Zijun Sun


pdf bib
Summarize, Outline, and Elaborate: Long-Text Generation via Hierarchical Supervision from Extractive Summaries
Xiaofei Sun | Zijun Sun | Yuxian Meng | Jiwei Li | Chun Fan
Proceedings of the 29th International Conference on Computational Linguistics

The difficulty of generating coherent long texts lies in the fact that existing models overwhelmingly focus on the tasks of local word prediction, and cannot make high level plans on what to generate or capture the high-level discourse dependencies between chunks of texts. Inspired by how humans write, where a list of bullet points or a catalog is first outlined, and then each bullet point is expanded to form the whole article, we propose SOE, a pipelined system that involves of summarizing, outlining and elaborating for long text generation: the model first outlines the summaries for different segments of long texts, and then elaborates on each bullet point to generate the corresponding segment. To avoid the labor-intensive process of summary soliciting, we propose the reconstruction strategy, which extracts segment summaries in an unsupervised manner by selecting its most informative part to reconstruct the segment. The proposed generation system comes with the following merits: (1) the summary provides high-level guidance for text generation and avoids the local minimum of individual word predictions; (2) the high-level discourse dependencies are captured in the conditional dependencies between summaries and are preserved during the summary expansion process and (3) additionally, we are able to consider significantly more contexts by representing contexts as concise summaries. Extensive experiments demonstrate that SOE produces long texts with significantly better quality, along with faster convergence speed.


pdf bib
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Zijun Sun | Xiaoya Li | Xiaofei Sun | Yuxian Meng | Xiang Ao | Qing He | Fei Wu | Jiwei Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The proposed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition and word segmentation.


pdf bib
Entity-Relation Extraction as Multi-Turn Question Answering
Xiaoya Li | Fan Yin | Zijun Sun | Xiayu Li | Arianna Yuan | Duo Chai | Mingxin Zhou | Jiwei Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we propose a new paradigm for the task of entity-relation extraction. We cast the task as a multi-turn question answering problem, i.e., the extraction of entities and elations is transformed to the task of identifying answer spans from the context. This multi-turn QA formalization comes with several key advantages: firstly, the question query encodes important information for the entity/relation class we want to identify; secondly, QA provides a natural way of jointly modeling entity and relation; and thirdly, it allows us to exploit the well developed machine reading comprehension (MRC) models. Experiments on the ACE and the CoNLL04 corpora demonstrate that the proposed paradigm significantly outperforms previous best models. We are able to obtain the state-of-the-art results on all of the ACE04, ACE05 and CoNLL04 datasets, increasing the SOTA results on the three datasets to 49.6 (+1.2), 60.3 (+0.7) and 69.2 (+1.4), respectively. Additionally, we construct and will release a newly developed dataset RESUME, which requires multi-step reasoning to construct entity dependencies, as opposed to the single-step dependency extraction in the triplet exaction in previous datasets. The proposed multi-turn QA model also achieves the best performance on the RESUME dataset.