Zilu Tang


2023

pdf bib
Explain-then-translate: an analysis on improving program translation with self-generated explanations
Zilu Tang | Mayank Agarwal | Alexander Shypula | Bailin Wang | Derry Wijaya | Jie Chen | Yoon Kim
Findings of the Association for Computational Linguistics: EMNLP 2023

This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.

2022

pdf bib
AugCSE: Contrastive Sentence Embedding with Diverse Augmentations
Zilu Tang | Muhammed Yusuf Kocyigit | Derry Tanti Wijaya
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Data augmentation techniques have been proven useful in many applications in NLP fields. Most augmentations are task-specific, and cannot be used as a general-purpose tool. In our work, we present AugCSE, a unified framework to utilize diverse sets of data augmentations to achieve a better, general-purpose, sentence embedding model. Building upon the latest sentence embedding models, our approach uses a simple antagonistic discriminator that differentiates the augmentation types. With the finetuning objective borrowed from domain adaptation, we show that diverse augmentations, which often lead to conflicting contrastive signals, can be tamed to produce a better and more robust sentence representation. Our methods achieve state-of-the-art results on downstream transfer tasks and perform competitively on semantic textual similarity tasks, using only unsupervised data.