Ziyang Huang
2025
Towards Adaptive Mechanism Activation in Language Agent
Ziyang Huang
|
Jun Zhao
|
Kang Liu
Proceedings of the 31st International Conference on Computational Linguistics
Language Agent could be endowed with different mechanisms for autonomous task accomplishment. Current agents typically rely on a fixed mechanism or a set of mechanisms activated in a predefined order, limiting their adaptation to varied potential task solution structures. To this end, this paper proposes Adaptive Language Agent Mechanism Activation Learning with Self-Exploration (ALAMA), which focuses on optimizing mechanism activation adaptability without reliance on expert models. Initially, it builds a harmonized agent framework (UniAct) to Unify different mechanisms via Actions. Then it leverages a training-efficient optimization method based on self-exploration to enable the UniAct to adaptively activate the appropriate mechanisms according to the potential characteristics of the task. Experimental results demonstrate significant improvements in downstream agent tasks, affirming the effectiveness of our approach in facilitating more dynamic and context-sensitive mechanism activation.
2023
DiffusionSL: Sequence Labeling via Tag Diffusion Process
Ziyang Huang
|
Pengfei Cao
|
Jun Zhao
|
Kang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023
Sequence Labeling (SL) is long-standing in Natural Language Processing (NLP). Traditionally, discriminative models have been widely used to capture the conditional distribution of sequence tags, rather than generative models. In this paper, we present DiffusionSL, a framework that utilizes a conditional discrete diffusion model for generating discrete tag data, resulting in a Tag Diffusion Process. We treat the natural language sequence as the conditional signal and the sequence tags as the generation target, iteratively refining the noisy tags to obtain clean ones. To address the discreteness issue, we propose the Bit-Tag Converter (BTConverter) to model the target in continuous data space. Furthermore, we introduce the Bit Diffusion Transformer (BitDiT) to model the process of noise elimination. Leveraging the powerful iterative refinement capability of the diffusion model, DiffusionSL achieves superior performance against previous state-of-the-art (SOTA) baselines and outperforms gpt-3.5-turbo significantly across multiple benchmark datasets and various tasks.