Zhongyu Ouyang
2024
Working Memory Identifies Reasoning Limits in Language Models
Chunhui Zhang
|
Yiren Jian
|
Zhongyu Ouyang
|
Soroush Vosoughi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This study explores the inherent limitations of large language models (LLMs) from a scaling perspective, focusing on the upper bounds of their cognitive capabilities. We integrate insights from cognitive science to quantitatively examine how LLMs perform on n-back tasks—a benchmark used to assess working memory, which involves temporarily holding and manipulating information. Our findings reveal that despite the increased model size, LLMs still face significant challenges in holding and processing information effectively, especially under complex task conditions. We also assess various prompting strategies, revealing their diverse impacts on LLM performance. The results highlight the struggle of current LLMs to autonomously discover optimal problem-solving patterns without heavily relying on manually corrected prompts. To move beyond these constraints, fundamental improvements in the planning and search of LLMs are essential for them to reason autonomously. Improving these capabilities will reduce the reliance on external corrections and enable LLMs to become more autonomous in their problem-solving processes.
Learning Musical Representations for Music Performance Question Answering
Xingjian Diao
|
Chunhui Zhang
|
Tingxuan Wu
|
Ming Cheng
|
Zhongyu Ouyang
|
Weiyi Wu
|
Jiang Gui
Findings of the Association for Computational Linguistics: EMNLP 2024
Music performances are representative scenarios for audio-visual modeling. Unlike common scenarios with sparse audio, music performances continuously involve dense audio signals throughout. While existing multimodal learning methods on the audio-video QA demonstrate impressive capabilities on general scenarios, they are incapable of dealing with fundamental problems within the music performances: they underexplore the interaction between the multimodal signals in performance, and fail to consider the distinctive characteristics of instruments and music. Therefore, existing methods tend to inaccurately answer questions regarding musical performances. To bridge the above research gaps, first, given the intricate multimodal interconnectivity inherent to music data, our primary backbone is designed to incorporate multimodal interactions within the context of music; second, to enable the model to learn music characteristics, we annotate and release rhythmic and music sources in the current music datasets; third, for time-aware audio-visual modelling, we align the model’s music predictions with the temporal dimension. Our experiments show state-of-the-art effects on the Music AVQA datasets. Our code is available at: https://github.com/xid32/Amuse.
Search
Co-authors
- Chunhui Zhang 2
- Yiren Jian 1
- Soroush Vosoughi 1
- Xingjian Diao 1
- Tingxuan Wu 1
- show all...