Conventional Knowledge Graph Reasoning (KGR) models learn the embeddings of KG components over the structure of KGs, but their performances are limited when the KGs are severely incomplete. Recent LLM-enhanced KGR models input KG structural information into LLMs. However, they require fine-tuning on open-source LLMs and are not applicable to closed-source LLMs. Therefore, in this paper, to leverage the knowledge in LLMs without fine-tuning to assist and enhance conventional KGR models, we propose a new three-stage pipeline, including knowledge alignment, KG reasoning and entity reranking. Specifically, in the alignment stage, we propose three strategies to align the knowledge in LLMs to the KG schema by explicitly associating unconnected nodes with semantic relations. Based on the enriched KGs, we train structure-aware KGR models to integrate aligned knowledge to original knowledge existing in KGs. In the reranking stage, after obtaining the results of KGR models, we rerank the top-scored entities with LLMs to recall correct answers further. Experiments show our pipeline can enhance the KGR performance in both incomplete and general situations. Code and datasets are available.
Entity Alignment (EA) is vital for integrating diverse knowledge graph (KG) data, playing a crucial role in data-driven AI applications. Traditional EA methods primarily rely on comparing entity embeddings, but their effectiveness is constrained by the limited input KG data and the capabilities of the representation learning techniques. Against this backdrop, we introduce ChatEA, an innovative framework that incorporates large language models (LLMs) to improve EA. To address the constraints of limited input KG data, ChatEA introduces a KG-code translation module that translates KG structures into a format understandable by LLMs, thereby allowing LLMs to utilize their extensive background knowledge to improve EA accuracy. To overcome the over-reliance on entity embedding comparisons, ChatEA implements a two-stage EA strategy that capitalizes on LLMs’ capability for multi-step reasoning in a dialogue format, thereby enhancing accuracy while preserving efficiency. Our experimental results affirm ChatEA’s superior performance, highlighting LLMs’ potential in facilitating EA tasks.The source code is available at https://anonymous.4open.science/r/ChatEA/.
Nested Event Extraction (NEE) aims to extract complex event structures where an event contains other events as its arguments recursively. Nested events involve a kind of Pivot Elements (PEs) that simultaneously act as arguments of outer-nest events and as triggers of inner-nest events, and thus connect them into nested structures. This special characteristic of PEs brings challenges to existing NEE methods, as they cannot well cope with the dual identities of PEs. Therefore, this paper proposes a new model, called PerNee, which extracts nested events mainly based on recognizing PEs. Specifically, PerNee first recognizes the triggers of both inner-nest and outer-nest events and further recognizes the PEs via classifying the relation type between trigger pairs. The model uses prompt learning to incorporate information from both event types and argument roles for better trigger and argument representations to improve NEE performance. Since existing NEE datasets (e.g., Genia11) are limited to specific domains and contain a narrow range of event types with nested structures, we systematically categorize nested events in the generic domain and construct a new NEE dataset, called ACE2005-Nest. Experimental results demonstrate that PerNee consistently achieves state-of-the-art performance on ACE2005-Nest, Genia11, and Genia13. The ACE2005-Nest dataset and the code of the PerNee model are available at https://github.com/waysonren/PerNee.
Temporal Knowledge Graph (TKG), which characterizes temporally evolving facts in the form of (subject, relation, object, timestamp), has attracted much attention recently. TKG reasoning aims to predict future facts based on given historical ones. However, existing TKG reasoning models are unable to abstain from predictions they are uncertain, which will inevitably bring risks in real-world applications. Thus, in this paper, we propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions. Specifically, we develop a confidence estimator, called Confidence Estimator with History (CEHis), to enable the existing TKG reasoning models to first estimate their confidence in making predictions, and then abstain from those with low confidence. To do so, CEHis takes two kinds of information into consideration, namely, the certainty of the current prediction and the accuracy of historical predictions. Experiments with representative TKG reasoning models on two benchmark datasets demonstrate the effectiveness of the proposed CEHis.
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
Event Causality Identification (ECI) aims to identify causal relations between events in unstructured texts. This is a very challenging task, because causal relations are usually expressed by implicit associations between events. Existing methods usually capture such associations by directly modeling the texts with pre-trained language models, which underestimate two kinds of semantic structures vital to the ECI task, namely, event-centric structure and event-associated structure. The former includes important semantic elements related to the events to describe them more precisely, while the latter contains semantic paths between two events to provide possible supports for ECI. In this paper, we study the implicit associations between events by modeling the above explicit semantic structures, and propose a Semantic Structure Integration model (SemSIn).It utilizes a GNN-based event aggregator to integrate the event-centric structure information, and employs an LSTM-based path aggregator to capture the event-associated structure information between two events. Experimental results on three widely used datasets show that SemSIn achieves significant improvements over baseline methods.
Reasoning over Temporal Knowledge Graphs (TKGs) that predicts temporal facts (e.g., events) in the future is crucial for many applications. The temporal facts in existing TKGs only contain their core entities (i.e., the entities playing core roles therein) and formulate them as quadruples, i.e., (subject entity, predicate, object entity, timestamp). This formulation oversimplifies temporal facts and inevitably causes information loss. Therefore, we propose to describe a temporal fact more accurately as an n-tuple, containing not only its predicate and core entities, but also its auxiliary entities, as well as the roles of all entities. By so doing, TKGs are augmented to N-tuple Temporal Knowledge Graphs (N-TKGs). To conduct reasoning over N-TKGs, we further propose N-tuple Evolutional Network (NE-Net). It recurrently learns the evolutional representations of entities and predicates in temporal facts at different timestamps in the history via modeling the relations among those entities and predicates. Based on the learned representations, reasoning tasks at future timestamps can be realized via task-specific decoders. Experiment results on two newly built datasets demonstrate the superiority of N-TKG and the effectiveness of NE-Net.
A Temporal Knowledge Graph (TKG) is a sequence of KGs corresponding to different timestamps. TKG reasoning aims to predict potential facts in the future given the historical KG sequences. One key of this task is to mine and understand evolutional patterns of facts from these sequences. The evolutional patterns are complex in two aspects, length-diversity and time-variability. Existing models for TKG reasoning focus on modeling fact sequences of a fixed length, which cannot discover complex evolutional patterns that vary in length. Furthermore, these models are all trained offline, which cannot well adapt to the changes of evolutional patterns from then on. Thus, we propose a new model, called Complex Evolutional Network (CEN), which uses a length-aware Convolutional Neural Network (CNN) to handle evolutional patterns of different lengths via an easy-to-difficult curriculum learning strategy. Besides, we propose to learn the model under the online setting so that it can adapt to the changes of evolutional patterns over time. Extensive experiments demonstrate that CEN obtains substantial performance improvement under both the traditional offline and the proposed online settings.
A Temporal Knowledge Graph (TKG) is a sequence of KGs with respective timestamps, which adopts quadruples in the form of (subject, relation, object, timestamp) to describe dynamic facts. TKG reasoning has facilitated many real-world applications via answering such queries as (query entity, query relation, ?, future timestamp) about future. This is actually a matching task between a query and candidate entities based on their historical structures, which reflect behavioral trends of the entities at different timestamps. In addition, recent KGs provide background knowledge of all the entities, which is also helpful for the matching. Thus, in this paper, we propose the Historical Structure Matching (HiSMatch) model. It applies two structure encoders to capture the semantic information contained in the historical structures of the query and candidate entities. Besides, it adopts another encoder to integrate the background knowledge into the model. TKG reasoning experiments on six benchmark datasets demonstrate the significant improvement of the proposed HiSMatch model, with up to 5.6% performance improvement in MRR, compared to the state-of-the-art baselines.
Temporal Knowledge Graphs (TKGs) have been developed and used in many different areas. Reasoning on TKGs that predicts potential facts (events) in the future brings great challenges to existing models. When facing a prediction task, human beings usually search useful historical information (i.e., clues) in their memories and then reason for future meticulously. Inspired by this mechanism, we propose CluSTeR to predict future facts in a two-stage manner, Clue Searching and Temporal Reasoning, accordingly. Specifically, at the clue searching stage, CluSTeR learns a beam search policy via reinforcement learning (RL) to induce multiple clues from historical facts. At the temporal reasoning stage, it adopts a graph convolution network based sequence method to deduce answers from clues. Experiments on four datasets demonstrate the substantial advantages of CluSTeR compared with the state-of-the-art methods. Moreover, the clues found by CluSTeR further provide interpretability for the results.
Scripts are structured sequences of events together with the participants, which are extracted from the texts. Script event prediction aims to predict the subsequent event given the historical events in the script. Two kinds of information facilitate this task, namely, the event-level information and the script-level information. At the event level, existing studies view an event as a verb with its participants, while neglecting other useful properties, such as the state of the participants. At the script level, most existing studies only consider a single event sequence corresponding to one common protagonist. In this paper, we propose a Transformer-based model, called MCPredictor, which integrates deep event-level and script-level information for script event prediction. At the event level, MCPredictor utilizes the rich information in the text to obtain more comprehensive event semantic representations. At the script-level, it considers multiple event sequences corresponding to different participants of the subsequent event. The experimental results on the widely-used New York Times corpus demonstrate the effectiveness and superiority of the proposed model.