Zhong Ming


2022

pdf bib
Augmenting Legal Judgment Prediction with Contrastive Case Relations
Dugang Liu | Weihao Du | Lei Li | Weike Pan | Zhong Ming
Proceedings of the 29th International Conference on Computational Linguistics

Existing legal judgment prediction methods usually only consider one single case fact description as input, which may not fully utilize the information in the data such as case relations and frequency. In this paper, we propose a new perspective that introduces some contrastive case relations to construct case triples as input, and a corresponding judgment prediction framework with case triples modeling (CTM). Our CTM can more effectively utilize beneficial information to refine the encoding and decoding processes through three customized modules, including the case triple module, the relational attention module, and the category decoder module. Finally, we conduct extensive experiments on two public datasets to verify the effectiveness of our CTM, including overall evaluation, compatibility analysis, ablation studies, analysis of gain source and visualization of case representations.

pdf bib
Weighted self Distillation for Chinese word segmentation
Rian He | Shubin Cai | Zhong Ming | Jialei Zhang
Findings of the Association for Computational Linguistics: ACL 2022

Recent researches show that multi-criteria resources and n-gram features are beneficial to Chinese Word Segmentation (CWS). However, these methods rely heavily on such additional information mentioned above and focus less on the model itself. We thus propose a novel neural framework, named Weighted self Distillation for Chinese word segmentation (WeiDC). The framework, which only requires unigram features, adopts self-distillation technology with four hand-crafted weight modules and two teacher models configurations. Experiment results show that WeiDC can make use of character features to learn contextual knowledge and successfully achieve state-of-the-art or competitive performance in terms of strictly closed test settings on SIGHAN Bakeoff benchmark datasets. Moreover, further experiments and analyses also demonstrate the robustness of WeiDC. Source codes of this paper are available on Github.