Zihao He


pdf bib
ALCAP: Alignment-Augmented Music Captioner
Zihao He | Weituo Hao | Wei-Tsung Lu | Changyou Chen | Kristina Lerman | Xuchen Song
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Music captioning has gained significant attention in the wake of the rising prominence of streaming media platforms. Traditional approaches often prioritize either the audio or lyrics aspect of the music, inadvertently ignoring the intricate interplay between the two. However, a comprehensive understanding of music necessitates the integration of both these elements. In this study, we delve into this overlooked realm by introducing a method to systematically learn multimodal alignment between audio and lyrics through contrastive learning. This not only recognizes and emphasizes the synergy between audio and lyrics but also paves the way for models to achieve deeper cross-modal coherence, thereby producing high-quality captions. We provide both theoretical and empirical results demonstrating the advantage of the proposed method, which achieves new state-of-the-art on two music captioning datasets.


pdf bib
Infusing Knowledge from Wikipedia to Enhance Stance Detection
Zihao He | Negar Mokhberian | Kristina Lerman
Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis

Stance detection infers a text author’s attitude towards a target. This is challenging when the model lacks background knowledge about the target. Here, we show how background knowledge from Wikipedia can help enhance the performance on stance detection. We introduce Wikipedia Stance Detection BERT (WS-BERT) that infuses the knowledge into stance encoding. Extensive results on three benchmark datasets covering social media discussions and online debates indicate that our model significantly outperforms the state-of-the-art methods on target-specific stance detection, cross-target stance detection, and zero/few-shot stance detection.


pdf bib
Detecting Polarized Topics Using Partisanship-aware Contextualized Topic Embeddings
Zihao He | Negar Mokhberian | António Câmara | Andres Abeliuk | Kristina Lerman
Findings of the Association for Computational Linguistics: EMNLP 2021

Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic-wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.

pdf bib
Speaker Turn Modeling for Dialogue Act Classification
Zihao He | Leili Tavabi | Kristina Lerman | Mohammad Soleymani
Findings of the Association for Computational Linguistics: EMNLP 2021

Dialogue Act (DA) classification is the task of classifying utterances with respect to the function they serve in a dialogue. Existing approaches to DA classification model utterances without incorporating the turn changes among speakers throughout the dialogue, therefore treating it no different than non-interactive written text. In this paper, we propose to integrate the turn changes in conversations among speakers when modeling DAs. Specifically, we learn conversation-invariant speaker turn embeddings to represent the speaker turns in a conversation; the learned speaker turn embeddings are then merged with the utterance embeddings for the downstream task of DA classification. With this simple yet effective mechanism, our model is able to capture the semantics from the dialogue content while accounting for different speaker turns in a conversation. Validation on three benchmark public datasets demonstrates superior performance of our model.