Zhu Wenjing


2021

pdf bib
Improving Low-Resource Named Entity Recognition via Label-Aware Data Augmentation and Curriculum Denoising
Zhu Wenjing | Liu Jian | Xu Jinan | Chen Yufeng | Zhang Yujie
Proceedings of the 20th Chinese National Conference on Computational Linguistics

Deep neural networks have achieved state-of-the-art performances on named entity recognition(NER) with sufficient training data while they perform poorly in low-resource scenarios due to data scarcity. To solve this problem we propose a novel data augmentation method based on pre-trained language model (PLM) and curriculum learning strategy. Concretely we use the PLMto generate diverse training instances through predicting different masked words and design atask-specific curriculum learning strategy to alleviate the influence of noises. We evaluate the effectiveness of our approach on three datasets: CoNLL-2003 OntoNotes5.0 and MaScip of which the first two are simulated low-resource scenarios and the last one is a real low-resource dataset in material science domain. Experimental results show that our method consistently outperform the baseline model. Specifically our method achieves an absolute improvement of3.46% F1 score on the 1% CoNLL-2003 2.58% on the 1% OntoNotes5.0 and 0.99% on the full of MaScip.