Recent advances in large language models (LLMs) have significantly improved automated code generation, enabling tools such as GitHub Copilot and CodeWhisperer to assist developers in a wide range of programming tasks. However, the translation of complex mobile UI designs into high-fidelity front-end code remains a challenging and underexplored area, especially as modern app interfaces become increasingly intricate. In this work, we propose UIOrchestra, a collaborative multi-agent system designed for the AppUI2Code task, which aims to reconstruct static single-page applications from design mockups. UIOrchestra integrates three specialized agents, layout description, code generation, and difference analysis agent that work collaboratively to address the limitations of single-model approaches. To facilitate robust evaluation, we introduce APPUI, the first benchmark dataset for AppUI2Code, constructed through a human-in-the-loop process to ensure data quality and coverage. Experimental results demonstrate that UIOrchestra outperforms existing methods in reconstructing complex app pages and highlight the necessity of multi-agent collaboration for this task. We hope our work will inspire further research on leveraging LLMs for front-end automation. The code and data will be released upon paper acceptance.
In recent years, a new interesting task, called emotion-cause pair extraction (ECPE), has emerged in the area of text emotion analysis. It aims at extracting the potential pairs of emotions and their corresponding causes in a document. To solve this task, the existing research employed a two-step framework, which first extracts individual emotion set and cause set, and then pair the corresponding emotions and causes. However, such a pipeline of two steps contains some inherent flaws: 1) the modeling does not aim at extracting the final emotion-cause pair directly; 2) the errors from the first step will affect the performance of the second step. To address these shortcomings, in this paper we propose a new end-to-end approach, called ECPE-Two-Dimensional (ECPE-2D), to represent the emotion-cause pairs by a 2D representation scheme. A 2D transformer module and two variants, window-constrained and cross-road 2D transformers, are further proposed to model the interactions of different emotion-cause pairs. The 2D representation, interaction, and prediction are integrated into a joint framework. In addition to the advantages of joint modeling, the experimental results on the benchmark emotion cause corpus show that our approach improves the F1 score of the state-of-the-art from 61.28% to 68.89%.
Emotion-cause pair extraction (ECPE) is a new task that aims to extract the potential pairs of emotions and their corresponding causes in a document. The existing methods first perform emotion extraction and cause extraction independently, and then perform emotion-cause pairing and filtering. However, the above methods ignore the fact that the cause and the emotion it triggers are inseparable, and the extraction of the cause without specifying the emotion is pathological, which greatly limits the performance of the above methods in the first step. To tackle these shortcomings, we propose two joint frameworks for ECPE: 1) multi-label learning for the extraction of the cause clauses corresponding to the specified emotion clause (CMLL) and 2) multi-label learning for the extraction of the emotion clauses corresponding to the specified cause clause (EMLL). The window of multi-label learning is centered on the specified emotion clause or cause clause and slides as their positions move. Finally, CMLL and EMLL are integrated to obtain the final result. We evaluate our model on a benchmark emotion cause corpus, the results show that our approach achieves the best performance among all compared systems on the ECPE task.
Emotion cause extraction (ECE), the task aimed at extracting the potential causes behind certain emotions in text, has gained much attention in recent years due to its wide applications. However, it suffers from two shortcomings: 1) the emotion must be annotated before cause extraction in ECE, which greatly limits its applications in real-world scenarios; 2) the way to first annotate emotion and then extract the cause ignores the fact that they are mutually indicative. In this work, we propose a new task: emotion-cause pair extraction (ECPE), which aims to extract the potential pairs of emotions and corresponding causes in a document. We propose a 2-step approach to address this new ECPE task, which first performs individual emotion extraction and cause extraction via multi-task learning, and then conduct emotion-cause pairing and filtering. The experimental results on a benchmark emotion cause corpus prove the feasibility of the ECPE task as well as the effectiveness of our approach.