Zhu JianHao


2024

pdf bib
Promoting Data and Model Privacy in Federated Learning through Quantized LoRA
Zhu JianHao | Changze Lv | Xiaohua Wang | Muling Wu | Wenhao Liu | Tianlong Li | Zixuan Ling | Cenyuan Zhang | Xiaoqing Zheng | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

Conventional federated learning primarily aims to secure the privacy of data distributed across multiple edge devices, with the global model dispatched to edge devices for parameter updates during the learning process. However, the development of large language models (LLMs) requires substantial data and computational resources, rendering them valuable intellectual properties for their developers and owners. To establish a mechanism that protects both data and model privacy in a federated learning context, we introduce a method that just needs to distribute a quantized version of the model’s parameters during training. This method enables accurate gradient estimations for parameter updates while preventing clients from accessing a model whose performance is comparable to the centrally hosted one. Moreover, we combine this quantization strategy with LoRA, a popular and parameter-efficient fine-tuning method, to significantly reduce communication costs in federated learning. The proposed framework, named FedLPP, successfully ensures both data and model privacy in the federated learning context. Additionally, the learned central model exhibits good generalization and can be trained in a resource-efficient manner.

pdf bib
Aligning Large Language Models with Human Preferences through Representation Engineering
Wenhao Liu | Xiaohua Wang | Muling Wu | Tianlong Li | Changze Lv | Zixuan Ling | Zhu JianHao | Cenyuan Zhang | Xiaoqing Zheng | Xuanjing Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involve employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation. Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement. Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF’s versatility in accommodating diverse human preferences shows its potential for advancing LLM performance.

pdf bib
Advancing Parameter Efficiency in Fine-tuning via Representation Editing
Muling Wu | Wenhao Liu | Xiaohua Wang | Tianlong Li | Changze Lv | Zixuan Ling | Zhu JianHao | Cenyuan Zhang | Xiaoqing Zheng | Xuanjing Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Parameter Efficient Fine-Tuning (PEFT) has gained significant attention for its ability to achieve competitive results while updating only a small subset of trainable parameters. Despite the promising performance of current PEFT methods, they present challenges in hyperparameter selection, such as determining the rank of LoRA or Adapter, or specifying the length of soft prompts. In addressing these challenges, we propose a novel approach to fine-tuning neural models, termed Representation EDiting (RED), which scales and biases the representation produced at each layer. RED substantially reduces the number of trainable parameters by a factor of 25,700 compared to full parameter fine-tuning, and by a factor of 32 compared to LoRA. Remarkably, RED achieves comparable or superior results to full parameter fine-tuning and other PEFT methods. Extensive experiments were conducted across models of varying architectures and scales, including RoBERTa, GPT-2, T5, and Llama-2, and the results demonstrate the efficiency and efficacy of RED, positioning it as a promising PEFT approach for large neural models.