Zhiyuan Ma


2024

pdf bib
Mirror-Consistency: Harnessing Inconsistency in Majority Voting
Siyuan Huang | Zhiyuan Ma | Jintao Du | Changhua Meng | Weiqiang Wang | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2024

Self-Consistency, a widely-used decoding strategy, significantly boosts the reasoning capabilities of Large Language Models (LLMs). However, it depends on the plurality voting rule, which focuses on the most frequent answer while overlooking all other minority responses. These inconsistent minority views often illuminate areas of uncertainty within the model’s generation process. To address this limitation, we present Mirror-Consistency, an enhancement of the standard Self-Consistency approach. Our method incorporates a ‘reflective mirror’ into the self-ensemble decoding process and enables LLMs to critically examine inconsistencies among multiple generations. Additionally, just as humans use the mirror to better understand themselves, we propose using Mirror-Consistency to enhance the sample-based confidence calibration methods, which helps to mitigate issues of overconfidence. Our experimental results demonstrate that Mirror-Consistency yields superior performance in both reasoning accuracy and confidence calibration compared to Self-Consistency.

pdf bib
Enhancing Distantly Supervised Named Entity Recognition with Strong Label Guided Lottery Training
Zhiyuan Ma | Jintao Du | Changhua Meng | Weiqiang Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In low-resource Named Entity Recognition (NER) scenarios, only a limited quantity of strongly labeled data is available, while a vast amount of weakly labeled data can be easily acquired through distant supervision. However, weakly labeled data may fail to improve the model performance or even harm it due to the inevitable noise. While training on noisy data, only certain parameters are essential for model learning, termed safe parameters, whereas the other parameters tend to fit noise. In this paper, we propose a noise-robust learning framework where safe parameters can be identified with guidance from the small set of strongly labeled data, and non-safe parameters are suppressed during training on weakly labeled data for better generalization. Our method can effectively mitigate the impact of noise in weakly labeled data, and it can be easily integrated with data level noise-robust learning methods for NER. We conduct extensive experiments on multiple datasets and the results show that our approach outperforms the state-of-the-art methods.

2023

pdf bib
Noise-Robust Training with Dynamic Loss and Contrastive Learning for Distantly-Supervised Named Entity Recognition
Zhiyuan Ma | Jintao Du | Shuheng Zhou
Findings of the Association for Computational Linguistics: ACL 2023

Distantly-supervised named entity recognition (NER) aims at training networks with distantly-labeled data, which is automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. Distant supervision may induce incomplete and noisy labels, so recent state-of-the-art methods employ sample selection mechanism to separate clean data from noisy data based on the model’s prediction scores. However, they ignore the noise distribution change caused by data selection, and they simply excludes noisy data during training, resulting in information loss. We propose to (1) use a dynamic loss function to better adapt to the changing noise during the training process, and (2) incorporate token level contrastive learning to fully utilize the noisy data as well as facilitate feature learning without relying on labels. Our method achieves superior performance on three benchmark datasets, outperforming existing distantly supervised NER models by significant margins.

2022

pdf bib
UniTranSeR: A Unified Transformer Semantic Representation Framework for Multimodal Task-Oriented Dialog System
Zhiyuan Ma | Jianjun Li | Guohui Li | Yongjing Cheng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As a more natural and intelligent interaction manner, multimodal task-oriented dialog system recently has received great attention and many remarkable progresses have been achieved. Nevertheless, almost all existing studies follow the pipeline to first learn intra-modal features separately and then conduct simple feature concatenation or attention-based feature fusion to generate responses, which hampers them from learning inter-modal interactions and conducting cross-modal feature alignment for generating more intention-aware responses. To address these issues, we propose UniTranSeR, a Unified Transformer Semantic Representation framework with feature alignment and intention reasoning for multimodal dialog systems. Specifically, we first embed the multimodal features into a unified Transformer semantic space to prompt inter-modal interactions, and then devise a feature alignment and intention reasoning (FAIR) layer to perform cross-modal entity alignment and fine-grained key-value reasoning, so as to effectively identify user’s intention for generating more accurate responses. Experimental results verify the effectiveness of UniTranSeR, showing that it significantly outperforms state-of-the-art approaches on the representative MMD dataset.

pdf bib
GLAF: Global-to-Local Aggregation and Fission Network for Semantic Level Fact Verification
Zhiyuan Ma | Jianjun Li | Guohui Li | Yongjing Cheng
Proceedings of the 29th International Conference on Computational Linguistics

Accurate fact verification depends on performing fine-grained reasoning over crucial entities by capturing their latent logical relations hidden in multiple evidence clues, which is generally lacking in existing fact verification models. In this work, we propose a novel Global-to-Local Aggregation and Fission network (GLAF) to fill this gap. Instead of treating entire sentences or all semantic elements within them as nodes to construct a coarse-grained or unstructured evidence graph as in previous methods, GLAF constructs a fine-grained and structured evidence graph by parsing the rambling sentences into structural triple-level reasoning clues and regarding them as graph nodes to achieve fine-grained and interpretable evidence graph reasoning. Specifically, to capture latent logical relations between the clues, GLAF first employs a local fission reasoning layer to conduct fine-grained multi-hop reasoning, and then uses a global evidence aggregation layer to achieve information sharing and the interchange of evidence clues for final claim label prediction. Experimental results on the FEVER dataset demonstrate the effectiveness of GLAF, showing that it achieves the state-of-the-art performance by obtaining a 77.62% FEVER score.

2021

pdf bib
Intention Reasoning Network for Multi-Domain End-to-end Task-Oriented Dialogue
Zhiyuan Ma | Jianjun Li | Zezheng Zhang | Guohui Li | Yongjing Cheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent years has witnessed the remarkable success in end-to-end task-oriented dialog system, especially when incorporating external knowledge information. However, the quality of most existing models’ generated response is still limited, mainly due to their lack of fine-grained reasoning on deterministic knowledge (w.r.t. conceptual tokens), which makes them difficult to capture the concept shifts and identify user’s real intention in cross-task scenarios. To address these issues, we propose a novel intention mechanism to better model deterministic entity knowledge. Based on such a mechanism, we further propose an intention reasoning network (IR-Net), which consists of joint and multi-hop reasoning, to obtain intention-aware representations of conceptual tokens that can be used to capture the concept shifts involved in task-oriented conversations, so as to effectively identify user’s intention and generate more accurate responses. Experimental results verify the effectiveness of IR-Net, showing that it achieves the state-of-the-art performance on two representative multi-domain dialog datasets.