Zorik Gekhman


pdf bib
TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models
Zorik Gekhman | Jonathan Herzig | Roee Aharoni | Chen Elkind | Idan Szpektor
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Factual consistency evaluation is often conducted using Natural Language Inference (NLI) models, yet these models exhibit limited success in evaluating summaries. Previous work improved such models with synthetic training data. However, the data is typically based on perturbed human-written summaries, which often differ in their characteristics from real model-generated summaries and have limited coverage of possible factual errors. Alternatively, large language models (LLMs) have recently shown promising results in directly evaluating generative tasks, but are too computationally expensive for practical use. Motivated by these limitations, we introduce TrueTeacher, a method for generating synthetic data by annotating diverse model-generated summaries using a LLM. Unlike prior work, TrueTeacher does not rely on human-written summaries, and is multilingual by nature. Experiments on the TRUE benchmark show that a student model trained using our data, substantially outperforms both the state-of-the-art model with similar capacity, and the LLM teacher. In a systematic study, we compare TrueTeacher to existing synthetic data generation methods and demonstrate its superiority and robustness to domain-shift. We also show that our method generalizes to multilingual scenarios. Lastly, we release our large scale synthetic dataset (1.4M examples), generated using TrueTeacher, and a checkpoint trained on this data.

pdf bib
On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Zorik Gekhman | Nadav Oved | Orgad Keller | Idan Szpektor | Roi Reichart
Transactions of the Association for Computational Linguistics, Volume 11

Most work on modeling the conversation history in Conversational Question Answering (CQA) reports a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g., from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy to plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.1


pdf bib
RED-ACE: Robust Error Detection for ASR using Confidence Embeddings
Zorik Gekhman | Dina Zverinski | Jonathan Mallinson | Genady Beryozkin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

ASR Error Detection (AED) models aim to post-process the output of Automatic Speech Recognition (ASR) systems, in order to detect transcription errors. Modern approaches usually use text-based input, comprised solely of the ASR transcription hypothesis, disregarding additional signals from the ASR model. Instead, we utilize the ASR system’s word-level confidence scores for improving AED performance. Specifically, we add an ASR Confidence Embedding (ACE) layer to the AED model’s encoder, allowing us to jointly encode the confidence scores and the transcribed text into a contextualized representation. Our experiments show the benefits of ASR confidence scores for AED, their complementary effect over the textual signal, as well as the effectiveness and robustness of ACE for combining these signals. To foster further research, we publish a novel AED dataset consisting of ASR outputs on the LibriSpeech corpus with annotated transcription errors.


pdf bib
KoBE: Knowledge-Based Machine Translation Evaluation
Zorik Gekhman | Roee Aharoni | Genady Beryozkin | Markus Freitag | Wolfgang Macherey
Findings of the Association for Computational Linguistics: EMNLP 2020

We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data.