Zuozhu Liu


pdf bib
Generate, Discriminate and Contrast: A Semi-Supervised Sentence Representation Learning Framework
Yiming Chen | Yan Zhang | Bin Wang | Zuozhu Liu | Haizhou Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most sentence embedding techniques heavily rely on expensive human-annotated sentence pairs as the supervised signals. Despite the use of large-scale unlabeled data, the performance of unsupervised methods typically lags far behind that of the supervised counterparts in most downstream tasks. In this work, we propose a semi-supervised sentence embedding framework, GenSE, that effectively leverages large-scale unlabeled data. Our method include three parts: 1) Generate: A generator/discriminator model is jointly trained to synthesize sentence pairs from open-domain unlabeled corpus; 2) Discriminate: Noisy sentence pairs are filtered out by the discriminator to acquire high-quality positive and negative sentence pairs; 3) Contrast: A prompt-based contrastive approach is presented for sentence representation learning with both annotated and synthesized data. Comprehensive experiments show that GenSE achieves an average correlation score of 85.19 on the STS datasets and consistent performance improvement on four domain adaptation tasks, significantly surpassing the state-of-the-art methods and convincingly corroborating its effectiveness and generalization ability.


pdf bib
Bootstrapped Unsupervised Sentence Representation Learning
Yan Zhang | Ruidan He | Zuozhu Liu | Lidong Bing | Haizhou Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

As high-quality labeled data is scarce, unsupervised sentence representation learning has attracted much attention. In this paper, we propose a new framework with a two-branch Siamese Network which maximizes the similarity between two augmented views of each sentence. Specifically, given one augmented view of the input sentence, the online network branch is trained by predicting the representation yielded by the target network of the same sentence under another augmented view. Meanwhile, the target network branch is bootstrapped with a moving average of the online network. The proposed method significantly outperforms other state-of-the-art unsupervised methods on semantic textual similarity (STS) and classification tasks. It can be adopted as a post-training procedure to boost the performance of the supervised methods. We further extend our method for learning multilingual sentence representations and demonstrate its effectiveness on cross-lingual STS tasks. Our code is available at https://github.com/yanzhangnlp/BSL.


pdf bib
An Unsupervised Sentence Embedding Method by Mutual Information Maximization
Yan Zhang | Ruidan He | Zuozhu Liu | Kwan Hui Lim | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.

pdf bib
Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang | Zhijiang Guo | Zhiyang Teng | Wei Lu | Shay B. Cohen | Zuozhu Liu | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.