Zhiyuan Fan


2024

pdf bib
Exploring the Potential of Dense Information in Multimodal Alignment
Zhiyuan Fan | Zhihong Chen | Benyou Wang
Findings of the Association for Computational Linguistics ACL 2024

Despite the success of data augmentation in improving CLIP model, existing methods that utilize LLM or SAM to enrich the information in captions still suffer from several limitations, including insufficient detail and excessive hallucinations, ultimately resulting in compromised alignment and masking the true potential of dense information. This can lead to erroneous conclusions about CLIP’s ability to handle rich data, impeding the development of more effective models. To address the limitations of existing methods, we introduce a novel pipeline that generates highly detailed, factually accurate captions for images, which facilitates in-depth analysis of the potential for dense information in multimodal alignment. Contrary to previous findings, our investigation revealed that lengthening captions boosts performance across diverse benchmarks, even surpassing the effectiveness of meticulously crafted hard negative samples. Building on these insights, DELIP is introduced, demonstrably enhancing both foundational multimodal alignment and compositional reasoning abilities. Finally, we explore strategies to expand the context window of the text encoder, unlocking the potential of richer data for CLIP and paving the way for advancements in leveraging dense information for multimodal alignment.

2023

pdf bib
Efficient Data Learning for Open Information Extraction with Pre-trained Language Models
Zhiyuan Fan | Shizhu He
Findings of the Association for Computational Linguistics: EMNLP 2023

Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labelling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of ‘anchors’ to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.