Zhongfen Deng


2024

pdf bib
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
Jiangshu Du | Yibo Wang | Wenting Zhao | Zhongfen Deng | Shuaiqi Liu | Renze Lou | Henry Peng Zou | Pranav Narayanan Venkit | Nan Zhang | Mukund Srinath | Haoran Ranran Zhang | Vipul Gupta | Yinghui Li | Tao Li | Fei Wang | Qin Liu | Tianlin Liu | Pengzhi Gao | Congying Xia | Chen Xing | Cheng Jiayang | Zhaowei Wang | Ying Su | Raj Sanjay Shah | Ruohao Guo | Jing Gu | Haoran Li | Kangda Wei | Zihao Wang | Lu Cheng | Surangika Ranathunga | Meng Fang | Jie Fu | Fei Liu | Ruihong Huang | Eduardo Blanco | Yixin Cao | Rui Zhang | Philip S. Yu | Wenpeng Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Claim: This work is not advocating the use of LLMs for paper (meta-)reviewing. Instead, wepresent a comparative analysis to identify and distinguish LLM activities from human activities. Two research goals: i) Enable better recognition of instances when someone implicitly uses LLMs for reviewing activities; ii) Increase community awareness that LLMs, and AI in general, are currently inadequate for performing tasks that require a high level of expertise and nuanced judgment.This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload?This study focuses on the topic of LLMs as NLP Researchers, particularly examining the effectiveness of LLMs in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with “deficiency” labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) “LLMs as Reviewers”, how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) “LLMs as Metareviewers”, how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.

pdf bib
kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning
Wenting Zhao | Ye Liu | Yao Wan | Yibo Wang | Qingyang Wu | Zhongfen Deng | Jiangshu Du | Shuaiqi Liu | Yunlong Xu | Philip Yu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags. Recently, Large Language Models (LLMs) have achieved impressive performance in synthesizing computer programs based on a natural-language prompt, mitigating the gap between natural language and structured programs. Our paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks, addressing the following three key research questions: 1) How can LLMs be effectively utilized for semantic parsing tasks? 2) What defines an effective prompt? and 3) How can LLM overcome the length constraint and streamline prompt design by including all examples as prompts? We introduce k Nearest Neighbor In-Context Learning (kNN-ICL), which simplifies prompt engineering by allowing it to be built on top of any design strategy while providing access to all demo examples. Extensive experiments show that: 1) Simple ICL without kNN search can achieve a comparable performance with strong supervised models on the TOP tasks, and 2) kNN-ICL significantly improves the comprehension of complex requests by seamlessly integrating ICL with a nearest-neighbor approach. Notably, this enhancement is achieved without the need for additional data or specialized prompts.

2023

pdf bib
Localize, Retrieve and Fuse: A Generalized Framework for Free-Form Question Answering over Tables
Wenting Zhao | Ye Liu | Yao Wan | Yibo Wang | Zhongfen Deng | Philip S. Yu
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

pdf bib
Named Entity Recognition via Machine Reading Comprehension: A Multi-Task Learning Approach
Yibo Wang | Wenting Zhao | Yao Wan | Zhongfen Deng | Philip Yu
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

2022

pdf bib
Can Current Explainability Help Provide References in Clinical Notes to Support Humans Annotate Medical Codes?
Byung-Hak Kim | Zhongfen Deng | Philip Yu | Varun Ganapathi
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)

The medical codes prediction problem from clinical notes has received substantial interest in the NLP community, and several recent studies have shown the state-of-the-art (SOTA) code prediction results of full-fledged deep learning-based methods. However, most previous SOTA works based on deep learning are still in early stages in terms of providing textual references and explanations of the predicted codes, despite the fact that this level of explainability of the prediction outcomes is critical to gaining trust from professional medical coders. This raises the important question of how well current explainability methods apply to advanced neural network models such as transformers to predict correct codes and present references in clinical notes that support code prediction. First, we present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD, through simplified but thorough human-grounded evaluations with SOTA transformer-based model, RAC. We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios. More importantly, we show for the first time that, given the current state of explainability methodologies, using the SOTA medical codes prediction system still requires the expertise and competencies of professional coders, even though its prediction accuracy is superior to that of human coders. This, we believe, is a very meaningful step toward developing explainable and accurate machine learning systems for fully autonomous medical code prediction from clinical notes.

2021

pdf bib
HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization
Zhongfen Deng | Hao Peng | Dongxiao He | Jianxin Li | Philip Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The current state-of-the-art model HiAGM for hierarchical text classification has two limitations. First, it correlates each text sample with all labels in the dataset which contains irrelevant information. Second, it does not consider any statistical constraint on the label representations learned by the structure encoder, while constraints for representation learning are proved to be helpful in previous work. In this paper, we propose HTCInfoMax to address these issues by introducing information maximization which includes two modules: text-label mutual information maximization and label prior matching. The first module can model the interaction between each text sample and its ground truth labels explicitly which filters out irrelevant information. The second one encourages the structure encoder to learn better representations with desired characteristics for all labels which can better handle label imbalance in hierarchical text classification. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed HTCInfoMax.

2020

pdf bib
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation
Zhongfen Deng | Hao Peng | Congying Xia | Jianxin Li | Lifang He | Philip Yu
Proceedings of the 28th International Conference on Computational Linguistics

Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simple text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.