaluation paradigm of LLM-as-judge gains popularity due to its significant reduction in human labor and time costs. This approach utilizes one or more large language models (LLMs) to assess the quality of outputs from other LLMs. However, existing methods rely on generic scoring rubrics that fail to consider the specificities of each question and its problem-solving process, compromising precision and stability in assessments. Inspired by human examination scoring processes, we propose a new evaluation paradigm based on self-adaptive rubrics. Specifically, we create detailed scoring rubrics for each question, capturing the primary and secondary criteria in a structured format of scoring and deduction points that mimic a human evaluator’s analytical process. Building on this paradigm, we further develop a novel benchmark called SedarEval, which covers a range of domains including long-tail knowledge, mathematics, coding, and logical reasoning. SedarEval consists of 1,000 meticulously crafted questions, each with its own self-adaptive rubric. To further streamline the evaluation, we train a specialized evaluator language model (evaluator LM) to supplant human graders. Using the same training data, our evaluator LM achieves a higher concordance rate with human grading results than other paradigms, including GPT-4, highlighting the superiority and efficiency of our approach.
2023
Efficient Data Learning for Open Information Extraction with Pre-trained Language Models
Zhiyuan Fan
|
Shizhu He
Findings of the Association for Computational Linguistics: EMNLP 2023
Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labelling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of ‘anchors’ to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.
Search
Co-authors
- Shizhu He 1
- Zhihong Chen 1
- Benyou Wang 1
- Weinong Wang 1
- Xing W 1
- show all...