Zihui Li
2022
A Generalized Method for Automated Multilingual Loanword Detection
Abhijnan Nath
|
Sina Mahdipour Saravani
|
Ibrahim Khebour
|
Sheikh Mannan
|
Zihui Li
|
Nikhil Krishnaswamy
Proceedings of the 29th International Conference on Computational Linguistics
Loanwords are words incorporated from one language into another without translation. Suppose two words from distantly-related or unrelated languages sound similar and have a similar meaning. In that case, this is evidence of likely borrowing. This paper presents a method to automatically detect loanwords across various language pairs, accounting for differences in script, pronunciation and phonetic transformation by the borrowing language. We incorporate edit distance, semantic similarity measures, and phonetic alignment. We evaluate on 12 language pairs and achieve performance comparable to or exceeding state of the art methods on single-pair loanword detection tasks. We also demonstrate that multilingual models perform the same or often better than models trained on single language pairs and can potentially generalize to unseen language pairs with sufficient data, and that our method can exceed human performance on loanword detection.