Zifeng Ding


pdf bib
ECOLA: Enhancing Temporal Knowledge Embeddings with Contextualized Language Representations
Zhen Han | Ruotong Liao | Jindong Gu | Yao Zhang | Zifeng Ding | Yujia Gu | Heinz Koeppl | Hinrich Schütze | Volker Tresp
Findings of the Association for Computational Linguistics: ACL 2023

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts. However, existing enhancement approaches cannot apply to temporal knowledge graphs (tKGs), which contain time-dependent event knowledge with complex temporal dynamics. Specifically, existing enhancement approaches often assume knowledge embedding is time-independent. In contrast, the entity embedding in tKG models usually evolves, which poses the challenge of aligning temporally relevant texts with entities. To this end, we propose to study enhancing temporal knowledge embedding with textual data in this paper. As an approach to this task, we propose Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations (ECOLA), which takes the temporal aspect into account and injects textual information into temporal knowledge embedding. To evaluate ECOLA, we introduce three new datasets for training and evaluating ECOLA. Extensive experiments show that ECOLA significantly enhances temporal KG embedding models with up to 287% relative improvements regarding Hits@1 on the link prediction task. The code and models are publicly available on https://github.com/mayhugotong/ECOLA.


pdf bib
TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion
Guirong Fu | Zhao Meng | Zhen Han | Zifeng Ding | Yunpu Ma | Matthias Schubert | Volker Tresp | Roger Wattenhofer
Proceedings of the Sixth Workshop on Structured Prediction for NLP

Temporal knowledge graphs store the dynamics of entities and relations during a time period. However, typical temporal knowledge graphs often suffer from incomplete dynamics with missing facts in real-world scenarios. Hence, modeling temporal knowledge graphs to complete the missing facts is important. In this paper, we tackle the temporal knowledge graph completion task by proposing TempCaps, which is a Capsule network-based embedding model for Temporal knowledge graph completion. TempCaps models temporal knowledge graphs by introducing a novel dynamic routing aggregator inspired by Capsule Networks. Specifically, TempCaps builds entity embeddings by dynamically routing retrieved temporal relation and neighbor information. Experimental results demonstrate that TempCaps reaches state-of-the-art performance for temporal knowledge graph completion. Additional analysis also shows that TempCaps is efficient.


pdf bib
Learning Neural Ordinary Equations for Forecasting Future Links on Temporal Knowledge Graphs
Zhen Han | Zifeng Ding | Yunpu Ma | Yujia Gu | Volker Tresp
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

There has been an increasing interest in inferring future links on temporal knowledge graphs (KG). While links on temporal KGs vary continuously over time, the existing approaches model the temporal KGs in discrete state spaces. To this end, we propose a novel continuum model by extending the idea of neural ordinary differential equations (ODEs) to multi-relational graph convolutional networks. The proposed model preserves the continuous nature of dynamic multi-relational graph data and encodes both temporal and structural information into continuous-time dynamic embeddings. In addition, a novel graph transition layer is applied to capture the transitions on the dynamic graph, i.e., edge formation and dissolution. We perform extensive experiments on five benchmark datasets for temporal KG reasoning, showing our model’s superior performance on the future link forecasting task.