Ziyue Jiang


2023

pdf bib
CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-Training
Zhenhui Ye | Rongjie Huang | Yi Ren | Ziyue Jiang | Jinglin Liu | Jinzheng He | Xiang Yin | Zhou Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that learns from the prosody variance of the same text token under different contexts. Specifically, 1) with the design of a text encoder and a prosody encoder, we encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space; 2) we introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. 3) we show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker text-to-speech. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in CLAPSpeech. Source code and audio samples are available at https://clapspeech.github.io.

pdf bib
FastDiff 2: Revisiting and Incorporating GANs and Diffusion Models in High-Fidelity Speech Synthesis
Rongjie Huang | Yi Ren | Ziyue Jiang | Chenye Cui | Jinglin Liu | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Generative adversarial networks (GANs) and denoising diffusion probabilistic models (DDPMs) have recently achieved impressive performances in image and audio synthesis. After revisiting their success in conditional speech synthesis, we find that 1) GANs sacrifice sample diversity for quality and speed, 2) diffusion models exhibit outperformed sample quality and diversity at a high computational cost, where achieving high-quality, fast, and diverse speech synthesis challenges all neural synthesizers. In this work, we propose to converge advantages from GANs and diffusion models by incorporating both classes, introducing dual-empowered modeling perspectives: 1) FastDiff 2 (DiffGAN), a diffusion model whose denoising process is parametrized by conditional GANs, and the non-Gaussian denoising distribution makes it much more stable to implement the reverse process with large steps sizes; and 2) FastDiff 2 (GANDiff), a generative adversarial network whose forward process is constructed by multiple denoising diffusion iterations, which exhibits better sample diversity than traditional GANs. Experimental results show that both variants enjoy an efficient 4-step sampling process and demonstrate superior sample quality and diversity. Audio samples are available at https://RevisitSpeech.github.io/

pdf bib
FluentSpeech: Stutter-Oriented Automatic Speech Editing with Context-Aware Diffusion Models
Ziyue Jiang | Qian Yang | Jialong Zuo | Zhenhui Ye | Rongjie Huang | Yi Ren | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Stutter removal is an essential scenario in the field of speech editing. However, when the speech recording contains stutters, the existing text-based speech editing approaches still suffer from: 1) the over-smoothing problem in the edited speech; 2) lack of robustness due to the noise introduced by stutter; 3) to remove the stutters, users are required to determine the edited region manually. To tackle the challenges in stutter removal, we propose FluentSpeech, a stutter-oriented automatic speech editing model. Specifically, 1) we propose a context-aware diffusion model that iteratively refines the modified mel-spectrogram with the guidance of context features; 2) we introduce a stutter predictor module to inject the stutter information into the hidden sequence; 3) we also propose a stutter-oriented automatic speech editing (SASE) dataset that contains spontaneous speech recordings with time-aligned stutter labels to train the automatic stutter localization model. Experimental results on VCTK and LibriTTS datasets demonstrate that our model achieves state-of-the-art performance on speech editing. Further experiments on our SASE dataset show that FluentSpeech can effectively improve the fluency of stuttering speech in terms of objective and subjective metrics. Code and audio samples can be found at https://github.com/Zain-Jiang/Speech-Editing-Toolkit.