Zhong Zhou


pdf bib
Train Global, Tailor Local: Minimalist Multilingual Translation into Endangered Languages
Zhong Zhou | Jan Niehues | Alexander Waibel
Proceedings of the The Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)

In many humanitarian scenarios, translation into severely low resource languages often does not require a universal translation engine, but a dedicated text-specific translation engine. For example, healthcare records, hygienic procedures, government communication, emergency procedures and religious texts are all limited texts. While generic translation engines for all languages do not exist, translation of multilingually known limited texts into new, endangered languages may be possible and reduce human translation effort. We attempt to leverage translation resources from rich resource languages to efficiently produce best possible translation quality for well known texts, which is available in multiple languages, in a new, severely low resource language. We examine two approaches: 1.) best selection of seed sentences to jump start translations in a new language in view of best generalization to the remainder of a larger targeted text(s), and 2.) we adapt large general multilingual translation engines from many other languages to focus on a specific text in a new, unknown language. We find that adapting large pretrained multilingual models to the domain/text first and then to the severely low resource language works best. If we also select a best set of seed sentences, we can improve average chrF performance on new test languages from a baseline of 21.9 to 50.7, while reducing the number of seed sentences to only ∼1,000 in the new, unknown language.


pdf bib
Active Learning for Massively Parallel Translation of Constrained Text into Low Resource Languages
Zhong Zhou | Alex Waibel
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

We translate a closed text that is known in advance and available in many languages into a new and severely low resource language. Most human translation efforts adopt a portionbased approach to translate consecutive pages/chapters in order, which may not suit machine translation. We compare the portion-based approach that optimizes coherence of the text locally with the random sampling approach that increases coverage of the text globally. Our results show that the random sampling approach performs better. When training on a seed corpus of ∼1,000 lines from the Bible and testing on the rest of the Bible (∼30,000 lines), random sampling gives a performance gain of +11.0 BLEU using English as a simulated low resource language, and +4.9 BLEU using Eastern Pokomchi, a Mayan language. Furthermore, we compare three ways of updating machine translation models with increasing amount of human post-edited data through iterations. We find that adding newly post-edited data to training after vocabulary update without self-supervision performs the best. We propose an algorithm for human and machine to work together seamlessly to translate a closed text into a severely low resource language.

pdf bib
Family of Origin and Family of Choice: Massively Parallel Lexiconized Iterative Pretraining for Severely Low Resource Text-based Translation
Zhong Zhou | Alexander Waibel
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP

We translate a closed text that is known in advance into a severely low resource language by leveraging massive source parallelism. In other words, given a text in 124 source languages, we translate it into a severely low resource language using only ∼1,000 lines of low resource data without any external help. Firstly, we propose a systematic method to rank and choose source languages that are close to the low resource language. We call the linguistic definition of language family Family of Origin (FAMO), and we call the empirical definition of higher-ranked languages using our metrics Family of Choice (FAMC). Secondly, we build an Iteratively Pretrained Multilingual Order-preserving Lexiconized Transformer (IPML) to train on ∼1,000 lines (∼3.5%) of low resource data. In order to translate named entities well, we build a massive lexicon table for 2,939 Bible named entities in 124 source languages, and include many that occur once and covers more than 66 severely low resource languages. Moreover, we also build a novel method of combining translations from different source languages into one. Using English as a hypothetical low resource language, we get a +23.9 BLEU increase over a multilingual baseline, and a +10.3 BLEU increase over our asymmetric baseline in the Bible dataset. We get a 42.8 BLEU score for Portuguese-English translation on the medical EMEA dataset. We also have good results for a real severely low resource Mayan language, Eastern Pokomchi.


pdf bib
Paraphrases as Foreign Languages in Multilingual Neural Machine Translation
Zhong Zhou | Matthias Sperber | Alexander Waibel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Paraphrases, rewordings of the same semantic meaning, are useful for improving generalization and translation. Unlike previous works that only explore paraphrases at the word or phrase level, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train on parallel paraphrases in the style of multilingual Neural Machine Translation (NMT). Our multi-paraphrase NMT that trains only on two languages outperforms the multilingual baselines. Adding paraphrases improves the rare word translation and increases entropy and diversity in lexical choice. Adding the source paraphrases boosts performance better than adding the target ones, while adding both lifts performance further. We achieve a BLEU score of 57.2 for French-to-English translation using 24 corpus-level paraphrases of the Bible, which outperforms the multilingual baselines and is +34.7 above the single-source single-target NMT baseline.


pdf bib
Massively Parallel Cross-Lingual Learning in Low-Resource Target Language Translation
Zhong Zhou | Matthias Sperber | Alexander Waibel
Proceedings of the Third Conference on Machine Translation: Research Papers

We work on translation from rich-resource languages to low-resource languages. The main challenges we identify are the lack of low-resource language data, effective methods for cross-lingual transfer, and the variable-binding problem that is common in neural systems. We build a translation system that addresses these challenges using eight European language families as our test ground. Firstly, we add the source and the target family labels and study intra-family and inter-family influences for effective cross-lingual transfer. We achieve an improvement of +9.9 in BLEU score for English-Swedish translation using eight families compared to the single-family multi-source multi-target baseline. Moreover, we find that training on two neighboring families closest to the low-resource language is often enough. Secondly, we construct an ablation study and find that reasonably good results can be achieved even with considerably less target data. Thirdly, we address the variable-binding problem by building an order-preserving named entity translation model. We obtain 60.6% accuracy in qualitative evaluation where our translations are akin to human translations in a preliminary study.


pdf bib
Tweet2Vec: Character-Based Distributed Representations for Social Media
Bhuwan Dhingra | Zhong Zhou | Dylan Fitzpatrick | Michael Muehl | William Cohen
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)