Computational Linguistics, Volume 46, Issue 2 - June 2020

Anthology ID:
Bib Export formats:

pdf bib
Multilingual and Interlingual Semantic Representations for Natural Language Processing: A Brief Introduction
Marta R. Costa-jussà | Cristina España-Bonet | Pascale Fung | Noah A. Smith

We introduce the Computational Linguistics special issue on Multilingual and Interlingual Semantic Representations for Natural Language Processing. We situate the special issue’s five articles in the context of our fast-changing field, explaining our motivation for this project. We offer a brief summary of the work in the issue, which includes developments on lexical and sentential semantic representations, from symbolic and neural perspectives.

pdf bib
Unsupervised Word Translation with Adversarial Autoencoder
Tasnim Mohiuddin | Shafiq Joty

Crosslingual word embeddings learned from monolingual embeddings have a crucial role in many downstream tasks, ranging from machine translation to transfer learning. Adversarial training has shown impressive success in learning crosslingual embeddings and the associated word translation task without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this article, we investigate adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. We use two types of refinement procedures sequentially after obtaining the trained encoders and mappings from the adversarial training, namely, refinement with Procrustes solution and refinement with symmetric re-weighting. Extensive experimentations with high- and low-resource languages from two different data sets show that our method achieves better performance than existing adversarial and non-adversarial approaches and is also competitive with the supervised system. Along with performing comprehensive ablation studies to understand the contribution of different components of our adversarial model, we also conduct a thorough analysis of the refinement procedures to understand their effects.

pdf bib
LessLex: Linking Multilingual Embeddings to SenSe Representations of LEXical Items
Davide Colla | Enrico Mensa | Daniele P. Radicioni

We present LESSLEX, a novel multilingual lexical resource. Different from the vast majority of existing approaches, we ground our embeddings on a sense inventory made available from the BabelNet semantic network. In this setting, multilingual access is governed by the mapping of terms onto their underlying sense descriptions, such that all vectors co-exist in the same semantic space. As a result, for each term we have thus the “blended” terminological vector along with those describing all senses associated to that term. LESSLEX has been tested on three tasks relevant to lexical semantics: conceptual similarity, contextual similarity, and semantic text similarity. We experimented over the principal data sets for such tasks in their multilingual and crosslingual variants, improving on or closely approaching state-of-the-art results. We conclude by arguing that LESSLEX vectors may be relevant for practical applications and for research on conceptual and lexical access and competence.

pdf bib
LINSPECTOR: Multilingual Probing Tasks for Word Representations
Gözde Gül Şahin | Clara Vania | Ilia Kuznetsov | Iryna Gurevych

Despite an ever-growing number of word representation models introduced for a large number of languages, there is a lack of a standardized technique to provide insights into what is captured by these models. Such insights would help the community to get an estimate of the downstream task performance, as well as to design more informed neural architectures, while avoiding extensive experimentation that requires substantial computational resources not all researchers have access to. A recent development in NLP is to use simple classification tasks, also called probing tasks, that test for a single linguistic feature such as part-of-speech. Existing studies mostly focus on exploring the linguistic information encoded by the continuous representations of English text. However, from a typological perspective the morphologically poor English is rather an outlier: The information encoded by the word order and function words in English is often stored on a subword, morphological level in other languages. To address this, we introduce 15 type-level probing tasks such as case marking, possession, word length, morphological tag count, and pseudoword identification for 24 languages. We present a reusable methodology for creation and evaluation of such tests in a multilingual setting, which is challenging because of a lack of resources, lower quality of tools, and differences among languages. We then present experiments on several diverse multilingual word embedding models, in which we relate the probing task performance for a diverse set of languages to a range of five classic NLP tasks: POS-tagging, dependency parsing, semantic role labeling, named entity recognition, and natural language inference. We find that a number of probing tests have significantly high positive correlation to the downstream tasks, especially for morphologically rich languages. We show that our tests can be used to explore word embeddings or black-box neural models for linguistic cues in a multilingual setting. We release the probing data sets and the evaluation suite LINSPECTOR with

pdf bib
A Systematic Study of Inner-Attention-Based Sentence Representations in Multilingual Neural Machine Translation
Raúl Vázquez | Alessandro Raganato | Mathias Creutz | Jörg Tiedemann

Neural machine translation has considerably improved the quality of automatic translations by learning good representations of input sentences. In this article, we explore a multilingual translation model capable of producing fixed-size sentence representations by incorporating an intermediate crosslingual shared layer, which we refer to as attention bridge. This layer exploits the semantics from each language and develops into a language-agnostic meaning representation that can be efficiently used for transfer learning. We systematically study the impact of the size of the attention bridge and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that there is no conflict between translation performance and the use of sentence representations in downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. Nevertheless, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. Similarly, we show that trainable downstream tasks benefit from multilingual models, whereas additional language signals do not improve performance in non-trainable benchmarks. This is an important insight that helps to properly design models for specific applications. Finally, we also include an in-depth analysis of the proposed attention bridge and its ability to encode linguistic properties. We carefully analyze the information that is captured by individual attention heads and identify interesting patterns that explain the performance of specific settings in linguistic probing tasks.

pdf bib
Abstract Syntax as Interlingua: Scaling Up the Grammatical Framework from Controlled Languages to Robust Pipelines
Aarne Ranta | Krasimir Angelov | Normunds Gruzitis | Prasanth Kolachina

Abstract syntax is an interlingual representation used in compilers. Grammatical Framework (GF) applies the abstract syntax idea to natural languages. The development of GF started in 1998, first as a tool for controlled language implementations, where it has gained an established position in both academic and commercial projects. GF provides grammar resources for over 40 languages, enabling accurate generation and translation, as well as grammar engineering tools and components for mobile and Web applications. On the research side, the focus in the last ten years has been on scaling up GF to wide-coverage language processing. The concept of abstract syntax offers a unified view on many other approaches: Universal Dependencies, WordNets, FrameNets, Construction Grammars, and Abstract Meaning Representations. This makes it possible for GF to utilize data from the other approaches and to build robust pipelines. In return, GF can contribute to data-driven approaches by methods to transfer resources from one language to others, to augment data by rule-based generation, to check the consistency of hand-annotated corpora, and to pipe analyses into high-precision semantic back ends. This article gives an overview of the use of abstract syntax as interlingua through both established and emerging NLP applications involving GF.

pdf bib
Fair Is Better than Sensational: Man Is to Doctor as Woman Is to Doctor
Malvina Nissim | Rik van Noord | Rob van der Goot

Analogies such as man is to king as woman is to X are often used to illustrate the amazing power of word embeddings. Concurrently, they have also been used to expose how strongly human biases are encoded in vector spaces trained on natural language, with examples like man is to computer programmer as woman is to homemaker. Recent work has shown that analogies are in fact not an accurate diagnostic for bias, but this does not mean that they are not used anymore, or that their legacy is fading. Instead of focusing on the intrinsic problems of the analogy task as a bias detection tool, we discuss a series of issues involving implementation as well as subjective choices that might have yielded a distorted picture of bias in word embeddings. We stand by the truth that human biases are present in word embeddings, and, of course, the need to address them. But analogies are not an accurate tool to do so, and the way they have been most often used has exacerbated some possibly non-existing biases and perhaps hidden others. Because they are still widely popular, and some of them have become classics within and outside the NLP community, we deem it important to provide a series of clarifications that should put well-known, and potentially new analogies, into the right perspective.

pdf bib
The Limitations of Stylometry for Detecting Machine-Generated Fake News
Tal Schuster | Roei Schuster | Darsh J. Shah | Regina Barzilay

Recent developments in neural language models (LMs) have raised concerns about their potential misuse for automatically spreading misinformation. In light of these concerns, several studies have proposed to detect machine-generated fake news by capturing their stylistic differences from human-written text. These approaches, broadly termed stylometry, have found success in source attribution and misinformation detection in human-written texts. However, in this work, we show that stylometry is limited against machine-generated misinformation. Whereas humans speak differently when trying to deceive, LMs generate stylistically consistent text, regardless of underlying motive. Thus, though stylometry can successfully prevent impersonation by identifying text provenance, it fails to distinguish legitimate LM applications from those that introduce false information. We create two benchmarks demonstrating the stylistic similarity between malicious and legitimate uses of LMs, utilized in auto-completion and editing-assistance settings.1 Our findings highlight the need for non-stylometry approaches in detecting machine-generated misinformation, and open up the discussion on the desired evaluation benchmarks.