Zifeng Wang


2023

pdf bib
QueryForm: A Simple Zero-shot Form Entity Query Framework
Zifeng Wang | Zizhao Zhang | Jacob Devlin | Chen-Yu Lee | Guolong Su | Hao Zhang | Jennifer Dy | Vincent Perot | Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2023

Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6% 10.1%) and the Payment (+3.2% 9.5%) zero-shot benchmark, with a smaller model size and no additional image input.

pdf bib
AutoTrial: Prompting Language Models for Clinical Trial Design
Zifeng Wang | Cao Xiao | Jimeng Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Clinical trials are critical for drug development. Constructing the appropriate eligibility criteria (i.e., the inclusion/exclusion criteria for patient recruitment) is essential for the trial’s success. Proper design of clinical trial protocols should consider similar precedent trials and their eligibility criteria to ensure sufficient patient coverage. In this paper, we present a method named AutoTrial to aid the design of clinical eligibility criteria using language models. It allows (1) controllable generation under instructions via a hybrid of discrete and neural prompting, (2) scalable knowledge incorporation via in-context learning, and (3) explicit reasoning chains to provide rationales for understanding the outputs. Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts that are fluent and coherent and with high accuracy in capturing the relevant clinical concepts to the target trial. It is noteworthy that our method, with a much smaller parameter size, gains around 60% winning rate against the GPT-3.5 baselines via human evaluations.

2022

pdf bib
Finding Influential Instances for Distantly Supervised Relation Extraction
Zifeng Wang | Rui Wen | Xi Chen | Shao-Lun Huang | Ningyu Zhang | Yefeng Zheng
Proceedings of the 29th International Conference on Computational Linguistics

Distant supervision (DS) is a strong way to expand the datasets for enhancing relation extraction (RE) models but often suffers from high label noise. Current works based on attention, reinforcement learning, or GAN are black-box models so they neither provide meaningful interpretation of sample selection in DS nor stability on different domains. On the contrary, this work proposes a novel model-agnostic instance sampling method for DS by influence function (IF), namely REIF. Our method identifies favorable/unfavorable instances in the bag based on IF, then does dynamic instance sampling. We design a fast influence sampling algorithm that reduces the computational complexity from 𝒪(mn) to 𝒪(1), with analyzing its robustness on the selected sampling function. Experiments show that by simply sampling the favorable instances during training, REIF is able to win over a series of baselines which have complicated architectures. We also demonstrate that REIF can support interpretable instance selection.

pdf bib
PromptEHR: Conditional Electronic Healthcare Records Generation with Prompt Learning
Zifeng Wang | Jimeng Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Accessing longitudinal multimodal Electronic Healthcare Records (EHRs) is challenging due to privacy concerns, which hinders the use of ML for healthcare applications. Synthetic EHRs generation bypasses the need to share sensitive real patient records. However, existing methods generate single-modal EHRs by unconditional generation or by longitudinal inference, which falls short of low flexibility and makes unrealistic EHRs. In this work, we propose to formulate EHRs generation as a text-to-text translation task by language models (LMs), which suffices to highly flexible event imputation during generation. We also design prompt learning to control the generation conditioned by numerical and categorical demographic features. We evaluate synthetic EHRs quality by two perplexity measures accounting for their longitudinal pattern (longitudinal imputation perplexity, lpl) and the connections cross modalities (cross-modality imputation perplexity, mpl). Moreover, we utilize two adversaries: membership and attribute inference attacks for privacy-preserving evaluation. Experiments on MIMIC-III data demonstrate the superiority of our methods on realistic EHRs generation (53.1% decrease of lpl and 45.3% decrease of mpl on average compared to the best baselines) with low privacy risks. Software is available at https://github.com/RyanWangZf/PromptEHR.

pdf bib
MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
Zifeng Wang | Zhenbang Wu | Dinesh Agarwal | Jimeng Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Existing vision-text contrastive learning like CLIP aims to match the paired image and caption embeddings while pushing others apart, which improves representation transferability and supports zero-shot prediction. However, medical image-text datasets are orders of magnitude below the general images and captions from the internet. Moreover, previous methods encounter many false negatives, i.e., images and reports from separate patients probably carry the same semantics but are wrongly treated as negatives. In this paper, we decouple images and texts for multimodal contrastive learning, thus scaling the usable training data in a combinatorial magnitude with low cost. We also propose to replace the InfoNCE loss with semantic matching loss based on medical knowledge to eliminate false negatives in contrastive learning. We prove that MedCLIP is a simple yet effective framework: it outperforms state-of-the-art methods on zero-shot prediction, supervised classification, and image-text retrieval. Surprisingly, we observe that with only 20K pre-training data, MedCLIP wins over the state-of-the-art method (using 200K data). The code is available at https://github.com/RyanWangZf/MedCLIP.

pdf bib
Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision
Zifeng Wang | Jimeng Sun
Findings of the Association for Computational Linguistics: EMNLP 2022

Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shotclinical trial retrieval method, called Trial2Vec, which learns through self-supervision without the need for annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base) are leveraged to automatically generate contrastive samples. Besides, encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pretrained embeddings benefit the downstream trial outcome prediction task over 240k trials. Software is available at https://github.com/RyanWangZf/Trial2Vec.