Zhexuan Wang


2025

pdf bib
AgentDropout: Dynamic Agent Elimination for Token-Efficient and High-Performance LLM-Based Multi-Agent Collaboration
Zhexuan Wang | Yutong Wang | Xuebo Liu | Liang Ding | Miao Zhang | Jie Liu | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents’ communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.

pdf bib
AgentInit: Initializing LLM-based Multi-Agent Systems via Diversity and Expertise Orchestration for Effective and Efficient Collaboration
Chunhao Tian | Yutong Wang | Xuebo Liu | Zhexuan Wang | Liang Ding | Miao Zhang | Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2025

Proper initialization is crucial for any system, particularly in multi-agent systems (MAS), where it plays a pivotal role in determining both the system’s efficiency and effectiveness. However, existing MAS initialization methods do not fully account for the collaborative needs of the generated agents in subsequent stages. Inspired by the principles of effective team composition, we propose , which aims to optimize the structure of agent teams. Specifically, in addition to multi-round interactions and reflections between agents during agent generation, AgentInit incorporates a Natural Language to Format mechanism to ensure consistency and standardization. Balanced team selection strategies using Pareto principles are subsequently applied to jointly consider agent team diversity and task relevance to promote effective and efficient collaboration and enhance overall system performance. Experiments show that AgentInit consistently outperforms state-of-the-art initialization methods and pre-defined strategies across various frameworks and tasks, achieving an overall performance improvement of up to 1.2 and 1.7, respectively, while also significantly reducing token consumption. Further analysis confirms its strong transferability to similar tasks and verifies the effectiveness of its key components, demonstrating its capability and adaptability as a reliable MAS initialization method. Source code and models are available at https://github.com/1737423697/AgentInit.

2024

pdf bib
Domain-Aware k-Nearest-Neighbor Knowledge Distillation for Machine Translation
Zhexuan Wang | Shudong Liu | Xuebo Liu | Miao Zhang | Derek Wong | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024

kNN-MT has utilized neighborhood knowledge for auxiliary decoding, significantly improving translation performance. Subsequently, kNN-KD transitions the use of neighborhood knowledge from the decoding phase to the training phase, to address the temporal and spatial inefficiencies inherent in kNN-MT. However, kNN-KD transfers all the kNN knowledge arbitrarily, which has the potential to restrict the learning of student models. In this paper, we propose a novel domain-aware kNN-KD method, which filters out domain-relevant neighborhood knowledge for learning in the distillation process. Notably, this entire process exclusively utilizes the neighborhood knowledge of the original model, eliminating the need for establishing any additional datastores. Experiments on four domain translation tasks demonstrate that our method achieves state-of-the-art performance, realizing an average gain of 1.55 COMET and 1.42 BLEU scores, by further enhancing the translation of rare words. Source code can be accessed at https://github.com/wangzx1219/Dk-KD.