2024
pdf
bib
abs
CodecLM: Aligning Language Models with Tailored Synthetic Data
Zifeng Wang
|
Chun-Liang Li
|
Vincent Perot
|
Long Le
|
Jin Miao
|
Zizhao Zhang
|
Chen-Yu Lee
|
Tomas Pfister
Findings of the Association for Computational Linguistics: NAACL 2024
Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users’ actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.
pdf
bib
abs
CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation
I-Hung Hsu
|
Zifeng Wang
|
Long Le
|
Lesly Miculicich
|
Nanyun Peng
|
Chen-Yu Lee
|
Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2024
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs’ output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
pdf
bib
abs
Found in the middle: Calibrating Positional Attention Bias Improves Long Context Utilization
Cheng-Yu Hsieh
|
Yung-Sung Chuang
|
Chun-Liang Li
|
Zifeng Wang
|
Long Le
|
Abhishek Kumar
|
James Glass
|
Alexander Ratner
|
Chen-Yu Lee
|
Ranjay Krishna
|
Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs’ intrinsic attention bias: LLMs exhibit an U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 10 percentage point. These findings open up future directions in understanding LLM attention bias and its potential consequences.
pdf
bib
abs
LMDX: Language Model-based Document Information Extraction and Localization
Vincent Perot
|
Kai Kang
|
Florian Luisier
|
Guolong Su
|
Xiaoyu Sun
|
Ramya Sree Boppana
|
Zilong Wang
|
Zifeng Wang
|
Jiaqi Mu
|
Hao Zhang
|
Chen-Yu Lee
|
Nan Hua
Findings of the Association for Computational Linguistics: ACL 2024
Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art and exhibiting emergent capabilities across various tasks. However, their application in extracting information from visually rich documents, which is at the core of many document processing workflows and involving the extraction of key entities from semi-structured documents, has not yet been successful. The main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs, which is critical for high quality extraction, and the lack of a grounding mechanism to localize the predicted entities within the document. In this paper, we introduce Language Model-based Document Information EXtraction and Localization (LMDX), a methodology to reframe the document information extraction task for a LLM. LMDX enables extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. Finally, we apply LMDX to the PaLM 2-S and Gemini Pro LLMs and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.
pdf
bib
abs
PILOT: Legal Case Outcome Prediction with Case Law
Lang Cao
|
Zifeng Wang
|
Cao Xiao
|
Jimeng Sun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new framework named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.
pdf
bib
abs
TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale
Pengcheng Jiang
|
Cao Xiao
|
Zifeng Wang
|
Parminder Bhatia
|
Jimeng Sun
|
Jiawei Han
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The advent of large language models (LLMs) has significantly advanced natural language processing tasks like text summarization. However, their large size and computational demands, coupled with privacy concerns in data transmission, limit their use in resource-constrained and privacy-centric settings. To overcome this, we introduce TriSum, a framework for distilling LLMs’ text summarization abilities into a compact, local model. Initially, LLMs extract a set of aspect-triple rationales and summaries, which are refined using a dual-scoring method for quality. Next, a smaller local model is trained with these tasks, employing a curriculum learning strategy that evolves from simple to complex tasks. Our method enhances local model performance on various benchmarks (CNN/DailyMail, XSum, and ClinicalTrial), outperforming baselines by 4.5%, 8.5%, and 7.4%, respectively. It also improves interpretability by providing insights into the summarization rationale.
pdf
bib
abs
GenRES: Rethinking Evaluation for Generative Relation Extraction in the Era of Large Language Models
Pengcheng Jiang
|
Jiacheng Lin
|
Zifeng Wang
|
Jimeng Sun
|
Jiawei Han
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The field of relation extraction (RE) is experiencing a notable shift towards generative relation extraction (GRE), leveraging the capabilities of large language models (LLMs). However, we discovered that traditional relation extraction (RE) metrics like precision and recall fall short in evaluating GRE methods. This shortfall arises because these metrics rely on exact matching with human-annotated reference relations, while GRE methods often produce diverse and semantically accurate relations that differ from the references. To fill this gap, we introduce GenRES for a multi-dimensional assessment in terms of the topic similarity, uniqueness, granularity, factualness, and completeness of the GRE results. With GenRES, we empirically identified that (1) precision/recall fails to justify the performance of GRE methods; (2) human-annotated referential relations can be incomplete; (3) prompting LLMs with a fixed set of relations or entities can cause hallucinations. Next, we conducted a human evaluation of GRE methods that shows GenRES is consistent with human preferences for RE quality. Last, we made a comprehensive evaluation of fourteen leading LLMs using GenRES across document, bag, and sentence level RE datasets, respectively, to set the benchmark for future research in GRE
pdf
bib
abs
MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models
Yilin Wen
|
Zifeng Wang
|
Jimeng Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have achieved remarkable performance in natural language understanding and generation tasks. However, they often suffer from limitations such as difficulty in incorporating new knowledge, generating hallucinations, and explaining their reasoning process. To address these challenges, we propose a novel prompting pipeline, named MindMap, that leverages knowledge graphs (KGs) to enhance LLMs’ inference and transparency. Our method enables LLMs to comprehend KG inputs and infer with a combination of implicit and external knowledge. Moreover, our method elicits the mind map of LLMs, which reveals their reasoning pathways based on the ontology of knowledge. We evaluate our method on diverse question & answering tasks, especially in medical domains, and show significant improvements over baselines. We also introduce a new hallucination evaluation benchmark and analyze the effects of different components of our method. Our results demonstrate the effectiveness and robustness of our method in merging knowledge from LLMs and KGs for combined inference.
2023
pdf
bib
abs
QueryForm: A Simple Zero-shot Form Entity Query Framework
Zifeng Wang
|
Zizhao Zhang
|
Jacob Devlin
|
Chen-Yu Lee
|
Guolong Su
|
Hao Zhang
|
Jennifer Dy
|
Vincent Perot
|
Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2023
Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6% 10.1%) and the Payment (+3.2% 9.5%) zero-shot benchmark, with a smaller model size and no additional image input.
pdf
bib
abs
AutoTrial: Prompting Language Models for Clinical Trial Design
Zifeng Wang
|
Cao Xiao
|
Jimeng Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Clinical trials are critical for drug development. Constructing the appropriate eligibility criteria (i.e., the inclusion/exclusion criteria for patient recruitment) is essential for the trial’s success. Proper design of clinical trial protocols should consider similar precedent trials and their eligibility criteria to ensure sufficient patient coverage. In this paper, we present a method named AutoTrial to aid the design of clinical eligibility criteria using language models. It allows (1) controllable generation under instructions via a hybrid of discrete and neural prompting, (2) scalable knowledge incorporation via in-context learning, and (3) explicit reasoning chains to provide rationales for understanding the outputs. Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts that are fluent and coherent and with high accuracy in capturing the relevant clinical concepts to the target trial. It is noteworthy that our method, with a much smaller parameter size, gains around 60% winning rate against the GPT-3.5 baselines via human evaluations.
2022
pdf
bib
abs
PromptEHR: Conditional Electronic Healthcare Records Generation with Prompt Learning
Zifeng Wang
|
Jimeng Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Accessing longitudinal multimodal Electronic Healthcare Records (EHRs) is challenging due to privacy concerns, which hinders the use of ML for healthcare applications. Synthetic EHRs generation bypasses the need to share sensitive real patient records. However, existing methods generate single-modal EHRs by unconditional generation or by longitudinal inference, which falls short of low flexibility and makes unrealistic EHRs. In this work, we propose to formulate EHRs generation as a text-to-text translation task by language models (LMs), which suffices to highly flexible event imputation during generation. We also design prompt learning to control the generation conditioned by numerical and categorical demographic features. We evaluate synthetic EHRs quality by two perplexity measures accounting for their longitudinal pattern (longitudinal imputation perplexity, lpl) and the connections cross modalities (cross-modality imputation perplexity, mpl). Moreover, we utilize two adversaries: membership and attribute inference attacks for privacy-preserving evaluation. Experiments on MIMIC-III data demonstrate the superiority of our methods on realistic EHRs generation (53.1% decrease of lpl and 45.3% decrease of mpl on average compared to the best baselines) with low privacy risks. Software is available at https://github.com/RyanWangZf/PromptEHR.
pdf
bib
abs
MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
Zifeng Wang
|
Zhenbang Wu
|
Dinesh Agarwal
|
Jimeng Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Existing vision-text contrastive learning like CLIP aims to match the paired image and caption embeddings while pushing others apart, which improves representation transferability and supports zero-shot prediction. However, medical image-text datasets are orders of magnitude below the general images and captions from the internet. Moreover, previous methods encounter many false negatives, i.e., images and reports from separate patients probably carry the same semantics but are wrongly treated as negatives. In this paper, we decouple images and texts for multimodal contrastive learning, thus scaling the usable training data in a combinatorial magnitude with low cost. We also propose to replace the InfoNCE loss with semantic matching loss based on medical knowledge to eliminate false negatives in contrastive learning. We prove that MedCLIP is a simple yet effective framework: it outperforms state-of-the-art methods on zero-shot prediction, supervised classification, and image-text retrieval. Surprisingly, we observe that with only 20K pre-training data, MedCLIP wins over the state-of-the-art method (using 200K data). The code is available at https://github.com/RyanWangZf/MedCLIP.
pdf
bib
abs
Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision
Zifeng Wang
|
Jimeng Sun
Findings of the Association for Computational Linguistics: EMNLP 2022
Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shotclinical trial retrieval method, called Trial2Vec, which learns through self-supervision without the need for annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base) are leveraged to automatically generate contrastive samples. Besides, encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pretrained embeddings benefit the downstream trial outcome prediction task over 240k trials. Software is available at https://github.com/RyanWangZf/Trial2Vec.
pdf
bib
abs
Finding Influential Instances for Distantly Supervised Relation Extraction
Zifeng Wang
|
Rui Wen
|
Xi Chen
|
Shao-Lun Huang
|
Ningyu Zhang
|
Yefeng Zheng
Proceedings of the 29th International Conference on Computational Linguistics
Distant supervision (DS) is a strong way to expand the datasets for enhancing relation extraction (RE) models but often suffers from high label noise. Current works based on attention, reinforcement learning, or GAN are black-box models so they neither provide meaningful interpretation of sample selection in DS nor stability on different domains. On the contrary, this work proposes a novel model-agnostic instance sampling method for DS by influence function (IF), namely REIF. Our method identifies favorable/unfavorable instances in the bag based on IF, then does dynamic instance sampling. We design a fast influence sampling algorithm that reduces the computational complexity from 𝒪(mn) to 𝒪(1), with analyzing its robustness on the selected sampling function. Experiments show that by simply sampling the favorable instances during training, REIF is able to win over a series of baselines which have complicated architectures. We also demonstrate that REIF can support interpretable instance selection.