Zimu Wang


pdf bib
FinBPM: A Framework for Portfolio Management-based Financial Investor Behavior Perception Model
Zhilu Zhang | Procheta Sen | Zimu Wang | Ruoyu Sun | Zhengyong Jiang | Jionglong Su
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

The goal of portfolio management is to simultaneously maximize the accumulated return and also to control risk. In consecutive trading periods, portfolio manager needs to continuously adjust the portfolio weights based on the factors which can cause price fluctuation in the market. In the stock market, the factors affecting the stock price can be divided into two categories. The first is price fluctuations caused by irrational investment of the speculators. The second is endogenous value changes caused by operations of the company. In recent years, with the advancement of artificial intelligence technology, reinforcement learning (RL) algorithms have been increasingly employed by scholars to address financial problems, particularly in the area of portfolio management. However, the deep RL models proposed by these scholars in the past have focused more on analyzing the price changes caused by the investment behavior of speculators in response to technical indicators of actual stock prices. In this research, we introduce an RL-based framework called FinBPM, which takes both the factor pertaining to the impact on operations of the company and the factor of the irrational investment of the speculator into consideration. For our experimentation, we randomly selected twelve stocks from the Dow Jones Industrial Index to construct our portfolio. The experimental results reveal that, in comparison to conventional reinforcement learning methods, our approach with at least 13.26% increase over other methods compared. Additionally, it achieved the best Sharpe ratio of 2.77, effectively maximizing the return per unit of risk.


pdf bib
OmniEvent: A Comprehensive, Fair, and Easy-to-Use Toolkit for Event Understanding
Hao Peng | Xiaozhi Wang | Feng Yao | Zimu Wang | Chuzhao Zhu | Kaisheng Zeng | Lei Hou | Juanzi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Event understanding aims at understanding the content and relationship of events within texts, which covers multiple complicated information extraction tasks: event detection, event argument extraction, and event relation extraction. To facilitate related research and application, we present an event understanding toolkit OmniEvent, which features three desiderata: (1) Comprehensive. OmniEvent supports mainstream modeling paradigms of all the event understanding tasks and the processing of 15 widely-used English and Chinese datasets. (2) Fair. OmniEvent carefully handles the inconspicuous evaluation pitfalls reported in Peng et al. (2023), which ensures fair comparisons between different models. (3) Easy-to-use. OmniEvent is designed to be easily used by users with varying needs. We provide off-the-shelf models that can be directly deployed as web services. The modular framework also enables users to easily implement and evaluate new event understanding models with OmniEvent. The toolkit is publicly released along with the demonstration website and video.


pdf bib
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
Xiaozhi Wang | Yulin Chen | Ning Ding | Hao Peng | Zimu Wang | Yankai Lin | Xu Han | Lei Hou | Juanzi Li | Zhiyuan Liu | Peng Li | Jie Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.