Zixuan Ling


2023

pdf bib
Enhancing Unsupervised Semantic Parsing with Distributed Contextual Representations
Zixuan Ling | Xiaoqing Zheng | Jianhan Xu | Jinshu Lin | Kai-Wei Chang | Cho-Jui Hsieh | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023

We extend a non-parametric Bayesian model of (Titov and Klementiev, 2011) to deal with homonymy and polysemy by leveraging distributed contextual word and phrase representations pre-trained on a large collection of unlabelled texts. Then, unsupervised semantic parsing is performed by decomposing sentences into fragments, clustering the fragments to abstract away syntactic variations of the same meaning, and predicting predicate-argument relations between the fragments. To better model the statistical dependencies between predicates and their arguments, we further conduct a hierarchical Pitman-Yor process. An improved Metropolis-Hastings merge-split sampler is proposed to speed up the mixing and convergence of Markov chains by leveraging pre-trained distributed representations. The experimental results show that the models achieve better accuracy on both question-answering and relation extraction tasks.

pdf bib
Parameter Efficient Multi-task Fine-tuning by Learning to Transfer Token-wise Prompts
Muling Wu | Wenhao Liu | Jianhan Xu | Changze Lv | Zixuan Ling | Tianlong Li | Longtao Huang | Xiaoqing Zheng | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

Prompt tuning has been proven to be successful on various tasks by incorporating a small number of trainable parameters while freezing large pre-trained language models (PLMs). However, it is still unsettled how to generate more proper prompts for any individual examples and how to extend prompt tuning to multi-task learning scenarios by leveraging cross-task features. To address these challenges, we propose a token-wise prompt tuning (TPT), in which a bank of finer-grained soft prompt tokens is built for multi-task learning by memory network. The tokens are retrieved from the bank against an input example and assembled to an instance-dependent prompt. Extensive experimental results on 14 datasets demonstrated that the models enhanced by our TPT performed far better than full parameter fine-tuned models and achieved state-of-the-art by tuning only 0.035% parameters.