Zirui Song
2025
Hazards in Daily Life? Enabling Robots to Proactively Detect and Resolve Anomalies
Zirui Song
|
Guangxian Ouyang
|
Meng Fang
|
Hongbin Na
|
Zijing Shi
|
Zhenhao Chen
|
Fu Yujie
|
Zeyu Zhang
|
Shiyu Jiang
|
Miao Fang
|
Ling Chen
|
Xiuying Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Existing household robots have made significant progress in performing routine tasks, such as cleaning floors or delivering objects. However, a key limitation of these robots is their inability to recognize potential problems or dangers in home environments. For example, a child may pick up and ingest medication that has fallen on the floor, posing a serious risk. We argue that household robots should proactively detect such hazards or anomalies within the home, and propose the task of anomaly scenario generation. To accomplish this task, we leverage foundational models instead of relying on manually labeled data to build simulated environments. Specifically, we introduce a multi-agent brainstorming approach, where agents collaborate and generate diverse scenarios covering household hazards, hygiene management, and child safety. These textual task descriptions are then integrated with designed 3D assets to simulate realistic environments. Within these constructed environments, our LLM-based robotic agent learns the necessary skills to proactively discover and handle the proposed anomalies through task decomposition, optimal learning approach selection. We demonstrate that our generated environment outperforms others in terms of task description and scene diversity, ultimately enabling robotic agents to better address potential household hazards.
2024
MedINST: Meta Dataset of Biomedical Instructions
Wenhan Han
|
Meng Fang
|
Zihan Zhang
|
Yu Yin
|
Zirui Song
|
Ling Chen
|
Mykola Pechenizkiy
|
Qingyu Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs’ generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.