Zining Wang
2024
QFNU_CS at SemEval-2024 Task 3: A Hybrid Pre-trained Model based Approach for Multimodal Emotion-Cause Pair Extraction Task
Zining Wang
|
Yanchao Zhao
|
Guanghui Han
|
Yang Song
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
This article presents the solution of Qufu Normal University for the Multimodal Sentiment Cause Analysis competition in SemEval2024 Task 3.The competition aims to extract emotion-cause pairs from dialogues containing text, audio, and video modalities. To cope with this task, we employ a hybrid pre-train model based approach. Specifically, we first extract and fusion features from dialogues based on BERT, BiLSTM, openSMILE and C3D. Then, we adopt BiLSTM and Transformer to extract the candidate emotion-cause pairs. Finally, we design a filter to identify the correct emotion-cause pairs. The evaluation results show that, we achieve a weighted average F1 score of 0.1786 and an F1 score of 0.1882 on CodaLab.
2023
Adaptive Contrastive Knowledge Distillation for BERT Compression
Jinyang Guo
|
Jiaheng Liu
|
Zining Wang
|
Yuqing Ma
|
Ruihao Gong
|
Ke Xu
|
Xianglong Liu
Findings of the Association for Computational Linguistics: ACL 2023
In this paper, we propose a new knowledge distillation approach called adaptive contrastive knowledge distillation (ACKD) for BERT compression. Different from existing knowledge distillation methods for BERT that implicitly learn discriminative student features by mimicking the teacher features, we first introduce a novel contrastive distillation loss (CDL) based on hidden state features in BERT as the explicit supervision to learn discriminative student features. We further observe sentences with similar features may have completely different meanings, which makes them hard to distinguish. Existing methods do not pay sufficient attention to these hard samples with less discriminative features. Therefore, we propose a new strategy called sample adaptive reweighting (SAR) to adaptively pay more attention to these hard samples and strengthen their discrimination abilities. We incorporate our SAR strategy into our CDL and form the adaptive contrastive distillation loss, based on which we construct our ACKD framework. Comprehensive experiments on multiple natural language processing tasks demonstrate the effectiveness of our ACKD framework.
Search
Fix data
Co-authors
- Ruihao Gong 1
- Jinyang Guo 1
- Guanghui Han 1
- Jiaheng Liu 1
- Xianglong Liu 1
- show all...