Zihao Li


2024

pdf bib
A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives
Zihao Li | Shaoxiong Ji | Timothee Mickus | Vincent Segonne | Jörg Tiedemann
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community.Establishing best practices in pretraining has, therefore, become a major focus of NLP research, especially since insights gained from monolingual English models may not necessarily apply to more complex multilingual models.One significant caveat of the current state of the art is that different works are rarely comparable: they often discuss different parameter counts, training data, and evaluation methodology.This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment. We ensure that training data and model architectures are comparable, and discuss the downstream performances across 6 languages that we observe in probing and fine-tuning scenarios.We make two key observations: (1) the architecture dictates which pretraining objective is optimal; (2) multilingual translation is a very effective pretraining objective under the right conditions.We make our code, data, and model weights available at https://github.com/Helsinki-NLP/lm-vs-mt.

pdf bib
Efficient Sparse Attention needs Adaptive Token Release
Chaoran Zhang | Lixin Zou | Dan Luo | Xiangyang Luo | Zihao Li | Min Tang | Chenliang Li
Findings of the Association for Computational Linguistics: ACL 2024

2023

pdf bib
Comparing Generic and Expert Models for Genre-Specific Text Simplification
Zihao Li | Matthew Shardlow | Fernando Alva-Manchego
Proceedings of the Second Workshop on Text Simplification, Accessibility and Readability

We investigate how text genre influences the performance of models for controlled text simplification. Regarding datasets from Wikipedia and PubMed as two different genres, we compare the performance of genre-specific models trained by transfer learning and prompt-only GPT-like large language models. Our experiments showed that: (1) the performance loss of genre-specific models on general tasks can be limited to 2%, (2) transfer learning can improve performance on genre-specific datasets up to 10% in SARI score from the base model without transfer learning, (3) simplifications generated by the smaller but more customized models show similar performance in simplicity and a better meaning reservation capability to the larger generic models in both automatic and human evaluations.

2022

pdf bib
An Investigation into the Effect of Control Tokens on Text Simplification
Zihao Li | Matthew Shardlow | Saeed Hassan
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)

Recent work on text simplification has focused on the use of control tokens to further the state of the art. However, it is not easy to further improve without an in-depth comprehension of the mechanisms underlying control tokens. One unexplored factor is the tokenisation strategy, which we also explore. In this paper, we (1) reimplemented ACCESS, (2) explored the effects of varying control tokens, (3) tested the influences of different tokenisation strategies, and (4) demonstrated how separate control tokens affect performance. We show variations of performance in the four control tokens separately. We also uncover how the design of control tokens could influence the performance and propose some suggestions for designing control tokens, which also reaches into other controllable text generation tasks.