Ziyi Yao
2023
Aspect-to-Scope Oriented Multi-view Contrastive Learning for Aspect-based Sentiment Analysis
Heyan Chai
|
Ziyi Yao
|
Siyu Tang
|
Ye Wang
|
Liqiang Nie
|
Binxing Fang
|
Qing Liao
Findings of the Association for Computational Linguistics: EMNLP 2023
Aspect-based sentiment analysis (ABSA) aims to align aspects and corresponding sentiment expressions, so as to identify the sentiment polarities of specific aspects. Most existing ABSA methods focus on mining syntactic or semantic information, which still suffers from noisy interference introduced by the attention mechanism and dependency tree when multiple aspects exist in a sentence. To address these issues, in this paper, we revisit ABSA from a novel perspective by proposing a novel scope-assisted multi-view graph contrastive learning framework. It not only mitigates noisy interference for better locating aspect and its corresponding sentiment opinion with aspect-specific scope, but also captures the correlation and difference between sentiment polarities and syntactic/semantic information. Extensive experiments on five benchmark datasets show that our proposed approach substantially outperforms state-of-the-art methods and verifies the effectiveness and robustness of our model.
HITSZQ at SemEval-2023 Task 10: Category-aware Sexism Detection Model with Self-training Strategy
Ziyi Yao
|
Heyan Chai
|
Jinhao Cui
|
Siyu Tang
|
Qing Liao
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
This paper describes our system used in the SemEval-2023 \textit{Task 10 Explainable Detection of Online Sexism (EDOS)}. Specifically, we participated in subtask B: a 4-class sexism classification task, and subtask C: a more fine-grained (11-class) sexism classification task, where it is necessary to predict the category of sexism. We treat these two subtasks as one multi-label hierarchical text classification problem, and propose an integrated sexism detection model for improving the performance of the sexism detection task. More concretely, we use the pre-trained BERT model to encode the text and class label and a hierarchy-relevant structure encoder is employed to model the relationship between classes of subtasks B and C. Additionally, a self-training strategy is designed to alleviate the imbalanced problem of distribution classes. Extensive experiments on subtasks B and C demonstrate the effectiveness of our proposed approach.
2022
Affective Knowledge Enhanced Multiple-Graph Fusion Networks for Aspect-based Sentiment Analysis
Siyu Tang
|
Heyan Chai
|
Ziyi Yao
|
Ye Ding
|
Cuiyun Gao
|
Binxing Fang
|
Qing Liao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Aspect-based sentiment analysis aims to identify sentiment polarity of social media users toward different aspects. Most recent methods adopt the aspect-centric latent tree to connect aspects and their corresponding opinion words, thinking that would facilitate establishing the relationship between aspects and opinion words.However, these methods ignore the roles of syntax dependency relation labels and affective semantic information in determining the sentiment polarity, resulting in the wrong prediction.In this paper, we propose a novel multi-graph fusion network (MGFN) based on latent graph to leverage the richer syntax dependency relation label information and affective semantic information of words.Specifically, we construct a novel syntax-aware latent graph (SaLG) to fully leverage the syntax dependency relation label information to facilitate the learning of sentiment representations. Subsequently, a multi-graph fusion module is proposed to fuse semantic information of surrounding contexts of aspects adaptively. Furthermore, we design an affective refinement strategy to guide the MGFN to capture significant affective clues. Extensive experiments on three datasets demonstrate that our MGFN model outperforms all state-of-the-art methods and verify the effectiveness of our model.