Ziwei Zhu


2024

pdf bib
Navigating the Shortcut Maze: A Comprehensive Analysis of Shortcut Learning in Text Classification by Language Models
Yuqing Zhou | Ruixiang Tang | Ziyu Yao | Ziwei Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024

Language models (LMs), despite their advances, often depend on spurious correlations, undermining their accuracy and generalizability. This study addresses the overlooked impact of subtler, more complex shortcuts that compromise model reliability beyond oversimplified shortcuts. We introduce a comprehensive benchmark that categorizes shortcuts into occurrence, style, and concept, aiming to explore the nuanced ways in which these shortcuts influence the performance of LMs. Through extensive experiments across traditional LMs, large language models, and state-of-the-art robust models, our research systematically investigates models’ resilience and susceptibilities to sophisticated shortcuts. Our benchmark and code can be found at: https://github.com/yuqing-zhou/shortcut-learning-in-text-classification.

pdf bib
BiasDora: Exploring Hidden Biased Associations in Vision-Language Models
Chahat Raj | Anjishnu Mukherjee | Aylin Caliskan | Antonios Anastasopoulos | Ziwei Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing works examining Vision-Language Models (VLMs) for social biases predominantly focus on a limited set of documented bias associations, such as gender-profession or race-crime. This narrow scope often overlooks a vast range of unexamined implicit associations, restricting the identification and, hence, mitigation of such biases. We address this gap by probing VLMs to (1) uncover hidden, implicit associations across 9 bias dimensions. We systematically explore diverse input and output modalities and (2) demonstrate how biased associations vary in their negativity, toxicity, and extremity. Our work (3) identifies subtle and extreme biases that are typically not recognized by existing methodologies. We make the **D**ataset **o**f **r**etrieved **a**ssociations (**Dora**) publicly available.

pdf bib
Global Gallery: The Fine Art of Painting Culture Portraits through Multilingual Instruction Tuning
Anjishnu Mukherjee | Aylin Caliskan | Ziwei Zhu | Antonios Anastasopoulos
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Exploring the intersection of language and culture in Large Language Models (LLMs), this study critically examines their capability to encapsulate cultural nuances across diverse linguistic landscapes. Central to our investigation are three research questions: the efficacy of language-specific instruction tuning, the impact of pretraining on dominant language data, and the identification of optimal approaches to elicit accurate cultural knowledge from LLMs. Utilizing the GeoMLaMA benchmark for multilingual commonsense knowledge and an adapted CAMeL dataset (English-only) for evaluation of nuanced cultural aspects, our experiments span six different languages and cultural contexts, revealing the extent of LLMs’ cultural awareness. Our findings highlight a nuanced landscape: while language-specific tuning and bilingual pretraining enhance cultural understanding in certain contexts, they also uncover inconsistencies and biases, particularly in non-Western cultures. This work expands our understanding of LLMs’ cultural competence and emphasizes the importance of integrating diverse cultural perspectives in their development, aiming for a more globally representative and equitable approach in language modeling.

2023

pdf bib
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Anjishnu Mukherjee | Chahat Raj | Ziwei Zhu | Antonios Anastasopoulos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models.

pdf bib
PromptAttack: Probing Dialogue State Trackers with Adversarial Prompts
Xiangjue Dong | Yun He | Ziwei Zhu | James Caverlee
Findings of the Association for Computational Linguistics: ACL 2023

A key component of modern conversational systems is the Dialogue State Tracker (or DST), which models a user’s goals and needs. Toward building more robust and reliable DSTs, we introduce a prompt-based learning approach to automatically generate effective adversarial examples to probe DST models. Two key characteristics of this approach are: (i) it only needs the output of the DST with no need for model parameters, and (ii) it can learn to generate natural language utterances that can target any DST. Through experiments over state-of-the-art DSTs, the proposed framework leads to the greatest reduction in accuracy and the best attack success rate while maintaining good fluency and a low perturbation ratio. We also show how much the generated adversarial examples can bolster a DST through adversarial training. These results indicate the strength of prompt-based attacks on DSTs and leave open avenues for continued refinement.

pdf bib
Unsupervised Candidate Answer Extraction through Differentiable Masker-Reconstructor Model
Zhuoer Wang | Yicheng Wang | Ziwei Zhu | James Caverlee
Findings of the Association for Computational Linguistics: EMNLP 2023

Question generation is a widely used data augmentation approach with extensive applications, and extracting qualified candidate answers from context passages is a critical step for most question generation systems. However, existing methods for candidate answer extraction are reliant on linguistic rules or annotated data that face the partial annotation issue and challenges in generalization. To overcome these limitations, we propose a novel unsupervised candidate answer extraction approach that leverages the inherent structure of context passages through a Differentiable Masker-Reconstructor (DMR) Model with the enforcement of self-consistency for picking up salient information tokens. We curated two datasets with exhaustively-annotated answers and benchmark a comprehensive set of supervised and unsupervised candidate answer extraction methods. We demonstrate the effectiveness of the DMR model by showing its performance is superior among unsupervised methods and comparable to supervised methods.

pdf bib
Co2PT: Mitigating Bias in Pre-trained Language Models through Counterfactual Contrastive Prompt Tuning
Xiangjue Dong | Ziwei Zhu | Zhuoer Wang | Maria Teleki | James Caverlee
Findings of the Association for Computational Linguistics: EMNLP 2023

Pre-trained Language Models are widely used in many important real-world applications. However, recent studies show that these models can encode social biases from large pre-training corpora and even amplify biases in downstream applications. To address this challenge, we propose Co2PT, an efficient and effective *debias-while-prompt tuning* method for mitigating biases via counterfactual contrastive prompt tuning on downstream tasks. Our experiments conducted on three extrinsic bias benchmarks demonstrate the effectiveness of Co2PT on bias mitigation during the prompt tuning process and its adaptability to existing upstream debiased language models. These findings indicate the strength of Co2PT and provide promising avenues for further enhancement in bias mitigation on downstream tasks.

2020

pdf bib
Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition
Yun He | Ziwei Zhu | Yin Zhang | Qin Chen | James Caverlee
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Knowledge of a disease includes information of various aspects of the disease, such as signs and symptoms, diagnosis and treatment. This disease knowledge is critical for many health-related and biomedical tasks, including consumer health question answering, medical language inference and disease name recognition. While pre-trained language models like BERT have shown success in capturing syntactic, semantic, and world knowledge from text, we find they can be further complemented by specific information like knowledge of symptoms, diagnoses, treatments, and other disease aspects. Hence, we integrate BERT with disease knowledge for improving these important tasks. Specifically, we propose a new disease knowledge infusion training procedure and evaluate it on a suite of BERT models including BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and ALBERT. Experiments over the three tasks show that these models can be enhanced in nearly all cases, demonstrating the viability of disease knowledge infusion. For example, accuracy of BioBERT on consumer health question answering is improved from 68.29% to 72.09%, while new SOTA results are observed in two datasets. We make our data and code freely available.