Zixun Lu


2024

pdf bib
Can Language Model Moderators Improve the Health of Online Discourse?
Hyundong Cho | Shuai Liu | Taiwei Shi | Darpan Jain | Basem Rizk | Yuyang Huang | Zixun Lu | Nuan Wen | Jonathan Gratch | Emilio Ferrara | Jonathan May
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Conversational moderation of online communities is crucial to maintaining civility for a constructive environment, but it is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier to aid human moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness grounded on moderation literature and establish design criteria for conducting realistic yet safe evaluation. We then propose a comprehensive evaluation framework to assess models’ moderation capabilities independently of human intervention. With our framework, we conduct the first known study of language models as conversational moderators, finding that appropriately prompted models that incorporate insights from social science can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation.

pdf bib
BotEval: Facilitating Interactive Human Evaluation
Hyundong Cho | Thamme Gowda | Yuyang Huang | Zixun Lu | Tianli Tong | Jonathan May
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Following the rapid progress in natural language processing (NLP) models, language models are applied to increasingly more complex interactive tasks such as negotiations and conversation moderations. Having human evaluators directly interact with these NLP models is essential for adequately evaluating the performance on such interactive tasks. We develop BotEval, an easily customizable, open-source, evaluation toolkit that focuses on enabling human-bot interactions as part of the evaluation process, as opposed to human evaluators making judgements for a static input. BotEval balances flexibility for customization and user-friendliness by providing templates for common use cases that span various degrees of complexity and built-in compatibility with popular crowdsourcing platforms.We showcase the numerous useful features of BotEval through a study that evaluates the performance of various chatbots on their effectiveness for conversational moderation and discuss how BotEval differs from other annotation tools.