Zhihao Wen
2025
Adaptive Schema-aware Event Extraction with Retrieval-Augmented Generation
Sheng Liang
|
Hang Lv
|
Zhihao Wen
|
Yaxiong Wu
|
Yongyue Zhang
|
Hao Wang
|
Yong Liu
Findings of the Association for Computational Linguistics: EMNLP 2025
Event extraction (EE) is a fundamental task in natural language processing (NLP) that involves identifying and extracting event information from unstructured text. Effective EE in real-world scenarios requires two key steps: selecting appropriate schemas from hundreds of candidates and executing the extraction process.Existing research exhibits two critical gaps: (1) the rigid schema fixation in existing pipeline systems, and (2) the absence of benchmarks for evaluating joint schema matching and extraction.Although large language models (LLMs) offer potential solutions, their schema hallucination tendencies and context window limitations pose challenges for practical deployment. In response, we propose Adaptive Schema-aware Event Extraction (ASEE), a novel paradigm combining schema paraphrasing with schema retrieval-augmented generation. ASEE adeptly retrieves paraphrased schemas and accurately generates targeted structures.To facilitate rigorous evaluation, we construct the Multi-Dimensional Schema-aware Event Extraction (MD-SEE) benchmark, which systematically consolidates 12 datasets across diverse domains, complexity levels, and language settings.Extensive evaluations on MD-SEE show that our proposed ASEE demonstrates strong adaptability across various scenarios, significantly improving the accuracy of event extraction. Our codes and datasets are available at https://github.com/USTC-StarTeam/ASEE.git
2024
SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning
Zhihao Wen
|
Jie Zhang
|
Yuan Fang
Findings of the Association for Computational Linguistics: ACL 2024
Fine-tuning all parameters of large language models (LLMs) necessitates substantial computational power and extended time. Latest advancements in parameter-efficient fine-tuning (PEFT) techniques, such as Adapter tuning and LoRA, allow for adjustments to only a minor fraction of the parameters of these LLMs. Concurrently, it has been noted that the issue of over-smoothing diminishes the effectiveness of these Transformer-based LLMs, resulting in suboptimal performances in downstream tasks. In this paper, we present SIBO, which is a SImple BOoster to enhance PEFT, by injecting an initial residual. SIBO is straightforward and readily extensible to a range of state-of-the-art PEFT techniques to alleviate over-smoothing and enhance performance. Extensive experiments on 22 benchmark datasets demonstrate that SIBO significantly enhances the performance of various strong baselines, achieving up to 15.7% and 23.5% improvement over existing PEFT methods on the arithmetic and commonsense reasoning tasks, respectively.
2023
MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
Yuyan Chen
|
Zhihao Wen
|
Ge Fan
|
Zhengyu Chen
|
Wei Wu
|
Dayiheng Liu
|
Zhixu Li
|
Bang Liu
|
Yanghua Xiao
Findings of the Association for Computational Linguistics: EMNLP 2023
Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.