Ziwei Wu
2025
Not All Voices Are Rewarded Equally: Probing and Repairing Reward Models across Human Diversity
Zihao Li
|
Feihao Fang
|
Xitong Zhang
|
Jiaru Zou
|
Zhining Liu
|
Wei Xiong
|
Ziwei Wu
|
Baoyu Jing
|
Jingrui He
Findings of the Association for Computational Linguistics: EMNLP 2025
The advancement of Large Language Models (LLMs) has made ensuring their trustworthiness increasingly critical, especially in terms of fairness across diverse human groups. While modern LLMs are aligned with user preferences through Reinforcement Learning from Human Feedback (RLHF), the reward models used for alignment are trained on preference data that may both reflect societal biases and suffer from demographic skewness, as labeler populations are often uneven due to systemic accessibility or participation gaps. In this work, we reveal that reward models can exhibit significant discrepancies across different demographic groups, posing a fundamental challenge to fair and robust alignment. Using real-world datasets, we conduct the most comprehensive study to date, auditing various state-of-the-art reward models across nine sensitive attributes, including age, gender, ethnicity, etc. Our evaluation spans both (1) the agreement level between reward models and specific user groups, and (2) the reward model’s preference toward responses associated with different groups. Based on these findings, we propose the first method to mitigate group disparities in reward modeling. Code is available at https://github.com/Violet24K/FaRM.
2022
Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Ping Yang
|
Junjie Wang
|
Ruyi Gan
|
Xinyu Zhu
|
Lin Zhang
|
Ziwei Wu
|
Xinyu Gao
|
Jiaxing Zhang
|
Tetsuya Sakai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
We propose a new paradigm for zero-shot learners that is format agnostic, i.e., it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, and sentiment analysis. Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training. Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN. It not only adds generalization ability to models but also significantly reduces the number of parameters. Our method shares the merits of efficient training and deployment. Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification. Our model achieves this success with only 235M parameters, which is substantially smaller than state-of-the-art models with billions of parameters. The code and pre-trained models are available at https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/unimc .