Ziyi Shou


pdf bib
XRJL-HKUST at SemEval-2021 Task 4: WordNet-Enhanced Dual Multi-head Co-Attention for Reading Comprehension of Abstract Meaning
Yuxin Jiang | Ziyi Shou | Qijun Wang | Hao Wu | Fangzhen Lin
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our submitted system to SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Our system uses a large pre-trained language model as the encoder and an additional dual multi-head co-attention layer to strengthen the relationship between passages and question-answer pairs, following the current state-of-the-art model DUMA. The main difference is that we stack the passage-question and question-passage attention modules instead of calculating parallelly to simulate re-considering process. We also add a layer normalization module to improve the performance of our model. Furthermore, to incorporate our known knowledge about abstract concepts, we retrieve the definitions of candidate answers from WordNet and feed them to the model as extra inputs. Our system, called WordNet-enhanced DUal Multi-head Co-Attention (WN-DUMA), achieves 86.67% and 89.99% accuracy on the official blind test set of subtask 1 and subtask 2 respectively.

pdf bib
Incorporating EDS Graph for AMR Parsing
Ziyi Shou | Fangzhen Lin
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

AMR (Abstract Meaning Representation) and EDS (Elementary Dependency Structures) are two popular meaning representations in NLP/NLU. AMR is more abstract and conceptual, while EDS is more low level, closer to the lexical structures of the given sentences. It is thus not surprising that EDS parsing is easier than AMR parsing. In this work, we consider using information from EDS parsing to help improve the performance of AMR parsing. We adopt a transition-based parser and propose to add EDS graphs as additional semantic features using a graph encoder composed of LSTM layer and GCN layer. Our experimental results show that the additional information from EDS parsing indeed gives a boost to the performance of the base AMR parser used in our experiments.