Zhongyu Wei

Also published as: 忠钰


2024

pdf bib
Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs
Siyuan Wang | Zhongyu Wei | Yejin Choi | Xiang Ren
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks. However, their mastery of underlying inferential rules still falls short of human capabilities. To investigate this, we propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic, comprising both primitive and compositional rules across five domains. Our analysis of GPT-series models over a rule subset reveals significant gaps in LLMs’ logic understanding compared to human performance, especially in compositional and structural complex rules with certain bias patterns. We further distill these rules into a smaller-scale inference engine for flexible rule generation and enhancing downstream reasoning. Through a multi-judger evaluation, our inference engine proves effective in generating accurate, complex and abstract conclusions and premises, and improve various commonsense reasoning tasks. Overall, our work sheds light on LLMs’ limitations in grasping inferential rule and suggests ways to enhance their logical reasoning abilities .

pdf bib
EmbSpatial-Bench: Benchmarking Spatial Understanding for Embodied Tasks with Large Vision-Language Models
Mengfei Du | Binhao Wu | Zejun Li | Xuanjing Huang | Zhongyu Wei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The recent rapid development of Large Vision-Language Models (LVLMs) has indicated their potential for embodied tasks. However, the critical skill of spatial understanding in embodied environments has not been thoroughly evaluated, leaving the gap between current LVLMs and qualified embodied intelligence unknown. Therefore, we construct EmbSpatial-Bench, a benchmark for evaluating embodied spatial understanding of LVLMs. The benchmark is automatically derived from embodied scenes and covers 6 spatial relationships from an egocentric perspective. Experiments expose the insufficient capacity of current LVLMs (even GPT-4V). We further present EmbSpatial-SFT, an instruction-tuning dataset designed to improve LVLMs’ embodied spatial understanding.

pdf bib
From LLMs to MLLMs: Exploring the Landscape of Multimodal Jailbreaking
Siyuan Wang | Zhuohan Long | Zhihao Fan | Zhongyu Wei
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.

pdf bib
Symbolic Working Memory Enhances Language Models for Complex Rule Application
Siyuan Wang | Zhongyu Wei | Yejin Choi | Xiang Ren
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have shown remarkable reasoning performance but struggle with multi-step deductive reasoning involving a series of rule application steps, especially when rules are presented non-sequentially. Our preliminary analysis shows that while LLMs excel in single-step rule application, their performance drops significantly in multi-step scenarios due to the challenge in rule grounding. It requires anchoring the applicable rule and supporting facts at each step, amidst multiple input rules, facts, and inferred facts. To address this, we propose augmenting LLMs with external working memory and introduce a neurosymbolic framework for rule application. The memory stores facts and rules in both natural language and symbolic forms, enabling precise tracking. Utilizing this memory, our framework iteratively performs symbolic rule grounding and LLM-based rule implementation. The former matches predicates and variables of symbolic rules and facts to ground applicable rules at each step. Experiments indicate our framework’s effectiveness in rule application and its robustness across various steps and settings.

pdf bib
SoMeLVLM: A Large Vision Language Model for Social Media Processing
Xinnong Zhang | Haoyu Kuang | Xinyi Mou | Hanjia Lyu | Kun Wu | Siming Chen | Jiebo Luo | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: ACL 2024

The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.

pdf bib
Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
Xinyi Mou | Zhongyu Wei | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2024

Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.

pdf bib
ALaRM: Align Language Models via Hierarchical Rewards Modeling
Yuhang Lai | Siyuan Wang | Shujun Liu | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: ACL 2024

We introduce ALaRM, the first framework modeling hierarchical rewards in reinforcement learning from human feedback (RLHF), which is designed to enhance the alignment of large language models (LLMs) with human preferences. The framework addresses the limitations of current alignment approaches, which often struggle with the inconsistency and sparsity of human supervision signals, by integrating holistic rewards with aspect-specific rewards. This integration enables more precise and consistent guidance of language models towards desired outcomes, particularly in complex and open text generation tasks. By employing a methodology that filters and combines multiple rewards based on their consistency, the framework provides a reliable mechanism for improving model alignment. We validate our approach through applications in long-form question answering and machine translation tasks, employing gpt-3.5-turbo for pairwise comparisons, and demonstrate improvements over existing baselines. Our work underscores the effectiveness of hierarchical rewards modeling in refining LLM training processes for better human preference alignment. We release our code at https://ALaRM-fdu.github.io.

pdf bib
Debatrix: Multi-dimensional Debate Judge with Iterative Chronological Analysis Based on LLM
Jingcong Liang | Rong Ye | Meng Han | Ruofei Lai | Xinyu Zhang | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: ACL 2024

How can we construct an automated debate judge to evaluate an extensive, vibrant, multi-turn debate? This task is challenging, as judging a debate involves grappling with lengthy texts, intricate argument relationships, and multi-dimensional assessments.At the same time, current research mainly focuses on short dialogues, rarely touching upon the evaluation of an entire debate.In this paper, by leveraging Large Language Models (LLMs), we propose Debatrix, which makes the analysis and assessment of multi-turn debates more aligned with majority preferences. Specifically, Debatrix features a vertical, iterative chronological analysis and a horizontal, multi-dimensional evaluation collaboration.To align with real-world debate scenarios, we introduced the PanelBench benchmark, comparing our system’s performance to actual debate outcomes.The findings indicate a notable enhancement over directly using LLMs for debate evaluation.Source code and benchmark data are available at https://github.com/ljcleo/debatrix.

pdf bib
Android in the Zoo: Chain-of-Action-Thought for GUI Agents
Jiwen Zhang | Jihao Wu | Teng Yihua | Minghui Liao | Nuo Xu | Xiao Xiao | Zhongyu Wei | Duyu Tang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typically consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon three off-the-shelf LMMs, CoAT significantly improves the action prediction compared to previous proposed context modeling. To further facilitate the research in this line, we construct a dataset Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 1B model (i.e. AUTO-UI-base) on our AitZ dataset achieves on-par performance with CogAgent-Chat-18B.

pdf bib
DELAN: Dual-Level Alignment for Vision-and-Language Navigation by Cross-Modal Contrastive Learning
Mengfei Du | Binhao Wu | Jiwen Zhang | Zhihao Fan | Zejun Li | Ruipu Luo | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Vision-and-Language navigation (VLN) requires an agent to navigate in unseen environment by following natural language instruction. For task completion, the agent needs to align and integrate various navigation modalities, including instruction, observation and navigation history. Existing works primarily concentrate on cross-modal attention at the fusion stage to achieve this objective. Nevertheless, modality features generated by disparate uni-encoders reside in their own spaces, leading to a decline in the quality of cross-modal fusion and decision. To address this problem, we propose a Dual-levEL AligNment (DELAN) framework by cross-modal contrastive learning. This framework is designed to align various navigation-related modalities before fusion, thereby enhancing cross-modal interaction and action decision-making. Specifically, we divide the pre-fusion alignment into dual levels: instruction-history level and landmark-observation level according to their semantic correlations. We also reconstruct a dual-level instruction for adaptation to the dual-level alignment. As the training signals for pre-fusion alignment are extremely limited, self-supervised contrastive learning strategies are employed to enforce the matching between different modalities. Our approach seamlessly integrates with the majority of existing models, resulting in improved navigation performance on various VLN benchmarks, including R2R, R4R, RxR and CVDN.

pdf bib
Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization
Libo Sun | Siyuan Wang | Meng Han | Ruofei Lai | Xinyu Zhang | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Product review summarization aims to generate a concise summary based on product reviews to facilitate purchasing decisions. This intricate task gives rise to three challenges in existing work: factual accuracy, aspect comprehensiveness, and content relevance. In this paper, we first propose an FB-Thinker framework to improve the summarization ability of LLMs with multi-objective forward reasoning and multi-reward backward refinement. To enable LLM with these dual capabilities, we present two Chinese product review summarization datasets, Product-CSum and Product-CSum-Cross, for both instruction-tuning and cross-domain evaluation. Specifically, these datasets are collected via GPT-assisted manual annotations from an online forum and public datasets. We further design an evaluation mechanism Product-Eval, integrating both automatic and human evaluation across multiple dimensions for product summarization. Experimental results show the competitiveness and generalizability of our proposed framework in the product review summarization tasks.

pdf bib
PASUM: A Pre-training Architecture for Social Media User Modeling Based on Text Graph
Kun Wu | Xinyi Mou | Lanqing Xue | Zhenzhe Ying | Weiqiang Wang | Qi Zhang | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Modeling social media users is the core of social governance in the digital society. Existing works have incorporated different digital traces to better learn the representations of social media users, including text information encoded by pre-trained language models and social network information encoded by graph models. However, limited by overloaded text information and hard-to-collect social network information, they cannot utilize global text information and cannot be generalized without social relationships. In this paper, we propose a Pre-training Architecture for Social Media User Modeling based on Text Graph(PASUM). We aggregate all microblogs to represent social media users based on the text graph model and learn the mapping from microblogs to user representation. We further design inter-user and intra-user contrastive learning tasks to inject general structural information into the mapping. In different scenarios, we can represent users based on text, even without social network information. Experimental results on various downstream tasks demonstrate the effectiveness and superiority of our framework.

pdf bib
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)
Kam-Fai Wong | Min Zhang | Ruifeng Xu | Jing Li | Zhongyu Wei | Lin Gui | Bin Liang | Runcong Zhao
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

pdf bib
Who Responded to Whom: The Joint Effects of Latent Topics and Discourse in Conversation Structure
Lu Ji | Lei Chen | Jing Li | Zhongyu Wei | Qi Zhang | Xuanjing Huang
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

Vast amount of online conversations are produced on a daily basis, resulting in a pressing need to automatic conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utterances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a neural model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.

2023

pdf bib
Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs
Siyuan Wang | Zhongyu Wei | Meng Han | Zhihao Fan | Haijun Shan | Qi Zhang | Xuanjing Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Logical reasoning over incomplete knowledge graphs to answer complex logical queries is a challenging task. With the emergence of new entities and relations in constantly evolving KGs, inductive logical reasoning over KGs has become a crucial problem. However, previous PLMs-based methods struggle to model the logical structures of complex queries, which limits their ability to generalize within the same structure. In this paper, we propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs. It encodes linearized query structures and entities using pre-trained language models to find answers. For structure modeling of complex queries, we design stepwise instructions that implicitly prompt PLMs on the execution order of geometric operations in each query. We further separately model different geometric operations (i.e., projection, intersection, and union) on the representation space using a pre-trained encoder with additional attention and maxout layers to enhance structured modeling. We conduct experiments on two inductive logical reasoning datasets and three transductive datasets. The results demonstrate the effectiveness of our method on logical reasoning over KGs in both inductive and transductive settings.

pdf bib
Actively Supervised Clustering for Open Relation Extraction
Jun Zhao | Yongxin Zhang | Qi Zhang | Tao Gui | Zhongyu Wei | Minlong Peng | Mingming Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current clustering-based Open Relation Extraction (OpenRE) methods usually adopt a two-stage pipeline, which simultaneously learns relation representations and assignments in the first stage, then manually labels relation for each cluster. However, unsupervised objectives struggle to explicitly optimize clusters to align with relational semantics, and the number of clusters K has to be supplied in advance. In this paper, we present a novel setting, named actively supervised clustering for OpenRE. Our insight lies in that clustering learning and relation labeling can be performed simultaneously, which provides the necessary guidance for clustering without a significant increase in human effort. Along with this setting, we propose an active labeling strategy tailored for clustering. Instead of only focusing on improving the clustering of relations that have been discovered, our strategy is encouraged to discover new relations through diversity regularization. This is particularly beneficial for long-tail relations in the real world. Experimental results show that our method is able to discover almost all relational clusters in the data and improve the SOTA methods by 13.8% and 10.6%, on two datasets respectively.

pdf bib
Unifying Cross-Lingual and Cross-Modal Modeling Towards Weakly Supervised Multilingual Vision-Language Pre-training
Zejun Li | Zhihao Fan | Jingjing Chen | Qi Zhang | Xuanjing Huang | Zhongyu Wei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multilingual Vision-Language Pre-training (VLP) is a promising but challenging topic due to the lack of large-scale multilingual image-text pairs. Existing works address the problem by translating English data into other languages, which is intuitive and the generated data is usually limited in form and scale. In this paper, we explore a more practical and scalable setting: weakly supervised multilingual VLP with only English image-text pairs and multilingual text corpora. We argue that the universal multilingual representation learned from texts allows the cross-modal interaction learned in English to be transferable to other languages. To this end, we propose a framework to effectively unify cross-lingual and cross-modal pre-training. For unified modeling on different data, we design an architecture with flexible modules to learn different interactions. Moreover, two unified tasks are introduced to efficiently guide the unified cross-lingual cross-modal learning. Extensive experiments demonstrate that our pre-trained model learns universal multilingual multimodal representations, allowing effective cross-lingual transfer on multimodal tasks. Code and models are available at https://github.com/FudanDISC/weakly-supervised-mVLP.

pdf bib
RE-Matching: A Fine-Grained Semantic Matching Method for Zero-Shot Relation Extraction
Jun Zhao | WenYu Zhan | Xin Zhao | Qi Zhang | Tao Gui | Zhongyu Wei | Junzhe Wang | Minlong Peng | Mingming Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.

pdf bib
Open Set Relation Extraction via Unknown-Aware Training
Jun Zhao | Xin Zhao | WenYu Zhan | Qi Zhang | Tao Gui | Zhongyu Wei | Yun Wen Chen | Xiang Gao | Xuanjing Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The existing supervised relation extraction methods have achieved impressive performance in a closed-set setting, in which the relations remain the same during both training and testing. In a more realistic open-set setting, unknown relations may appear in the test set. Due to the lack of supervision signals from unknown relations, a well-performing closed-set relation extractor can still confidently misclassify them into known relations. In this paper, we propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances that can provide the missing supervision signals. Inspired by text adversarial attack, We adaptively apply small but critical perturbations to original training data,synthesizing difficult enough negative instances that are mistaken by the model as known relations, thus facilitating a compact decision boundary. Experimental results show that our method achieves SOTA unknown relation detection without compromising the classification of known relations.

pdf bib
UPPAM: A Unified Pre-training Architecture for Political Actor Modeling based on Language
Xinyi Mou | Zhongyu Wei | Qi Zhang | Xuanjing Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modeling political actors is at the core of quantitative political science. Existing works have incorporated contextual information to better learn the representation of political actors for specific tasks through graph models. However, they are limited to the structure and objective of training settings and can not be generalized to all politicians and other tasks. In this paper, we propose a Unified Pre-training Architecture for Political Actor Modeling based on language (UPPAM). In UPPAM, we aggregate statements to represent political actors and learn the mapping from languages to representation, instead of learning the representation of particular persons. We further design structure-aware contrastive learning and behavior-driven contrastive learning tasks, to inject multidimensional information in the political context into the mapping. In this framework, we can profile political actors from different aspects and solve various downstream tasks. Experimental results demonstrate the effectiveness and capability of generalization of our method.

pdf bib
DSRM: Boost Textual Adversarial Training with Distribution Shift Risk Minimization
SongYang Gao | Shihan Dou | Yan Liu | Xiao Wang | Qi Zhang | Zhongyu Wei | Jin Ma | Ying Shan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Adversarial training is one of the best-performing methods in improving the robustness of deep language models. However, robust models come at the cost of high time consumption, as they require multi-step gradient ascents or word substitutions to obtain adversarial samples. In addition, these generated samples are deficient in grammatical quality and semantic consistency, which impairs the effectiveness of adversarial training. To address these problems, we introduce a novel, effective procedure for instead adversarial training with only clean data. Our procedure, distribution shift risk minimization (DSRM), estimates the adversarial loss by perturbing the input data’s probability distribution rather than their embeddings. This formulation results in a robust model that minimizes the expected global loss under adversarial attacks. Our approach requires zero adversarial samples for training and reduces time consumption by up to 70% compared to current best-performing adversarial training methods. Experiments demonstrate that DSRM considerably improves BERT’s resistance to textual adversarial attacks and achieves state-of-the-art robust accuracy on various benchmarks.

pdf bib
基于推理链的多跳问答对抗攻击和对抗增强训练方法(Reasoning Chain Based Adversarial Attack and Adversarial Augmentation Training for Multi-hop Question Answering)
Jiayu Ding (佳玙丁,) | Siyuan Wang (王思远) | Zhongyu Wei (魏忠钰) | Qin Chen (陈琴) | Xuanjing Huang (黄萱菁)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“本文提出了一种基于多跳推理链的对抗攻击方法,通过向输入文本中加入对抗性的攻击文本,并测试问答模型在干扰数据下生成答案的准确性,以检测问答模型真正执行多跳推理的能力和可解释性。该方法首先从输入文本中抽取从问题实体到答案实体的推理链,并基于推理链的特征把多跳问题分为了不同的推理类型,提出了一个模型来自动化实现问题拆解和推理类型预测,然后根据推理类型对原问题进行修改来构造攻击干扰句。实验对多个多跳问答模型进行了对抗攻击测试,所有模型的性能都显著下降,验证了该攻击方法的有效性以及目前问答模型存在的不足;向原训练集中加入对抗样本进行增强训练后,模型性能均有所回升,证明了本对抗增强训练方法可以提升模型的鲁棒性。”

pdf bib
Hi-ArG: Exploring the Integration of Hierarchical Argumentation Graphs in Language Pretraining
Jingcong Liang | Rong Ye | Meng Han | Qi Zhang | Ruofei Lai | Xinyu Zhang | Zhao Cao | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The knowledge graph is a structure to store and represent knowledge, and recent studies have discussed its capability to assist language models for various applications. Some variations of knowledge graphs aim to record arguments and their relations for computational argumentation tasks. However, many must simplify semantic types to fit specific schemas, thus losing flexibility and expression ability. In this paper, we propose the **Hi**erarchical **Ar**gumentation **G**raph (Hi-ArG), a new structure to organize arguments. We also introduce two approaches to exploit Hi-ArG, including a text-graph multi-modal model GreaseArG and a new pre-training framework augmented with graph information. Experiments on two argumentation tasks have shown that after further pre-training and fine-tuning, GreaseArG supersedes same-scale language models on these tasks, while incorporating graph information during further pre-training can also improve the performance of vanilla language models. Code for this paper is available at <https://github.com/ljcleo/Hi-ArG>.

pdf bib
Argue with Me Tersely: Towards Sentence-Level Counter-Argument Generation
Jiayu Lin | Rong Ye | Meng Han | Qi Zhang | Ruofei Lai | Xinyu Zhang | Zhao Cao | Xuanjing Huang | Zhongyu Wei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Counter-argument generation—a captivating area in computational linguistics—seeks to craft statements that offer opposing views. While most research has ventured into paragraph-level generation, sentence-level counter-argument generation beckons with its unique constraints and brevity-focused challenges. Furthermore, the diverse nature of counter-arguments poses challenges for evaluating model performance solely based on n-gram-based metrics. In this paper, we present the ArgTersely benchmark for sentence-level counter-argument generation, drawing from a manually annotated dataset from the ChangeMyView debate forum. We also propose Arg-LlaMA for generating high-quality counter-argument. For better evaluation, we trained a BERT-based evaluator Arg-Judge with human preference data. We conducted comparative experiments involving various baselines such as LlaMA, Alpaca, GPT-3, and others. The results show the competitiveness of our proposed framework and evaluator in counter-argument generation tasks. Code and data are available at https://github.com/amazingljy1206/ArgTersely.

pdf bib
KNSE: A Knowledge-aware Natural Language Inference Framework for Dialogue Symptom Status Recognition
Wei Chen | Shiqi Wei | Zhongyu Wei | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023

Symptom diagnosis in medical conversations aims to correctly extract both symptom entities and their status from the doctor-patient dialogue. In this paper, we propose a novel framework called KNSE for symptom status recognition (SSR), where the SSR is formulated as a natural language inference (NLI) task. For each mentioned symptom in a dialogue window, we first generate knowledge about the symptom and hypothesis about status of the symptom, to form a (premise, knowledge, hypothesis) triplet. The BERT model is then used to encode the triplet, which is further processed by modules including utterance aggregation, self-attention, cross-attention, and GRU to predict the symptom status. Benefiting from the NLI formalization, the proposed framework can encode more informative prior knowledge to better localize and track symptom status, which can effectively improve the performance of symptom status recognition. Preliminary experiments on Chinese medical dialogue datasets show that KNSE outperforms previous competitive baselines and has advantages in cross-disease and cross-symptom scenarios.

pdf bib
Detecting Adversarial Samples through Sharpness of Loss Landscape
Rui Zheng | Shihan Dou | Yuhao Zhou | Qin Liu | Tao Gui | Qi Zhang | Zhongyu Wei | Xuanjing Huang | Menghan Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Deep neural networks (DNNs) have been proven to be sensitive towards perturbations on input samples, and previous works highlight that adversarial samples are even more vulnerable than normal ones. In this work, this phenomenon is illustrated frWe first show that adversarial samples locate in steep and narrow local minima of the loss landscape (high sharpness) while normal samples, which differs distinctly from adversarial ones, reside in the loss surface that is more flatter (low sharpness).om the perspective of sharpness via visualizing the input loss landscape of models. Based on this, we propose a simple and effective sharpness-based detector to distinct adversarial samples by maximizing the loss increment within the region where the inference sample is located. Considering that the notion of sharpness of a loss landscape is relative, we further propose an adaptive optimization strategy in an attempt to fairly compare the relative sharpness among different samples. Experimental results show that our approach can outperform previous detection methods by large margins (average +6.6 F1 score) for four advanced attack strategies considered in this paper across three text classification tasks.

pdf bib
Connectivity Patterns are Task Embeddings
Zhiheng Xi | Rui Zheng | Yuansen Zhang | Xuanjing Huang | Zhongyu Wei | Minlong Peng | Mingming Sun | Qi Zhang | Tao Gui
Findings of the Association for Computational Linguistics: ACL 2023

Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.

pdf bib
Unleashing the Power of Language Models in Text-Attributed Graph
Haoyu Kuang | Jiarong Xu | Haozhe Zhang | Zuyu Zhao | Qi Zhang | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

Representation learning on graph has been demonstrated to be a powerful tool for solving real-world problems. Text-attributed graph carries both semantic and structural information among different types of graphs. Existing works have paved the way for knowledge extraction of this type of data by leveraging language models or graph neural networks or combination of them. However, these works suffer from issues like underutilization of relationships between nodes or words or unaffordable memory cost. In this paper, we propose a Node Representation Update Pre-training Architecture based on Co-modeling Text and Graph (NRUP). In NRUP, we construct a hierarchical text-attributed graph that incorporates both original nodes and word nodes. Meanwhile, we apply four self-supervised tasks for different level of constructed graph. We further design the pre-training framework to update the features of nodes during training epochs. We conduct the experiment on the benchmark dataset ogbn-arxiv. Our method achieves outperformance compared to baselines, fully demonstrating its validity and generalization.

pdf bib
One-Model-Connects-All: A Unified Graph Pre-Training Model for Online Community Modeling
Ruoxue Ma | Jiarong Xu | Xinnong Zhang | Haozhe Zhang | Zuyu Zhao | Qi Zhang | Xuanjing Huang | Zhongyu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

Online community is composed of communities, users, and user-generated textual content, with rich information that can help us solve social problems. Previous research hasn’t fully utilized these three components and the relationship among them. What’s more, they can’t adapt to a wide range of downstream tasks. To solve these problems, we focus on a framework that simultaneously considers communities, users, and texts. And it can easily connect with a variety of downstream tasks related to social media. Specifically, we use a ternary heterogeneous graph to model online communities. Text reconstruction and edge generation are used to learn structural and semantic knowledge among communities, users, and texts. By leveraging this pre-trained model, we achieve promising results across multiple downstream tasks, such as violation detection, sentiment analysis, and community recommendation. Our exploration will improve online community modeling.

2022

pdf bib
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts
Miguel A. Alonso | Zhongyu Wei
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts

pdf bib
Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues
Qingxiu Dong | Ziwei Qin | Heming Xia | Tian Feng | Shoujie Tong | Haoran Meng | Lin Xu | Zhongyu Wei | Weidong Zhan | Baobao Chang | Sujian Li | Tianyu Liu | Zhifang Sui
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

It is a common practice for recent works in vision language cross-modal reasoning to adopt a binary or multi-choice classification formulation taking as input a set of source image(s) and textual query. In this work, we take a sober look at such an “unconditional” formulation in the sense that no prior knowledge is specified with respect to the source image(s). Inspired by the designs of both visual commonsense reasoning and natural language inference tasks, we propose a new task termed “Premise-based Multi-modal Reasoning” (PMR) where a textual premise is the background presumption on each source image. The PMR dataset contains 15,360 manually annotated samples which are created by a multi-phase crowd-sourcing process. With selected high-quality movie screenshots and human-curated premise templates from 6 pre-defined categories, we ask crowd-source workers to write one true hypothesis and three distractors (4 choices) given the premise and image through a cross-check procedure.

pdf bib
DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for Dialog Response Generation
Wei Chen | Yeyun Gong | Song Wang | Bolun Yao | Weizhen Qi | Zhongyu Wei | Xiaowu Hu | Bartuer Zhou | Yi Mao | Weizhu Chen | Biao Cheng | Nan Duan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialog response generation in open domain is an important research topic where the main challenge is to generate relevant and diverse responses. In this paper, we propose a new dialog pre-training framework called DialogVED, which introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses. With the help of a large dialog corpus (Reddit), we pre-train the model using the following 4 tasks, used in training language models (LMs) and Variational Autoencoders (VAEs) literature: 1) masked language model; 2) response generation; 3) bag-of-words prediction; and 4) KL divergence reduction. We also add additional parameters to model the turn structure in dialogs to improve the performance of the pre-trained model. We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation. Experimental results show that our model achieves the new state-of-the-art results on all these datasets.

pdf bib
Contextual Fine-to-Coarse Distillation for Coarse-grained Response Selection in Open-Domain Conversations
Wei Chen | Yeyun Gong | Can Xu | Huang Hu | Bolun Yao | Zhongyu Wei | Zhihao Fan | Xiaowu Hu | Bartuer Zhou | Biao Cheng | Daxin Jiang | Nan Duan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We study the problem of coarse-grained response selection in retrieval-based dialogue systems. The problem is equally important with fine-grained response selection, but is less explored in existing literature. In this paper, we propose a Contextual Fine-to-Coarse (CFC) distilled model for coarse-grained response selection in open-domain conversations. In our CFC model, dense representations of query, candidate contexts and responses is learned based on the multi-tower architecture using contextual matching, and richer knowledge learned from the one-tower architecture (fine-grained) is distilled into the multi-tower architecture (coarse-grained) to enhance the performance of the retriever. To evaluate the performance of the proposed model, we construct two new datasets based on the Reddit comments dump and Twitter corpus. Extensive experimental results on the two datasets show that the proposed method achieves huge improvement over all evaluation metrics compared with traditional baseline methods.

pdf bib
Locate Then Ask: Interpretable Stepwise Reasoning for Multi-hop Question Answering
Siyuan Wang | Zhongyu Wei | Zhihao Fan | Qi Zhang | Xuanjing Huang
Proceedings of the 29th International Conference on Computational Linguistics

Multi-hop reasoning requires aggregating multiple documents to answer a complex question. Existing methods usually decompose the multi-hop question into simpler single-hop questions to solve the problem for illustrating the explainable reasoning process. However, they ignore grounding on the supporting facts of each reasoning step, which tends to generate inaccurate decompositions. In this paper, we propose an interpretable stepwise reasoning framework to incorporate both single-hop supporting sentence identification and single-hop question generation at each intermediate step, and utilize the inference of the current hop for the next until reasoning out the final result. We employ a unified reader model for both intermediate hop reasoning and final hop inference and adopt joint optimization for more accurate and robust multi-hop reasoning. We conduct experiments on two benchmark datasets HotpotQA and 2WikiMultiHopQA. The results show that our method can effectively boost performance and also yields a better interpretable reasoning process without decomposition supervision.

pdf bib
A Progressive Framework for Role-Aware Rumor Resolution
Lei Chen | Guanying Li | Zhongyu Wei | Yang Yang | Baohua Zhou | Qi Zhang | Xuanjing Huang
Proceedings of the 29th International Conference on Computational Linguistics

Existing works on rumor resolution have shown great potential in recognizing word appearance and user participation. However, they ignore the intrinsic propagation mechanisms of rumors and present poor adaptive ability when unprecedented news emerges. To exploit the fine-grained rumor diffusion patterns and generalize rumor resolution methods, we formulate a predecessor task to identify triggering posts, and then exploit their characteristics to facilitate rumor verification. We design a tree-structured annotation interface and extend PHEME dataset with labels on the message level. Data analysis shows that triggers play a critical role in verifying rumors and present similar lingual patterns across irrelevant events. We propose a graph-based model considering the direction and interaction of information flow to implement role-aware rumor resolution. Experimental results demonstrate the effectiveness of our proposed model and progressive scheme.

pdf bib
A Two Stage Adaptation Framework for Frame Detection via Prompt Learning
Xinyi Mou | Zhongyu Wei | Changjian Jiang | Jiajie Peng
Proceedings of the 29th International Conference on Computational Linguistics

Framing is a communication strategy to bias discussion by selecting and emphasizing. Frame detection aims to automatically analyze framing strategy. Previous works on frame detection mainly focus on a single scenario or issue, ignoring the special characteristics of frame detection that new events emerge continuously and policy agenda changes dynamically. To better deal with various context and frame typologies across different issues, we propose a two-stage adaptation framework. In the framing domain adaptation from pre-training stage, we design two tasks based on pivots and prompts to learn a transferable encoder, verbalizer, and prompts. In the downstream scenario generalization stage, the transferable components are applied to new issues and label sets. Experiment results demonstrate the effectiveness of our framework in different scenarios. Also, it shows superiority both in full-resource and low-resource conditions.

pdf bib
A Structure-Aware Argument Encoder for Literature Discourse Analysis
Yinzi Li | Wei Chen | Zhongyu Wei | Yujun Huang | Chujun Wang | Siyuan Wang | Qi Zhang | Xuanjing Huang | Libo Wu
Proceedings of the 29th International Conference on Computational Linguistics

Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE.

pdf bib
Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text
Siyuan Wang | Wanjun Zhong | Duyu Tang | Zhongyu Wei | Zhihao Fan | Daxin Jiang | Ming Zhou | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2022

Logical reasoning of text requires identifying critical logical structures in the text and performing inference over them. Existing methods for logical reasoning mainly focus on contextual semantics of text while struggling to explicitly model the logical inference process. In this paper, we not only put forward a logic-driven context extension framework but also propose a logic-driven data augmentation algorithm. The former follows a three-step reasoning paradigm, and each step is respectively to extract logical expressions as elementary reasoning units, symbolically infer the implicit expressions following equivalence laws and extend the context to validate the options. The latter augments literally similar but logically different instances and incorporates contrastive learning to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on two benchmark datasets, ReClor and LogiQA. The results show that our method achieves state-of-the-art performance on both datasets, and even surpasses human performance on the ReClor dataset.

pdf bib
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences for Image-Text Retrieval
Zhihao Fan | Zhongyu Wei | Zejun Li | Siyuan Wang | Xuanjing Huang | Jianqing Fan
Findings of the Association for Computational Linguistics: NAACL 2022

Matching model is essential for Image-Text Retrieval framework. Existing research usually train the model with a triplet loss and explore various strategy to retrieve hard negative sentences in the dataset. We argue that current retrieval-based negative sample construction approach is limited in the scale of the dataset thus fail to identify negative sample of high difficulty for every image. We propose our TAiloring neGative Sentences with Discrimination and Correction (TAGS-DC) to generate synthetic sentences automatically as negative samples. TAGS-DC is composed of masking and refilling to generate synthetic negative sentences with higher difficulty. To keep the difficulty during training, we mutually improve the retrieval and generation through parameter sharing. To further utilize fine-grained semantic of mismatch in the negative sentence, we propose two auxiliary tasks, namely word discrimination and word correction to improve the training. In experiments, we verify the effectiveness of our model on MS-COCO and Flickr30K compared with current state-of-the-art models and demonstrates its robustness and faithfulness in the further analysis.

2021

pdf bib
Align Voting Behavior with Public Statements for Legislator Representation Learning
Xinyi Mou | Zhongyu Wei | Lei Chen | Shangyi Ning | Yancheng He | Changjian Jiang | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Ideology of legislators is typically estimated by ideal point models from historical records of votes. It represents legislators and legislation as points in a latent space and shows promising results for modeling voting behavior. However, it fails to capture more specific attitudes of legislators toward emerging issues and is unable to model newly-elected legislators without voting histories. In order to mitigate these two problems, we explore to incorporate both voting behavior and public statements on Twitter to jointly model legislators. In addition, we propose a novel task, namely hashtag usage prediction to model the ideology of legislators on Twitter. In practice, we construct a heterogeneous graph for the legislative context and use relational graph neural networks to learn the representation of legislators with the guidance of historical records of their voting and hashtag usage. Experiment results indicate that our model yields significant improvements for the task of roll call vote prediction. Further analysis further demonstrates that legislator representation we learned captures nuances in statements.

pdf bib
Math Word Problem Solving with Explicit Numerical Values
Qinzhuo Wu | Qi Zhang | Zhongyu Wei | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In recent years, math word problem solving has received considerable attention and achieved promising results, but previous methods rarely take numerical values into consideration. Most methods treat the numerical values in the problems as number symbols, and ignore the prominent role of the numerical values in solving the problem. In this paper, we propose a novel approach called NumS2T, which enhances math word problem solving performance by explicitly incorporating numerical values into a sequence-to-tree network. In addition, a numerical properties prediction mechanism is used to capture the category and comparison information of numerals and measure their importance in global expressions. Experimental results on the Math23K and APE datasets demonstrate that our model achieves better performance than existing state-of-the-art models.

pdf bib
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Xiao Wang | Qin Liu | Tao Gui | Qi Zhang | Yicheng Zou | Xin Zhou | Jiacheng Ye | Yongxin Zhang | Rui Zheng | Zexiong Pang | Qinzhuo Wu | Zhengyan Li | Chong Zhang | Ruotian Ma | Zichu Fei | Ruijian Cai | Jun Zhao | Xingwu Hu | Zhiheng Yan | Yiding Tan | Yuan Hu | Qiyuan Bian | Zhihua Liu | Shan Qin | Bolin Zhu | Xiaoyu Xing | Jinlan Fu | Yue Zhang | Minlong Peng | Xiaoqing Zheng | Yaqian Zhou | Zhongyu Wei | Xipeng Qiu | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.

pdf bib
基于多质心异质图学习的社交网络用户建模(User Representation Learning based on Multi-centroid Heterogeneous Graph Neural Networks)
Shangyi Ning (宁上毅) | Guanying Li (李冠颖) | Qin Chen (陈琴) | Zengfeng Huang (黄增峰) | Baohua Zhou (周葆华) | Zhongyu Wei (魏忠钰)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

用户建模已经引起了学术界和工业界的广泛关注。现有的方法大多侧重于将用户间的人际关系融入社区,而用户生成的内容(如帖子)却没有得到很好的研究。在本文中,我们通过实际舆情传播相关的分析表明,在舆情传播过程中对用户属性进行研究的重要作用,并且提出了用户资料数据的筛选方法。同时,我们提出了一种通过异构多质心图池为用户捕获更多不同社区特征的建模。我们首先构造了一个由用户和关键字组成的异质图,并在其上采用了一个异质图神经网络。为了方便用户建模的图表示,提出了一种多质心图池化机制,将多质心的集群特征融入到表示学习中。在三个基准数据集上的大量实验表明了该方法的有效性。

pdf bib
A Partition Filter Network for Joint Entity and Relation Extraction
Zhiheng Yan | Chong Zhang | Jinlan Fu | Qi Zhang | Zhongyu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.

pdf bib
Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training
Zhengyan Li | Yicheng Zou | Chong Zhang | Qi Zhang | Zhongyu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.

pdf bib
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters
Ruize Wang | Duyu Tang | Nan Duan | Zhongyu Wei | Xuanjing Huang | Jianshu Ji | Guihong Cao | Daxin Jiang | Ming Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Leveraging Argumentation Knowledge Graph for Interactive Argument Pair Identification
Jian Yuan | Zhongyu Wei | Donghua Zhao | Qi Zhang | Changjian Jiang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
An Edge-Enhanced Hierarchical Graph-to-Tree Network for Math Word Problem Solving
Qinzhuo Wu | Qi Zhang | Zhongyu Wei
Findings of the Association for Computational Linguistics: EMNLP 2021

Math word problem solving has attracted considerable research interest in recent years. Previous works have shown the effectiveness of utilizing graph neural networks to capture the relationships in the problem. However, these works did not carefully take the edge label information and the long-range word relationship across sentences into consideration. In addition, during generation, they focus on the most relevant areas of the currently generated word, while neglecting the rest of the problem. In this paper, we propose a novel Edge-Enhanced Hierarchical Graph-to-Tree model (EEH-G2T), in which the math word problems are represented as edge-labeled graphs. Specifically, an edge-enhanced hierarchical graph encoder is used to incorporate edge label information. This encoder updates the graph nodes hierarchically in two steps: sentence-level aggregation and problem-level aggregation. Furthermore, a tree-structured decoder with a split attention mechanism is applied to guide the model to pay attention to different parts of the input problem. Experimental results on the MAWPS and Math23K dataset showed that our EEH-G2T can effectively improve performance compared with state-of-the-art methods.

pdf bib
Mask Attention Networks: Rethinking and Strengthen Transformer
Zhihao Fan | Yeyun Gong | Dayiheng Liu | Zhongyu Wei | Siyuan Wang | Jian Jiao | Nan Duan | Ruofei Zhang | Xuanjing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer is an attention-based neural network, which consists of two sublayers, namely, Self-Attention Network (SAN) and Feed-Forward Network (FFN). Existing research explores to enhance the two sublayers separately to improve the capability of Transformer for text representation. In this paper, we present a novel understanding of SAN and FFN as Mask Attention Networks (MANs) and show that they are two special cases of MANs with static mask matrices. However, their static mask matrices limit the capability for localness modeling in text representation learning. We therefore introduce a new layer named dynamic mask attention network (DMAN) with a learnable mask matrix which is able to model localness adaptively. To incorporate advantages of DMAN, SAN, and FFN, we propose a sequential layered structure to combine the three types of layers. Extensive experiments on various tasks, including neural machine translation and text summarization demonstrate that our model outperforms the original Transformer.

pdf bib
Discrete Argument Representation Learning for Interactive Argument Pair Identification
Lu Ji | Zhongyu Wei | Jing Li | Qi Zhang | Xuanjing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this paper, we focus on identifying interactive argument pairs from two posts with opposite stances to a certain topic. Considering opinions are exchanged from different perspectives of the discussing topic, we study the discrete representations for arguments to capture varying aspects in argumentation languages (e.g., the debate focus and the participant behavior). Moreover, we utilize hierarchical structure to model post-wise information incorporating contextual knowledge. Experimental results on the large-scale dataset collected from CMV show that our proposed framework can significantly outperform the competitive baselines. Further analyses reveal why our model yields superior performance and prove the usefulness of our learned representations.

2020

pdf bib
Simplify the Usage of Lexicon in Chinese NER
Ruotian Ma | Minlong Peng | Qi Zhang | Zhongyu Wei | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently, many works have tried to augment the performance of Chinese named entity recognition (NER) using word lexicons. As a representative, Lattice-LSTM has achieved new benchmark results on several public Chinese NER datasets. However, Lattice-LSTM has a complex model architecture. This limits its application in many industrial areas where real-time NER responses are needed. In this work, we propose a simple but effective method for incorporating the word lexicon into the character representations. This method avoids designing a complicated sequence modeling architecture, and for any neural NER model, it requires only subtle adjustment of the character representation layer to introduce the lexicon information. Experimental studies on four benchmark Chinese NER datasets show that our method achieves an inference speed up to 6.15 times faster than those of state-of-the-art methods, along with a better performance. The experimental results also show that the proposed method can be easily incorporated with pre-trained models like BERT.

pdf bib
An Enhanced Knowledge Injection Model for Commonsense Generation
Zhihao Fan | Yeyun Gong | Zhongyu Wei | Siyuan Wang | Yameng Huang | Jian Jiao | Xuanjing Huang | Nan Duan | Ruofei Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, experimental results show that our method significantly improves the performance on all the metrics.

pdf bib
Keep it Consistent: Topic-Aware Storytelling from an Image Stream via Iterative Multi-agent Communication
Ruize Wang | Zhongyu Wei | Ying Cheng | Piji Li | Haijun Shan | Ji Zhang | Qi Zhang | Xuanjing Huang
Proceedings of the 28th International Conference on Computational Linguistics

Visual storytelling aims to generate a narrative paragraph from a sequence of images automatically. Existing approaches construct text description independently for each image and roughly concatenate them as a story, which leads to the problem of generating semantically incoherent content. In this paper, we propose a new way for visual storytelling by introducing a topic description task to detect the global semantic context of an image stream. A story is then constructed with the guidance of the topic description. In order to combine the two generation tasks, we propose a multi-agent communication framework that regards the topic description generator and the story generator as two agents and learn them simultaneously via iterative updating mechanism. We validate our approach on VIST dataset, where quantitative results, ablations, and human evaluation demonstrate our method’s good ability in generating stories with higher quality compared to state-of-the-art methods.

pdf bib
Modeling Evolution of Message Interaction for Rumor Resolution
Lei Chen | Zhongyu Wei | Jing Li | Baohua Zhou | Qi Zhang | Xuanjing Huang
Proceedings of the 28th International Conference on Computational Linguistics

Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.

pdf bib
Leveraging Declarative Knowledge in Text and First-Order Logic for Fine-Grained Propaganda Detection
Ruize Wang | Duyu Tang | Nan Duan | Wanjun Zhong | Zhongyu Wei | Xuanjing Huang | Daxin Jiang | Ming Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We study the detection of propagandistic text fragments in news articles. Instead of merely learning from input-output datapoints in training data, we introduce an approach to inject declarative knowledge of fine-grained propaganda techniques. Specifically, we leverage the declarative knowledge expressed in both first-order logic and natural language. The former refers to the logical consistency between coarse- and fine-grained predictions, which is used to regularize the training process with propositional Boolean expressions. The latter refers to the literal definition of each propaganda technique, which is utilized to get class representations for regularizing the model parameters. We conduct experiments on Propaganda Techniques Corpus, a large manually annotated dataset for fine-grained propaganda detection. Experiments show that our method achieves superior performance, demonstrating that leveraging declarative knowledge can help the model to make more accurate predictions.

pdf bib
PathQG: Neural Question Generation from Facts
Siyuan Wang | Zhongyu Wei | Zhihao Fan | Zengfeng Huang | Weijian Sun | Qi Zhang | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing research for question generation encodes the input text as a sequence of tokens without explicitly modeling fact information. These models tend to generate irrelevant and uninformative questions. In this paper, we explore to incorporate facts in the text for question generation in a comprehensive way. We present a novel task of question generation given a query path in the knowledge graph constructed from the input text. We divide the task into two steps, namely, query representation learning and query-based question generation. We formulate query representation learning as a sequence labeling problem for identifying the involved facts to form a query and employ an RNN-based generator for question generation. We first train the two modules jointly in an end-to-end fashion, and further enforce the interaction between these two modules in a variational framework. We construct the experimental datasets on top of SQuAD and results show that our model outperforms other state-of-the-art approaches, and the performance margin is larger when target questions are complex. Human evaluation also proves that our model is able to generate relevant and informative questions.

pdf bib
Automatic Term Name Generation for Gene Ontology: Task and Dataset
Yanjian Zhang | Qin Chen | Yiteng Zhang | Zhongyu Wei | Yixu Gao | Jiajie Peng | Zengfeng Huang | Weijian Sun | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Terms contained in Gene Ontology (GO) have been widely used in biology and bio-medicine. Most previous research focuses on inferring new GO terms, while the term names that reflect the gene function are still named by the experts. To fill this gap, we propose a novel task, namely term name generation for GO, and build a large-scale benchmark dataset. Furthermore, we present a graph-based generative model that incorporates the relations between genes, words and terms for term name generation, which exhibits great advantages over the strong baselines.

2019

pdf bib
A Lexicon-Based Graph Neural Network for Chinese NER
Tao Gui | Yicheng Zou | Qi Zhang | Minlong Peng | Jinlan Fu | Zhongyu Wei | Xuanjing Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recurrent neural networks (RNN) used for Chinese named entity recognition (NER) that sequentially track character and word information have achieved great success. However, the characteristic of chain structure and the lack of global semantics determine that RNN-based models are vulnerable to word ambiguities. In this work, we try to alleviate this problem by introducing a lexicon-based graph neural network with global semantics, in which lexicon knowledge is used to connect characters to capture the local composition, while a global relay node can capture global sentence semantics and long-range dependency. Based on the multiple graph-based interactions among characters, potential words, and the whole-sentence semantics, word ambiguities can be effectively tackled. Experiments on four NER datasets show that the proposed model achieves significant improvements against other baseline models.

pdf bib
Enhancing Dialogue Symptom Diagnosis with Global Attention and Symptom Graph
Xinzhu Lin | Xiahui He | Qin Chen | Huaixiao Tou | Zhongyu Wei | Ting Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Symptom diagnosis is a challenging yet profound problem in natural language processing. Most previous research focus on investigating the standard electronic medical records for symptom diagnosis, while the dialogues between doctors and patients that contain more rich information are not well studied. In this paper, we first construct a dialogue symptom diagnosis dataset based on an online medical forum with a large amount of dialogues between patients and doctors. Then, we provide some benchmark models on this dataset to boost the research of dialogue symptom diagnosis. In order to further enhance the performance of symptom diagnosis over dialogues, we propose a global attention mechanism to capture more symptom related information, and build a symptom graph to model the associations between symptoms rather than treating each symptom independently. Experimental results show that both the global attention and symptom graph are effective to boost dialogue symptom diagnosis. In particular, our proposed model achieves the state-of-the-art performance on the constructed dataset.

pdf bib
Extract, Transform and Filling: A Pipeline Model for Question Paraphrasing based on Template
Yunfan Gu | Yang Yuqiao | Zhongyu Wei
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Question paraphrasing aims to restate a given question with different expressions but keep the original meaning. Recent approaches are mostly based on neural networks following a sequence-to-sequence fashion, however, these models tend to generate unpredictable results. To overcome this drawback, we propose a pipeline model based on templates. It follows three steps, a) identifies template from the input question, b) retrieves candidate templates, c) fills candidate templates with original topic words. Experiment results on two self-constructed datasets show that our model outperforms the sequence-to-sequence model in a large margin and the advantage is more promising when the size of training sample is small.

pdf bib
Bridging by Word: Image Grounded Vocabulary Construction for Visual Captioning
Zhihao Fan | Zhongyu Wei | Siyuan Wang | Xuanjing Huang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Image Captioning aims at generating a short description for an image. Existing research usually employs the architecture of CNN-RNN that views the generation as a sequential decision-making process and the entire dataset vocabulary is used as decoding space. They suffer from generating high frequent n-gram with irrelevant words. To tackle this problem, we propose to construct an image-grounded vocabulary, based on which, captions are generated with limitation and guidance. In specific, a novel hierarchical structure is proposed to construct the vocabulary incorporating both visual information and relations among words. For generation, we propose a word-aware RNN cell incorporating vocabulary information into the decoding process directly. Reinforce algorithm is employed to train the generator using constraint vocabulary as action space. Experimental results on MS COCO and Flickr30k show the effectiveness of our framework compared to some state-of-the-art models.

2018

pdf bib
A Reinforcement Learning Framework for Natural Question Generation using Bi-discriminators
Zhihao Fan | Zhongyu Wei | Siyuan Wang | Yang Liu | Xuanjing Huang
Proceedings of the 27th International Conference on Computational Linguistics

Visual Question Generation (VQG) aims to ask natural questions about an image automatically. Existing research focus on training model to fit the annotated data set that makes it indifferent from other language generation tasks. We argue that natural questions need to have two specific attributes from the perspectives of content and linguistic respectively, namely, natural and human-written. Inspired by the setting of discriminator in adversarial learning, we propose two discriminators, one for each attribute, to enhance the training. We then use the reinforcement learning framework to incorporate scores from the two discriminators as the reward to guide the training of the question generator. Experimental results on a benchmark VQG dataset show the effectiveness and robustness of our model compared to some state-of-the-art models in terms of both automatic and human evaluation metrics.

pdf bib
Incorporating Argument-Level Interactions for Persuasion Comments Evaluation using Co-attention Model
Lu Ji | Zhongyu Wei | Xiangkun Hu | Yang Liu | Qi Zhang | Xuanjing Huang
Proceedings of the 27th International Conference on Computational Linguistics

In this paper, we investigate the issue of persuasiveness evaluation for argumentative comments. Most of the existing research explores different text features of reply comments on word level and ignores interactions between participants. In general, viewpoints are usually expressed by multiple arguments and exchanged on argument level. To better model the process of dialogical argumentation, we propose a novel co-attention mechanism based neural network to capture the interactions between participants on argument level. Experimental results on a publicly available dataset show that the proposed model significantly outperforms some state-of-the-art methods for persuasiveness evaluation. Further analysis reveals that attention weights computed in our model are able to extract interactive argument pairs from the original post and the reply.

pdf bib
Automatic Essay Scoring Incorporating Rating Schema via Reinforcement Learning
Yucheng Wang | Zhongyu Wei | Yaqian Zhou | Xuanjing Huang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Automatic essay scoring (AES) is the task of assigning grades to essays without human interference. Existing systems for AES are typically trained to predict the score of each single essay at a time without considering the rating schema. In order to address this issue, we propose a reinforcement learning framework for essay scoring that incorporates quadratic weighted kappa as guidance to optimize the scoring system. Experiment results on benchmark datasets show the effectiveness of our framework.

pdf bib
A Joint Model of Conversational Discourse Latent Topics on Microblogs
Jing Li | Yan Song | Zhongyu Wei | Kam-Fai Wong
Computational Linguistics, Volume 44, Issue 4 - December 2018

Conventional topic models are ineffective for topic extraction from microblog messages, because the data sparseness exhibited in short messages lacking structure and contexts results in poor message-level word co-occurrence patterns. To address this issue, we organize microblog messages as conversation trees based on their reposting and replying relations, and propose an unsupervised model that jointly learns word distributions to represent: (1) different roles of conversational discourse, and (2) various latent topics in reflecting content information. By explicitly distinguishing the probabilities of messages with varying discourse roles in containing topical words, our model is able to discover clusters of discourse words that are indicative of topical content. In an automatic evaluation on large-scale microblog corpora, our joint model yields topics with better coherence scores than competitive topic models from previous studies. Qualitative analysis on model outputs indicates that our model induces meaningful representations for both discourse and topics. We further present an empirical study on microblog summarization based on the outputs of our joint model. The results show that the jointly modeled discourse and topic representations can effectively indicate summary-worthy content in microblog conversations.

pdf bib
Task-oriented Dialogue System for Automatic Diagnosis
Zhongyu Wei | Qianlong Liu | Baolin Peng | Huaixiao Tou | Ting Chen | Xuanjing Huang | Kam-fai Wong | Xiangying Dai
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this paper, we make a move to build a dialogue system for automatic diagnosis. We first build a dataset collected from an online medical forum by extracting symptoms from both patients’ self-reports and conversational data between patients and doctors. Then we propose a task-oriented dialogue system framework to make diagnosis for patients automatically, which can converse with patients to collect additional symptoms beyond their self-reports. Experimental results on our dataset show that additional symptoms extracted from conversation can greatly improve the accuracy for disease identification and our dialogue system is able to collect these symptoms automatically and make a better diagnosis.

pdf bib
Incorporating Topic Aspects for Online Comment Convincingness Evaluation
Yunfan Gu | Zhongyu Wei | Maoran Xu | Hao Fu | Yang Liu | Xuanjing Huang
Proceedings of the 5th Workshop on Argument Mining

In this paper, we propose to incorporate topic aspects information for online comments convincingness evaluation. Our model makes use of graph convolutional network to utilize implicit topic information within a discussion thread to assist the evaluation of convincingness of each single comment. In order to test the effectiveness of our proposed model, we annotate topic information on top of a public dataset for argument convincingness evaluation. Experimental results show that topic information is able to improve the performance for convincingness evaluation. We also make a move to detect topic aspects automatically.

2016

pdf bib
Using Relevant Public Posts to Enhance News Article Summarization
Chen Li | Zhongyu Wei | Yang Liu | Yang Jin | Fei Huang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

A news article summary usually consists of 2-3 key sentences that reflect the gist of that news article. In this paper we explore using public posts following a new article to improve automatic summary generation for the news article. We propose different approaches to incorporate information from public posts, including using frequency information from the posts to re-estimate bigram weights in the ILP-based summarization model and to re-weight a dependency tree edge’s importance for sentence compression, directly selecting sentences from posts as the final summary, and finally a strategy to combine the summarization results generated from news articles and posts. Our experiments on data collected from Facebook show that relevant public posts provide useful information and can be effectively leveraged to improve news article summarization results.

pdf bib
Is This Post Persuasive? Ranking Argumentative Comments in Online Forum
Zhongyu Wei | Yang Liu | Yi Li
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
An Efficient Cross-lingual Model for Sentence Classification Using Convolutional Neural Network
Yandi Xia | Zhongyu Wei | Yang Liu
Proceedings of the ACL 2016 Student Research Workshop

pdf bib
A Preliminary Study of Disputation Behavior in Online Debating Forum
Zhongyu Wei | Yandi Xia | Chen Li | Yang Liu | Zachary Stallbohm | Yi Li | Yang Jin
Proceedings of the Third Workshop on Argument Mining (ArgMining2016)

2015

pdf bib
Using Content-level Structures for Summarizing Microblog Repost Trees
Jing Li | Wei Gao | Zhongyu Wei | Baolin Peng | Kam-Fai Wong
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Using Tweets to Help Sentence Compression for News Highlights Generation
Zhongyu Wei | Yang Liu | Chen Li | Wei Gao
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Utilizing Microblogs for Automatic News Highlights Extraction
Zhongyu Wei | Wei Gao
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Exploiting Community Emotion for Microblog Event Detection
Gaoyan Ou | Wei Chen | Tengjiao Wang | Zhongyu Wei | Binyang Li | Dongqing Yang | Kam-Fai Wong
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
The CUHK Discourse TreeBank for Chinese: Annotating Explicit Discourse Connectives for the Chinese TreeBank
Lanjun Zhou | Binyang Li | Zhongyu Wei | Kam-Fai Wong
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

The lack of open discourse corpus for Chinese brings limitations for many natural language processing tasks. In this work, we present the first open discourse treebank for Chinese, namely, the Discourse Treebank for Chinese (DTBC). At the current stage, we annotated explicit intra-sentence discourse connectives, their corresponding arguments and senses for all 890 documents of the Chinese Treebank 5. We started by analysing the characteristics of discourse annotation for Chinese, adapted the annotation scheme of Penn Discourse Treebank 2 (PDTB2) to Chinese language while maintaining the compatibility as far as possible. We made adjustments to 3 essential aspects according to the previous study of Chinese linguistics. They are sense hierarchy, argument scope and semantics of arguments. Agreement study showed that our annotation scheme could achieve highly reliable results.

pdf bib
Web Information Mining and Decision Support Platform for the Modern Service Industry
Binyang Li | Lanjun Zhou | Zhongyu Wei | Kam-fai Wong | Ruifeng Xu | Yunqing Xia
Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations

2013

pdf bib
An Empirical Study on Uncertainty Identification in Social Media Context
Zhongyu Wei | Junwen Chen | Wei Gao | Binyang Li | Lanjun Zhou | Yulan He | Kam-Fai Wong
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Cross-Lingual Identification of Ambiguous Discourse Connectives for Resource-Poor Language
Lanjun Zhou | Wei Gao | Binyang Li | Zhongyu Wei | Kam-Fai Wong
Proceedings of COLING 2012: Posters

pdf bib
Quantising Opinions for Political Tweets Analysis
Yulan He | Hassan Saif | Zhongyu Wei | Kam-Fai Wong
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

There have been increasing interests in recent years in analyzing tweet messages relevant to political events so as to understand public opinions towards certain political issues. We analyzed tweet messages crawled during the eight weeks leading to the UK General Election in May 2010 and found that activities at Twitter is not necessarily a good predictor of popularity of political parties. We then proceed to propose a statistical model for sentiment detection with side information such as emoticons and hash tags implying tweet polarities being incorporated. Our results show that sentiment analysis based on a simple keyword matching against a sentiment lexicon or a supervised classifier trained with distant supervision does not correlate well with the actual election results. However, using our proposed statistical model for sentiment analysis, we were able to map the public opinion in Twitter with the actual offline sentiment in real world.

2011

pdf bib
Unsupervised Discovery of Discourse Relations for Eliminating Intra-sentence Polarity Ambiguities
Lanjun Zhou | Binyang Li | Wei Gao | Zhongyu Wei | Kam-Fai Wong
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

Search
Co-authors
Fix data