Ziyi Yang


2021

pdf bib
A Simple and Effective Method To Eliminate the Self Language Bias in Multilingual Representations
Ziyi Yang | Yinfei Yang | Daniel Cer | Eric Darve
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Language agnostic and semantic-language information isolation is an emerging research direction for multilingual representations models. We explore this problem from a novel angle of geometric algebra and semantic space. A simple but highly effective method “Language Information Removal (LIR)” factors out language identity information from semantic related components in multilingual representations pre-trained on multi-monolingual data. A post-training and model-agnostic method, LIR only uses simple linear operations, e.g. matrix factorization and orthogonal projection. LIR reveals that for weak-alignment multilingual systems, the principal components of semantic spaces primarily encodes language identity information. We first evaluate the LIR on a cross-lingual question answer retrieval task (LAReQA), which requires the strong alignment for the multilingual embedding space. Experiment shows that LIR is highly effectively on this task, yielding almost 100% relative improvement in MAP for weak-alignment models. We then evaluate the LIR on Amazon Reviews and XEVAL dataset, with the observation that removing language information is able to improve the cross-lingual transfer performance.

pdf bib
Universal Sentence Representation Learning with Conditional Masked Language Model
Ziyi Yang | Yinfei Yang | Daniel Cer | Jax Law | Eric Darve
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioning on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval (BR) and natural language inference (NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin, e.g. 10% improvement upon baseline models on cross-lingual semantic search. We explore the same language bias of the learned representations, and propose a simple, post-training and model agnostic approach to remove the language identifying information from the representation while still retaining sentence semantics.

2020

pdf bib
TED: A Pretrained Unsupervised Summarization Model with Theme Modeling and Denoising
Ziyi Yang | Chenguang Zhu | Robert Gmyr | Michael Zeng | Xuedong Huang | Eric Darve
Findings of the Association for Computational Linguistics: EMNLP 2020

Text summarization aims to extract essential information from a piece of text and transform the text into a concise version. Existing unsupervised abstractive summarization models leverage recurrent neural networks framework while the recently proposed transformer exhibits much more capability. Moreover, most of previous summarization models ignore abundant unlabeled corpora resources available for pretraining. In order to address these issues, we propose TED, a transformer-based unsupervised abstractive summarization system with pretraining on large-scale data. We first leverage the lead bias in news articles to pretrain the model on millions of unlabeled corpora. Next, we finetune TED on target domains through theme modeling and a denoising autoencoder to enhance the quality of generated summaries. Notably, TED outperforms all unsupervised abstractive baselines on NYT, CNN/DM and English Gigaword datasets with various document styles. Further analysis shows that the summaries generated by TED are highly abstractive, and each component in the objective function of TED is highly effective.

2019

pdf bib
Parameter-free Sentence Embedding via Orthogonal Basis
Ziyi Yang | Chenguang Zhu | Weizhu Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a simple and robust non-parameterized approach for building sentence representations. Inspired by the Gram-Schmidt Process in geometric theory, we build an orthogonal basis of the subspace spanned by a word and its surrounding context in a sentence. We model the semantic meaning of a word in a sentence based on two aspects. One is its relatedness to the word vector subspace already spanned by its contextual words. The other is the word’s novel semantic meaning which shall be introduced as a new basis vector perpendicular to this existing subspace. Following this motivation, we develop an innovative method based on orthogonal basis to combine pre-trained word embeddings into sentence representations. This approach requires zero parameters, along with efficient inference performance. We evaluate our approach on 11 downstream NLP tasks. Our model shows superior performance compared with non-parameterized alternatives and it is competitive to other approaches relying on either large amounts of labelled data or prolonged training time.

pdf bib
Embedding Imputation with Grounded Language Information
Ziyi Yang | Chenguang Zhu | Vin Sachidananda | Eric Darve
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Due to the ubiquitous use of embeddings as input representations for a wide range of natural language tasks, imputation of embeddings for rare and unseen words is a critical problem in language processing. Embedding imputation involves learning representations for rare or unseen words during the training of an embedding model, often in a post-hoc manner. In this paper, we propose an approach for embedding imputation which uses grounded information in the form of a knowledge graph. This is in contrast to existing approaches which typically make use of vector space properties or subword information. We propose an online method to construct a graph from grounded information and design an algorithm to map from the resulting graphical structure to the space of the pre-trained embeddings. Finally, we evaluate our approach on a range of rare and unseen word tasks across various domains and show that our model can learn better representations. For example, on the Card-660 task our method improves Pearson’s and Spearman’s correlation coefficients upon the state-of-the-art by 11% and 17.8% respectively using GloVe embeddings.