Zuyi Bao


2022

pdf bib
MuCGEC: a Multi-Reference Multi-Source Evaluation Dataset for Chinese Grammatical Error Correction
Yue Zhang | Zhenghua Li | Zuyi Bao | Jiacheng Li | Bo Zhang | Chen Li | Fei Huang | Min Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This paper presents MuCGEC, a multi-reference multi-source evaluation dataset for Chinese Grammatical Error Correction (CGEC), consisting of 7,063 sentences collected from three Chinese-as-a-Second-Language (CSL) learner sources. Each sentence is corrected by three annotators, and their corrections are carefully reviewed by a senior annotator, resulting in 2.3 references per sentence. We conduct experiments with two mainstream CGEC models, i.e., the sequence-to-sequence model and the sequence-to-edit model, both enhanced with large pretrained language models, achieving competitive benchmark performance on previous and our datasets. We also discuss CGEC evaluation methodologies, including the effect of multiple references and using a char-based metric. Our annotation guidelines, data, and code are available at https://github.com/HillZhang1999/MuCGEC.

2021

pdf bib
Entity Relation Extraction as Dependency Parsing in Visually Rich Documents
Yue Zhang | Zhang Bo | Rui Wang | Junjie Cao | Chen Li | Zuyi Bao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous works on key information extraction from visually rich documents (VRDs) mainly focus on labeling the text within each bounding box (i.e.,semantic entity), while the relations in-between are largely unexplored. In this paper, we adapt the popular dependency parsing model, the biaffine parser, to this entity relation extraction task. Being different from the original dependency parsing model which recognizes dependency relations between words, we identify relations between groups of words with layout information instead. We have compared different representations of the semantic entity, different VRD encoders, and different relation decoders. For the model training, we explore multi-task learning to combine entity labeling and relation extraction tasks; and for the evaluation, we conduct experiments on different datasets with filtering and augmentation. The results demonstrate that our proposed model achieves 65.96% F1 score on the FUNSD dataset. As for the real-world application, our model has been applied to the in-house customs data, achieving reliable performance in the production setting.

2020

pdf bib
Chunk-based Chinese Spelling Check with Global Optimization
Zuyi Bao | Chen Li | Rui Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Chinese spelling check is a challenging task due to the characteristics of the Chinese language, such as the large character set, no word boundary, and short word length. On the one hand, most of the previous works only consider corrections with similar character pronunciation or shape, failing to correct visually and phonologically irrelevant typos. On the other hand, pipeline-style architectures are widely adopted to deal with different types of spelling errors in individual modules, which is difficult to optimize. In order to handle these issues, in this work, 1) we extend the traditional confusion sets with semantical candidates to cover different types of errors; 2) we propose a chunk-based framework to correct single-character and multi-character word errors uniformly; and 3) we adopt a global optimization strategy to enable a sentence-level correction selection. The experimental results show that the proposed approach achieves a new state-of-the-art performance on three benchmark datasets, as well as an optical character recognition dataset.

pdf bib
Chinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning
Yikang Luo | Zuyi Bao | Chen Li | Rui Wang
Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications

This paper describes our participating system on the Chinese Grammatical Error Diagnosis (CGED) 2020 shared task. For the detection subtask, we propose two BERT-based approaches 1) with syntactic dependency trees enhancing the model performance and 2) under the multi-task learning framework to combine the sequence labeling and the sequence-to-sequence (seq2seq) models. For the correction subtask, we utilize the masked language model, the seq2seq model and the spelling check model to generate corrections based on the detection results. Finally, our system achieves the highest recall rate on the top-3 correction and the second best F1 score on identification level and position level.

2019

pdf bib
Low-Resource Sequence Labeling via Unsupervised Multilingual Contextualized Representations
Zuyi Bao | Rui Huang | Chen Li | Kenny Zhu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous work on cross-lingual sequence labeling tasks either requires parallel data or bridges the two languages through word-by-word matching. Such requirements and assumptions are infeasible for most languages, especially for languages with large linguistic distances, e.g., English and Chinese. In this work, we propose a Multilingual Language Model with deep semantic Alignment (MLMA) to generate language-independent representations for cross-lingual sequence labeling. Our methods require only monolingual corpora with no bilingual resources at all and take advantage of deep contextualized representations. Experimental results show that our approach achieves new state-of-the-art NER and POS performance across European languages, and is also effective on distant language pairs such as English and Chinese.

2018

pdf bib
A Hybrid System for Chinese Grammatical Error Diagnosis and Correction
Chen Li | Junpei Zhou | Zuyi Bao | Hengyou Liu | Guangwei Xu | Linlin Li
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

This paper introduces the DM_NLP team’s system for NLPTEA 2018 shared task of Chinese Grammatical Error Diagnosis (CGED), which can be used to detect and correct grammatical errors in texts written by Chinese as a Foreign Language (CFL) learners. This task aims at not only detecting four types of grammatical errors including redundant words (R), missing words (M), bad word selection (S) and disordered words (W), but also recommending corrections for errors of M and S types. We proposed a hybrid system including four models for this task with two stages: the detection stage and the correction stage. In the detection stage, we first used a BiLSTM-CRF model to tag potential errors by sequence labeling, along with some handcraft features. Then we designed three Grammatical Error Correction (GEC) models to generate corrections, which could help to tune the detection result. In the correction stage, candidates were generated by the three GEC models and then merged to output the final corrections for M and S types. Our system reached the highest precision in the correction subtask, which was the most challenging part of this shared task, and got top 3 on F1 scores for position detection of errors.

2017

pdf bib
N-gram Model for Chinese Grammatical Error Diagnosis
Jianbo Zhao | Hao Liu | Zuyi Bao | Xiaopeng Bai | Si Li | Zhiqing Lin
Proceedings of the 4th Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA 2017)

Detection and correction of Chinese grammatical errors have been two of major challenges for Chinese automatic grammatical error diagnosis.This paper presents an N-gram model for automatic detection and correction of Chinese grammatical errors in NLPTEA 2017 task. The experiment results show that the proposed method is good at correction of Chinese grammatical errors.

pdf bib
Neural Regularized Domain Adaptation for Chinese Word Segmentation
Zuyi Bao | Si Li | Weiran Xu | Sheng Gao
Proceedings of the 9th SIGHAN Workshop on Chinese Language Processing

For Chinese word segmentation, the large-scale annotated corpora mainly focus on newswire and only a handful of annotated data is available in other domains such as patents and literature. Considering the limited amount of annotated target domain data, it is a challenge for segmenters to learn domain-specific information while avoid getting over-fitted at the same time. In this paper, we propose a neural regularized domain adaptation method for Chinese word segmentation. The teacher networks trained in source domain are employed to regularize the training process of the student network by preserving the general knowledge. In the experiments, our neural regularized domain adaptation method achieves a better performance comparing to previous methods.