Zhuosheng Zhang


pdf bib
Structural Characterization for Dialogue Disentanglement
Xinbei Ma | Zhuosheng Zhang | Hai Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tangled multi-party dialogue contexts lead to challenges for dialogue reading comprehension, where multiple dialogue threads flow simultaneously within a common dialogue record, increasing difficulties in understanding the dialogue history for both human and machine. Previous studies mainly focus on utterance encoding methods with carefully designed features but pay inadequate attention to characteristic features of the structure of dialogues. We specially take structure factors into account and design a novel model for dialogue disentangling. Based on the fact that dialogues are constructed on successive participation and interactions between speakers, we model structural information of dialogues in two aspects: 1)speaker property that indicates whom a message is from, and 2) reference dependency that shows whom a message may refer to. The proposed method achieves new state-of-the-art on the Ubuntu IRC benchmark dataset and contributes to dialogue-related comprehension.

pdf bib
Sentence-aware Contrastive Learning for Open-Domain Passage Retrieval
Wu Hong | Zhuosheng Zhang | Jinyuan Wang | Hai Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Training dense passage representations via contrastive learning has been shown effective for Open-Domain Passage Retrieval (ODPR). Existing studies focus on further optimizing by improving negative sampling strategy or extra pretraining. However, these studies keep unknown in capturing passage with internal representation conflicts from improper modeling granularity. Specifically, under our observation that a passage can be organized by multiple semantically different sentences, modeling such a passage as a unified dense vector is not optimal. This work thus presents a refined model on the basis of a smaller granularity, contextual sentences, to alleviate the concerned conflicts. In detail, we introduce an in-passage negative sampling strategy to encourage a diverse generation of sentence representations within the same passage. Experiments on three benchmark datasets verify the efficacy of our method, especially on datasets where conflicts are severe. Extensive experiments further present good transferability of our method across datasets.

pdf bib
Tracing Origins: Coreference-aware Machine Reading Comprehension
Zhuosheng Zhang | Hai Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Machine reading comprehension is a heavily-studied research and test field for evaluating new pre-trained language models (PrLMs) and fine-tuning strategies, and recent studies have enriched the pre-trained language models with syntactic, semantic and other linguistic information to improve the performance of the models. In this paper, we imitate the human reading process in connecting the anaphoric expressions and explicitly leverage the coreference information of the entities to enhance the word embeddings from the pre-trained language model, in order to highlight the coreference mentions of the entities that must be identified for coreference-intensive question answering in QUOREF, a relatively new dataset that is specifically designed to evaluate the coreference-related performance of a model. We use two strategies to fine-tune a pre-trained language model, namely, placing an additional encoder layer after a pre-trained language model to focus on the coreference mentions or constructing a relational graph convolutional network to model the coreference relations. We demonstrate that the explicit incorporation of coreference information in the fine-tuning stage performs better than the incorporation of the coreference information in pre-training a language model.

pdf bib
Distinguishing Non-natural from Natural Adversarial Samples for More Robust Pre-trained Language Model
Jiayi Wang | Rongzhou Bao | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL 2022

Recently, the problem of robustness of pre-trained language models (PrLMs) has received increasing research interest. Latest studies on adversarial attacks achieve high attack success rates against PrLMs, claiming that PrLMs are not robust. However, we find that the adversarial samples that PrLMs fail are mostly non-natural and do not appear in reality. We question the validity of the current evaluation of robustness of PrLMs based on these non-natural adversarial samples and propose an anomaly detector to evaluate the robustness of PrLMs with more natural adversarial samples. We also investigate two applications of the anomaly detector: (1) In data augmentation, we employ the anomaly detector to force generating augmented data that are distinguished as non-natural, which brings larger gains to the accuracy of PrLMs. (2) We apply the anomaly detector to a defense framework to enhance the robustness of PrLMs. It can be used to defend all types of attacks and achieves higher accuracy on both adversarial samples and compliant samples than other defense frameworks.


pdf bib
Smoothing Dialogue States for Open Conversational Machine Reading
Zhuosheng Zhang | Siru Ouyang | Hai Zhao | Masao Utiyama | Eiichiro Sumita
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.

pdf bib
Dialogue Graph Modeling for Conversational Machine Reading
Siru Ouyang | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Span Fine-tuning for Pre-trained Language Models
Rongzhou Bao | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words in pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.

pdf bib
Multi-tasking Dialogue Comprehension with Discourse Parsing
Yuchen He | Zhuosheng Zhang | Hai Zhao
Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation

pdf bib
Structural Pre-training for Dialogue Comprehension
Zhuosheng Zhang | Hai Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained language models (PrLMs) have demonstrated superior performance due to their strong ability to learn universal language representations from self-supervised pre-training. However, even with the help of the powerful PrLMs, it is still challenging to effectively capture task-related knowledge from dialogue texts which are enriched by correlations among speaker-aware utterances. In this work, we present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features. To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives: 1) utterance order restoration, which predicts the order of the permuted utterances in dialogue context; 2) sentence backbone regularization, which regularizes the model to improve the factual correctness of summarized subject-verb-object triplets. Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.


pdf bib
LIMIT-BERT : Linguistics Informed Multi-Task BERT
Junru Zhou | Zhuosheng Zhang | Hai Zhao | Shuailiang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we present Linguistics Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistics tasks by Multi-Task Learning. LIMIT-BERT includes five key linguistics tasks: Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, span and dependency semantic role labeling (SRL). Different from recent Multi-Task Deep Neural Networks (MT-DNN), our LIMIT-BERT is fully linguistics motivated and thus is capable of adopting an improved masked training objective according to syntactic and semantic constituents. Besides, LIMIT-BERT takes a semi-supervised learning strategy to offer the same large amount of linguistics task data as that for the language model training. As a result, LIMIT-BERT not only improves linguistics tasks performance but also benefits from a regularization effect and linguistics information that leads to more general representations to help adapt to new tasks and domains. LIMIT-BERT outperforms the strong baseline Whole Word Masking BERT on both dependency and constituent syntactic/semantic parsing, GLUE benchmark, and SNLI task. Our practice on the proposed LIMIT-BERT also enables us to release a well pre-trained model for multi-purpose of natural language processing tasks once for all.


pdf bib
SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing
Zuchao Li | Hai Zhao | Zhuosheng Zhang | Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

This paper describes our SJTU-NICT’s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall F1 score and achieved the best F1 score on the DM framework.

pdf bib
Open Vocabulary Learning for Neural Chinese Pinyin IME
Zhuosheng Zhang | Yafang Huang | Hai Zhao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pinyin-to-character (P2C) conversion is the core component of pinyin-based Chinese input method engine (IME). However, the conversion is seriously compromised by the ambiguities of Chinese characters corresponding to pinyin as well as the predefined fixed vocabularies. To alleviate such inconveniences, we propose a neural P2C conversion model augmented by an online updated vocabulary with a sampling mechanism to support open vocabulary learning during IME working. Our experiments show that the proposed method outperforms commercial IMEs and state-of-the-art traditional models on standard corpus and true inputting history dataset in terms of multiple metrics and thus the online updated vocabulary indeed helps our IME effectively follows user inputting behavior.


pdf bib
Moon IME: Neural-based Chinese Pinyin Aided Input Method with Customizable Association
Yafang Huang | Zuchao Li | Zhuosheng Zhang | Hai Zhao
Proceedings of ACL 2018, System Demonstrations

Chinese pinyin input method engine (IME) lets user conveniently input Chinese into a computer by typing pinyin through the common keyboard. In addition to offering high conversion quality, modern pinyin IME is supposed to aid user input with extended association function. However, existing solutions for such functions are roughly based on oversimplified matching algorithms at word-level, whose resulting products provide limited extension associated with user inputs. This work presents the Moon IME, a pinyin IME that integrates the attention-based neural machine translation (NMT) model and Information Retrieval (IR) to offer amusive and customizable association ability. The released IME is implemented on Windows via text services framework.

pdf bib
Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing
Zuchao Li | Shexia He | Zhuosheng Zhang | Hai Zhao
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other richresource languages. Our system achieves a macro-average of 68.31% LAS F1 score, with an improvement of 2.51% compared with the UDPipe.

pdf bib
SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Embeddings
Zhuosheng Zhang | Jiangtong Li | Hai Zhao | Bingjie Tang
Proceedings of The 12th International Workshop on Semantic Evaluation

This paper describes a hypernym discovery system for our participation in the SemEval-2018 Task 9, which aims to discover the best (set of) candidate hypernyms for input concepts or entities, given the search space of a pre-defined vocabulary. We introduce a neural network architecture for the concerned task and empirically study various neural network models to build the representations in latent space for words and phrases. The evaluated models include convolutional neural network, long-short term memory network, gated recurrent unit and recurrent convolutional neural network. We also explore different embedding methods, including word embedding and sense embedding for better performance.

pdf bib
One-shot Learning for Question-Answering in Gaokao History Challenge
Zhuosheng Zhang | Hai Zhao
Proceedings of the 27th International Conference on Computational Linguistics

Answering questions from university admission exams (Gaokao in Chinese) is a challenging AI task since it requires effective representation to capture complicated semantic relations between questions and answers. In this work, we propose a hybrid neural model for deep question-answering task from history examinations. Our model employs a cooperative gated neural network to retrieve answers with the assistance of extra labels given by a neural turing machine labeler. Empirical study shows that the labeler works well with only a small training dataset and the gated mechanism is good at fetching the semantic representation of lengthy answers. Experiments on question answering demonstrate the proposed model obtains substantial performance gains over various neural model baselines in terms of multiple evaluation metrics.

pdf bib
Subword-augmented Embedding for Cloze Reading Comprehension
Zhuosheng Zhang | Yafang Huang | Hai Zhao
Proceedings of the 27th International Conference on Computational Linguistics

Representation learning is the foundation of machine reading comprehension. In state-of-the-art models, deep learning methods broadly use word and character level representations. However, character is not naturally the minimal linguistic unit. In addition, with a simple concatenation of character and word embedding, previous models actually give suboptimal solution. In this paper, we propose to use subword rather than character for word embedding enhancement. We also empirically explore different augmentation strategies on subword-augmented embedding to enhance the cloze-style reading comprehension model (reader). In detail, we present a reader that uses subword-level representation to augment word embedding with a short list to handle rare words effectively. A thorough examination is conducted to evaluate the comprehensive performance and generalization ability of the proposed reader. Experimental results show that the proposed approach helps the reader significantly outperform the state-of-the-art baselines on various public datasets.

pdf bib
Modeling Multi-turn Conversation with Deep Utterance Aggregation
Zhuosheng Zhang | Jiangtong Li | Pengfei Zhu | Hai Zhao | Gongshen Liu
Proceedings of the 27th International Conference on Computational Linguistics

Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus.

pdf bib
Lingke: a Fine-grained Multi-turn Chatbot for Customer Service
Pengfei Zhu | Zhuosheng Zhang | Jiangtong Li | Yafang Huang | Hai Zhao
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

Traditional chatbots usually need a mass of human dialogue data, especially when using supervised machine learning method. Though they can easily deal with single-turn question answering, for multi-turn the performance is usually unsatisfactory. In this paper, we present Lingke, an information retrieval augmented chatbot which is able to answer questions based on given product introduction document and deal with multi-turn conversations. We will introduce a fine-grained pipeline processing to distill responses based on unstructured documents, and attentive sequential context-response matching for multi-turn conversations.

pdf bib
A Unified Syntax-aware Framework for Semantic Role Labeling
Zuchao Li | Shexia He | Jiaxun Cai | Zhuosheng Zhang | Hai Zhao | Gongshen Liu | Linlin Li | Luo Si
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Semantic role labeling (SRL) aims to recognize the predicate-argument structure of a sentence. Syntactic information has been paid a great attention over the role of enhancing SRL. However, the latest advance shows that syntax would not be so important for SRL with the emerging much smaller gap between syntax-aware and syntax-agnostic SRL. To comprehensively explore the role of syntax for SRL task, we extend existing models and propose a unified framework to investigate more effective and more diverse ways of incorporating syntax into sequential neural networks. Exploring the effect of syntactic input quality on SRL performance, we confirm that high-quality syntactic parse could still effectively enhance syntactically-driven SRL. Using empirically optimized integration strategy, we even enlarge the gap between syntax-aware and syntax-agnostic SRL. Our framework achieves state-of-the-art results on CoNLL-2009 benchmarks both for English and Chinese, substantially outperforming all previous models.