Zhong Zhang


2024

pdf bib
RepoAgent: An LLM-Powered Open-Source Framework for Repository-level Code Documentation Generation
Qinyu Luo | Yining Ye | Shihao Liang | Zhong Zhang | Yujia Qin | Yaxi Lu | Yesai Wu | Xin Cong | Yankai Lin | Yingli Zhang | Xiaoyin Che | Zhiyuan Liu | Maosong Sun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Generative models have demonstrated considerable potential in software engineering, particularly in tasks such as code generation and debugging. However, their utilization in the domain of code documentation generation remains underexplored. To this end, we introduce RepoAgent, a large language model powered open-source framework aimed at proactively generating, maintaining, and updating code documentation. Through both qualitative and quantitative evaluations, we have validated the effectiveness of our approach, showing that RepoAgent excels in generating high-quality repository-level documentation. The code and results are publicly accessible at https://github.com/OpenBMB/RepoAgent.

pdf bib
Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
Cheng Qian | Bingxiang He | Zhong Zhuang | Jia Deng | Yujia Qin | Xin Cong | Zhong Zhang | Jie Zhou | Yankai Lin | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users’ implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires about user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency.

2023

pdf bib
Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models
Zhong Zhang | Bang Liu | Junming Shao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of intrinsic task-specific subspace. Specifically, by exploiting the dynamics of the fine-tuning process for a given task, the parameter optimization trajectory is learned to uncover its intrinsic task-specific subspace. A key finding is that PLMs can be effectively fine-tuned in the subspace with a small number of free parameters. Beyond, we observe some outlier dimensions emerging during fine-tuning in the subspace. Disabling these dimensions degrades the model performance significantly. This suggests that these dimensions are crucial to induce task-specific knowledge to downstream tasks.

2020

pdf bib
Revisiting Representation Degeneration Problem in Language Modeling
Zhong Zhang | Chongming Gao | Cong Xu | Rui Miao | Qinli Yang | Junming Shao
Findings of the Association for Computational Linguistics: EMNLP 2020

Weight tying is now a common setting in many language generation tasks such as language modeling and machine translation. However, a recent study reveals that there is a potential flaw in weight tying. They find that the learned word embeddings are likely to degenerate and lie in a narrow cone when training a language model. They call it the representation degeneration problem and propose a cosine regularization to solve it. Nevertheless, we prove that the cosine regularization is insufficient to solve the problem, as the degeneration is still likely to happen under certain conditions. In this paper, we revisit the representation degeneration problem and theoretically analyze the limitations of the previously proposed solution. Afterward, we propose an alternative regularization method called Laplacian regularization to tackle the problem. Experiments on language modeling demonstrate the effectiveness of the proposed Laplacian regularization.