Zirui Shao
2024
DocHieNet: A Large and Diverse Dataset for Document Hierarchy Parsing
Hangdi Xing
|
Changxu Cheng
|
Feiyu Gao
|
Zirui Shao
|
Zhi Yu
|
Jiajun Bu
|
Qi Zheng
|
Cong Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Parsing documents from pixels, such as pictures and scanned PDFs, into hierarchical structures is extensively demanded in the daily routines of data storage, retrieval and understanding. However, previously the research on this topic has been largely hindered since most existing datasets are small-scale, or contain documents of only a single type, which are characterized by a lack of document diversity. Moreover, there is a significant discrepancy in the annotation standards across datasets. In this paper, we introduce a large and diverse document hierarchy parsing (DHP) dataset to compensate for the data scarcity and inconsistency problem. We aim to set a new standard as a more practical, long-standing benchmark. Meanwhile, we present a new DHP framework designed to grasp both fine-grained text content and coarse-grained pattern at layout element level, enhancing the capacity of pre-trained text-layout models in handling the multi-page and multi-level challenges in DHP. Through exhaustive experiments, we validate the effectiveness of our proposed dataset and method.
2023
GEM: Gestalt Enhanced Markup Language Model for Web Understanding via Render Tree
Zirui Shao
|
Feiyu Gao
|
Zhongda Qi
|
Hangdi Xing
|
Jiajun Bu
|
Zhi Yu
|
Qi Zheng
|
Xiaozhong Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Inexhaustible web content carries abundant perceptible information beyond text. Unfortunately, most prior efforts in pre-trained Language Models (LMs) ignore such cyber-richness, while few of them only employ plain HTMLs, and crucial information in the rendered web, such as visual, layout, and style, are excluded. Intuitively, those perceptible web information can provide essential intelligence to facilitate content understanding tasks. This study presents an innovative Gestalt Enhanced Markup (GEM) Language Model inspired by Gestalt psychological theory for hosting heterogeneous visual information from the render tree into the language model without requiring additional visual input. Comprehensive experiments on multiple downstream tasks, i.e., web question answering and web information extraction, validate GEM superiority.