Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu (Editors)


Anthology ID:
2020.emnlp-main
Month:
November
Year:
2020
Address:
Online
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2020.emnlp-main
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/2020.emnlp-main.pdf

pdf bib
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Bonnie Webber | Trevor Cohn | Yulan He | Yang Liu

pdf bib
Detecting Attackable Sentences in Arguments
Yohan Jo | Seojin Bang | Emaad Manzoor | Eduard Hovy | Chris Reed

Finding attackable sentences in an argument is the first step toward successful refutation in argumentation. We present a first large-scale analysis of sentence attackability in online arguments. We analyze driving reasons for attacks in argumentation and identify relevant characteristics of sentences. We demonstrate that a sentence’s attackability is associated with many of these characteristics regarding the sentence’s content, proposition types, and tone, and that an external knowledge source can provide useful information about attackability. Building on these findings, we demonstrate that machine learning models can automatically detect attackable sentences in arguments, significantly better than several baselines and comparably well to laypeople.

pdf bib
Extracting Implicitly Asserted Propositions in Argumentation
Yohan Jo | Jacky Visser | Chris Reed | Eduard Hovy

Argumentation accommodates various rhetorical devices, such as questions, reported speech, and imperatives. These rhetorical tools usually assert argumentatively relevant propositions rather implicitly, so understanding their true meaning is key to understanding certain arguments properly. However, most argument mining systems and computational linguistics research have paid little attention to implicitly asserted propositions in argumentation. In this paper, we examine a wide range of computational methods for extracting propositions that are implicitly asserted in questions, reported speech, and imperatives in argumentation. By evaluating the models on a corpus of 2016 U.S. presidential debates and online commentary, we demonstrate the effectiveness and limitations of the computational models. Our study may inform future research on argument mining and the semantics of these rhetorical devices in argumentation.

pdf bib
Quantitative argument summarization and beyond: Cross-domain key point analysis
Roy Bar-Haim | Yoav Kantor | Lilach Eden | Roni Friedman | Dan Lahav | Noam Slonim

When summarizing a collection of views, arguments or opinions on some topic, it is often desirable not only to extract the most salient points, but also to quantify their prevalence. Work on multi-document summarization has traditionally focused on creating textual summaries, which lack this quantitative aspect. Recent work has proposed to summarize arguments by mapping them to a small set of expert-generated key points, where the salience of each key point corresponds to the number of its matching arguments. The current work advances key point analysis in two important respects: first, we develop a method for automatic extraction of key points, which enables fully automatic analysis, and is shown to achieve performance comparable to a human expert. Second, we demonstrate that the applicability of key point analysis goes well beyond argumentation data. Using models trained on publicly available argumentation datasets, we achieve promising results in two additional domains: municipal surveys and user reviews. An additional contribution is an in-depth evaluation of argument-to-key point matching models, where we substantially outperform previous results.

pdf bib
Unsupervised stance detection for arguments from consequences
Jonathan Kobbe | Ioana Hulpuș | Heiner Stuckenschmidt

Social media platforms have become an essential venue for online deliberation where users discuss arguments, debate, and form opinions. In this paper, we propose an unsupervised method to detect the stance of argumentative claims with respect to a topic. Most related work focuses on topic-specific supervised models that need to be trained for every emergent debate topic. To address this limitation, we propose a topic independent approach that focuses on a frequently encountered class of arguments, specifically, on arguments from consequences. We do this by extracting the effects that claims refer to, and proposing a means for inferring if the effect is a good or bad consequence. Our experiments provide promising results that are comparable to, and in particular regards even outperform BERT. Furthermore, we publish a novel dataset of arguments relating to consequences, annotated with Amazon Mechanical Turk.

pdf bib
BLEU might be Guilty but References are not Innocent
Markus Freitag | David Grangier | Isaac Caswell

The quality of automatic metrics for machine translation has been increasingly called into question, especially for high-quality systems. This paper demonstrates that, while choice of metric is important, the nature of the references is also critical. We study different methods to collect references and compare their value in automated evaluation by reporting correlation with human evaluation for a variety of systems and metrics. Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task for linguists to perform on existing reference translations, which counteracts this bias. Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output, which have been shown to have low correlation with automatic metrics using standard references. We demonstrate that our methodology improves correlation with all modern evaluation metrics we look at, including embedding-based methods. To complete this picture, we reveal that multi-reference BLEU does not improve the correlation for high quality output, and present an alternative multi-reference formulation that is more effective.

pdf bib
Statistical Power and Translationese in Machine Translation Evaluation
Yvette Graham | Barry Haddow | Philipp Koehn

The term translationese has been used to describe features of translated text, and in this paper, we provide detailed analysis of potential adverse effects of translationese on machine translation evaluation. Our analysis shows differences in conclusions drawn from evaluations that include translationese in test data compared to experiments that tested only with text originally composed in that language. For this reason we recommend that reverse-created test data be omitted from future machine translation test sets. In addition, we provide a re-evaluation of a past machine translation evaluation claiming human-parity of MT. One important issue not previously considered is statistical power of significance tests applied to comparison of human and machine translation. Since the very aim of past evaluations was investigation of ties between human and MT systems, power analysis is of particular importance, to avoid, for example, claims of human parity simply corresponding to Type II error resulting from the application of a low powered test. We provide detailed analysis of tests used in such evaluations to provide an indication of a suitable minimum sample size for future studies.

pdf bib
Simulated multiple reference training improves low-resource machine translation
Huda Khayrallah | Brian Thompson | Matt Post | Philipp Koehn

Many valid translations exist for a given sentence, yet machine translation (MT) is trained with a single reference translation, exacerbating data sparsity in low-resource settings. We introduce Simulated Multiple Reference Training (SMRT), a novel MT training method that approximates the full space of possible translations by sampling a paraphrase of the reference sentence from a paraphraser and training the MT model to predict the paraphraser’s distribution over possible tokens. We demonstrate the effectiveness of SMRT in low-resource settings when translating to English, with improvements of 1.2 to 7.0 BLEU. We also find SMRT is complementary to back-translation.

pdf bib
Automatic Machine Translation Evaluation in Many Languages via Zero-Shot Paraphrasing
Brian Thompson | Matt Post

We frame the task of machine translation evaluation as one of scoring machine translation output with a sequence-to-sequence paraphraser, conditioned on a human reference. We propose training the paraphraser as a multilingual NMT system, treating paraphrasing as a zero-shot translation task (e.g., Czech to Czech). This results in the paraphraser’s output mode being centered around a copy of the input sequence, which represents the best case scenario where the MT system output matches a human reference. Our method is simple and intuitive, and does not require human judgements for training. Our single model (trained in 39 languages) outperforms or statistically ties with all prior metrics on the WMT 2019 segment-level shared metrics task in all languages (excluding Gujarati where the model had no training data). We also explore using our model for the task of quality estimation as a metric—conditioning on the source instead of the reference—and find that it significantly outperforms every submission to the WMT 2019 shared task on quality estimation in every language pair.

pdf bib
PRover: Proof Generation for Interpretable Reasoning over Rules
Swarnadeep Saha | Sayan Ghosh | Shashank Srivastava | Mohit Bansal

Recent work by Clark et al. (2020) shows that transformers can act as “soft theorem provers” by answering questions over explicitly provided knowledge in natural language. In our work, we take a step closer to emulating formal theorem provers, by proposing PRover, an interpretable transformer-based model that jointly answers binary questions over rule-bases and generates the corresponding proofs. Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm. During inference, a valid proof, satisfying a set of global constraints is generated. We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation, with strong generalization performance. First, PRover generates proofs with an accuracy of 87%, while retaining or improving performance on the QA task, compared to RuleTakers (up to 6% improvement on zero-shot evaluation). Second, when trained on questions requiring lower depths of reasoning, it generalizes significantly better to higher depths (up to 15% improvement). Third, PRover obtains near perfect QA accuracy of 98% using only 40% of the training data. However, generating proofs for questions requiring higher depths of reasoning becomes challenging, and the accuracy drops to 65% for “depth 5”, indicating significant scope for future work.

pdf bib
Learning to Explain: Datasets and Models for Identifying Valid Reasoning Chains in Multihop Question-Answering
Harsh Jhamtani | Peter Clark

Despite the rapid progress in multihop question-answering (QA), models still have trouble explaining why an answer is correct, with limited explanation training data available to learn from. To address this, we introduce three explanation datasets in which explanations formed from corpus facts are annotated. Our first dataset, eQASC contains over 98K explanation annotations for the multihop question answering dataset QASC, and is the first that annotates multiple candidate explanations for each answer. The second dataset eQASC-perturbed is constructed by crowd-sourcing perturbations (while preserving their validity) of a subset of explanations in QASC, to test consistency and generalization of explanation prediction models. The third dataset eOBQA is constructed by adding explanation annotations to the OBQA dataset to test generalization of models trained on eQASC. We show that this data can be used to significantly improve explanation quality (+14% absolute F1 over a strong retrieval baseline) using a BERT-based classifier, but still behind the upper bound, offering a new challenge for future research. We also explore a delexicalized chain representation in which repeated noun phrases are replaced by variables, thus turning them into generalized reasoning chains (for example: “X is a Y” AND “Y has Z” IMPLIES “X has Z”). We find that generalized chains maintain performance while also being more robust to certain perturbations.

pdf bib
Self-Supervised Knowledge Triplet Learning for Zero-Shot Question Answering
Pratyay Banerjee | Chitta Baral

The aim of all Question Answering (QA) systems is to generalize to unseen questions. Current supervised methods are reliant on expensive data annotation. Moreover, such annotations can introduce unintended annotator bias, making systems focus more on the bias than the actual task. This work proposes Knowledge Triplet Learning (KTL), a self-supervised task over knowledge graphs. We propose heuristics to create synthetic graphs for commonsense and scientific knowledge. We propose using KTL to perform zero-shot question answering, and our experiments show considerable improvements over large pre-trained transformer language models.

pdf bib
More Bang for Your Buck: Natural Perturbation for Robust Question Answering
Daniel Khashabi | Tushar Khot | Ashish Sabharwal

Deep learning models for linguistic tasks require large training datasets, which are expensive to create. As an alternative to the traditional approach of creating new instances by repeating the process of creating one instance, we propose doing so by first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Such perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. Further, they help address the issue that even models achieving human-level scores on NLP datasets are known to be considerably sensitive to small changes in input. To evaluate the idea, we consider a recent question-answering dataset (BOOLQ) and study our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create (cost ratio under 60%), it is more effective to use them for training BOOLQ models: such models exhibit 9% higher robustness and 4.5% stronger generalization, while retaining performance on the original BOOLQ dataset.

pdf bib
A matter of framing: The impact of linguistic formalism on probing results
Ilia Kuznetsov | Iryna Gurevych

Deep pre-trained contextualized encoders like BERT demonstrate remarkable performance on a range of downstream tasks. A recent line of research in probing investigates the linguistic knowledge implicitly learned by these models during pre-training. While most work in probing operates on the task level, linguistic tasks are rarely uniform and can be represented in a variety of formalisms. Any linguistics-based probing study thereby inevitably commits to the formalism used to annotate the underlying data. Can the choice of formalism affect probing results? To investigate, we conduct an in-depth cross-formalism layer probing study in role semantics. We find linguistically meaningful differences in the encoding of semantic role- and proto-role information by BERT depending on the formalism and demonstrate that layer probing can detect subtle differences between the implementations of the same linguistic formalism. Our results suggest that linguistic formalism is an important dimension in probing studies, along with the commonly used cross-task and cross-lingual experimental settings.

pdf bib
Information-Theoretic Probing with Minimum Description Length
Elena Voita | Ivan Titov

To measure how well pretrained representations encode some linguistic property, it is common to use accuracy of a probe, i.e. a classifier trained to predict the property from the representations. Despite widespread adoption of probes, differences in their accuracy fail to adequately reflect differences in representations. For example, they do not substantially favour pretrained representations over randomly initialized ones. Analogously, their accuracy can be similar when probing for genuine linguistic labels and probing for random synthetic tasks. To see reasonable differences in accuracy with respect to these random baselines, previous work had to constrain either the amount of probe training data or its model size. Instead, we propose an alternative to the standard probes, information-theoretic probing with minimum description length (MDL). With MDL probing, training a probe to predict labels is recast as teaching it to effectively transmit the data. Therefore, the measure of interest changes from probe accuracy to the description length of labels given representations. In addition to probe quality, the description length evaluates “the amount of effort” needed to achieve the quality. This amount of effort characterizes either (i) size of a probing model, or (ii) the amount of data needed to achieve the high quality. We consider two methods for estimating MDL which can be easily implemented on top of the standard probing pipelines: variational coding and online coding. We show that these methods agree in results and are more informative and stable than the standard probes.

pdf bib
Intrinsic Probing through Dimension Selection
Lucas Torroba Hennigen | Adina Williams | Ryan Cotterell

Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks. Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it. In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted. To enable intrinsic probing, we propose a novel framework based on a decomposable multivariate Gaussian probe that allows us to determine whether the linguistic information in word embeddings is dispersed or focal. We then probe fastText and BERT for various morphosyntactic attributes across 36 languages. We find that most attributes are reliably encoded by only a few neurons, with fastText concentrating its linguistic structure more than BERT.

pdf bib
Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually)
Alex Warstadt | Yian Zhang | Xiaocheng Li | Haokun Liu | Samuel R. Bowman

One reason pretraining on self-supervised linguistic tasks is effective is that it teaches models features that are helpful for language understanding. However, we want pretrained models to learn not only to represent linguistic features, but also to use those features preferentially during fine-turning. With this goal in mind, we introduce a new English-language diagnostic set called MSGS (the Mixed Signals Generalization Set), which consists of 20 ambiguous binary classification tasks that we use to test whether a pretrained model prefers linguistic or surface generalizations during finetuning. We pretrain RoBERTa from scratch on quantities of data ranging from 1M to 1B words and compare their performance on MSGS to the publicly available RoBERTa_BASE. We find that models can learn to represent linguistic features with little pretraining data, but require far more data to learn to prefer linguistic generalizations over surface ones. Eventually, with about 30B words of pretraining data, RoBERTa_BASE does consistently demonstrate a linguistic bias with some regularity. We conclude that while self-supervised pretraining is an effective way to learn helpful inductive biases, there is likely room to improve the rate at which models learn which features matter.

pdf bib
Repulsive Attention: Rethinking Multi-head Attention as Bayesian Inference
Bang An | Jie Lyu | Zhenyi Wang | Chunyuan Li | Changwei Hu | Fei Tan | Ruiyi Zhang | Yifan Hu | Changyou Chen

The neural attention mechanism plays an important role in many natural language processing applications. In particular, multi-head attention extends single-head attention by allowing a model to jointly attend information from different perspectives. However, without explicit constraining, multi-head attention may suffer from attention collapse, an issue that makes different heads extract similar attentive features, thus limiting the model’s representation power. In this paper, for the first time, we provide a novel understanding of multi-head attention from a Bayesian perspective. Based on the recently developed particle-optimization sampling techniques, we propose a non-parametric approach that explicitly improves the repulsiveness in multi-head attention and consequently strengthens model’s expressiveness. Remarkably, our Bayesian interpretation provides theoretical inspirations on the not-well-understood questions: why and how one uses multi-head attention. Extensive experiments on various attention models and applications demonstrate that the proposed repulsive attention can improve the learned feature diversity, leading to more informative representations with consistent performance improvement on multiple tasks.

pdf bib
KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations
Fabio Massimo Zanzotto | Andrea Santilli | Leonardo Ranaldi | Dario Onorati | Pierfrancesco Tommasino | Francesca Fallucchi

Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks

pdf bib
ETC: Encoding Long and Structured Inputs in Transformers
Joshua Ainslie | Santiago Ontanon | Chris Alberti | Vaclav Cvicek | Zachary Fisher | Philip Pham | Anirudh Ravula | Sumit Sanghai | Qifan Wang | Li Yang

Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, “Extended Transformer Construction” (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a “Contrastive Predictive Coding” (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.

pdf bib
Pre-Training Transformers as Energy-Based Cloze Models
Kevin Clark | Minh-Thang Luong | Quoc Le | Christopher D. Manning

We introduce Electric, an energy-based cloze model for representation learning over text. Like BERT, it is a conditional generative model of tokens given their contexts. However, Electric does not use masking or output a full distribution over tokens that could occur in a context. Instead, it assigns a scalar energy score to each input token indicating how likely it is given its context. We train Electric using an algorithm based on noise-contrastive estimation and elucidate how this learning objective is closely related to the recently proposed ELECTRA pre-training method. Electric performs well when transferred to downstream tasks and is particularly effective at producing likelihood scores for text: it re-ranks speech recognition n-best lists better than language models and much faster than masked language models. Furthermore, it offers a clearer and more principled view of what ELECTRA learns during pre-training.

pdf bib
Calibration of Pre-trained Transformers
Shrey Desai | Greg Durrett

Pre-trained Transformers are now ubiquitous in natural language processing, but despite their high end-task performance, little is known empirically about whether they are calibrated. Specifically, do these models’ posterior probabilities provide an accurate empirical measure of how likely the model is to be correct on a given example? We focus on BERT and RoBERTa in this work, and analyze their calibration across three tasks: natural language inference, paraphrase detection, and commonsense reasoning. For each task, we consider in-domain as well as challenging out-of-domain settings, where models face more examples they should be uncertain about. We show that: (1) when used out-of-the-box, pre-trained models are calibrated in-domain, and compared to baselines, their calibration error out-of-domain can be as much as 3.5x lower; (2) temperature scaling is effective at further reducing calibration error in-domain, and using label smoothing to deliberately increase empirical uncertainty helps calibrate posteriors out-of-domain.

pdf bib
Near-imperceptible Neural Linguistic Steganography via Self-Adjusting Arithmetic Coding
Jiaming Shen | Heng Ji | Jiawei Han

Linguistic steganography studies how to hide secret messages in natural language cover texts. Traditional methods aim to transform a secret message into an innocent text via lexical substitution or syntactical modification. Recently, advances in neural language models (LMs) enable us to directly generate cover text conditioned on the secret message. In this study, we present a new linguistic steganography method which encodes secret messages using self-adjusting arithmetic coding based on a neural language model. We formally analyze the statistical imperceptibility of this method and empirically show it outperforms the previous state-of-the-art methods on four datasets by 15.3% and 38.9% in terms of bits/word and KL metrics, respectively. Finally, human evaluations show that 51% of generated cover texts can indeed fool eavesdroppers.

pdf bib
Multi-Dimensional Gender Bias Classification
Emily Dinan | Angela Fan | Ledell Wu | Jason Weston | Douwe Kiela | Adina Williams

Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a novel, general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a new, crowdsourced evaluation benchmark. Distinguishing between gender bias along multiple dimensions enables us to train better and more fine-grained gender bias classifiers. We show our classifiers are valuable for a variety of applications, like controlling for gender bias in generative models, detecting gender bias in arbitrary text, and classifying text as offensive based on its genderedness.

pdf bib
FIND: Human-in-the-Loop Debugging Deep Text Classifiers
Piyawat Lertvittayakumjorn | Lucia Specia | Francesca Toni

Since obtaining a perfect training dataset (i.e., a dataset which is considerably large, unbiased, and well-representative of unseen cases) is hardly possible, many real-world text classifiers are trained on the available, yet imperfect, datasets. These classifiers are thus likely to have undesirable properties. For instance, they may have biases against some sub-populations or may not work effectively in the wild due to overfitting. In this paper, we propose FIND – a framework which enables humans to debug deep learning text classifiers by disabling irrelevant hidden features. Experiments show that by using FIND, humans can improve CNN text classifiers which were trained under different types of imperfect datasets (including datasets with biases and datasets with dissimilar train-test distributions).

pdf bib
Conversational Document Prediction to Assist Customer Care Agents
Jatin Ganhotra | Haggai Roitman | Doron Cohen | Nathaniel Mills | Chulaka Gunasekara | Yosi Mass | Sachindra Joshi | Luis Lastras | David Konopnicki

A frequent pattern in customer care conversations is the agents responding with appropriate webpage URLs that address users’ needs. We study the task of predicting the documents that customer care agents can use to facilitate users’ needs. We also introduce a new public dataset which supports the aforementioned problem. Using this dataset and two others, we investigate state-of-the art deep learning (DL) and information retrieval (IR) models for the task. Additionally, we analyze the practicality of such systems in terms of inference time complexity. Our show that an hybrid IR+DL approach provides the best of both worlds.

pdf bib
Incremental Processing in the Age of Non-Incremental Encoders: An Empirical Assessment of Bidirectional Models for Incremental NLU
Brielen Madureira | David Schlangen

While humans process language incrementally, the best language encoders currently used in NLP do not. Both bidirectional LSTMs and Transformers assume that the sequence that is to be encoded is available in full, to be processed either forwards and backwards (BiLSTMs) or as a whole (Transformers). We investigate how they behave under incremental interfaces, when partial output must be provided based on partial input seen up to a certain time step, which may happen in interactive systems. We test five models on various NLU datasets and compare their performance using three incremental evaluation metrics. The results support the possibility of using bidirectional encoders in incremental mode while retaining most of their non-incremental quality. The “omni-directional” BERT model, which achieves better non-incremental performance, is impacted more by the incremental access. This can be alleviated by adapting the training regime (truncated training), or the testing procedure, by delaying the output until some right context is available or by incorporating hypothetical right contexts generated by a language model like GPT-2.

pdf bib
Augmented Natural Language for Generative Sequence Labeling
Ben Athiwaratkun | Cicero Nogueira dos Santos | Jason Krone | Bing Xiang

We propose a generative framework for joint sequence labeling and sentence-level classification. Our model performs multiple sequence labeling tasks at once using a single, shared natural language output space. Unlike prior discriminative methods, our model naturally incorporates label semantics and shares knowledge across tasks. Our framework general purpose, performing well on few-shot learning, low resource, and high resource tasks. We demonstrate these advantages on popular named entity recognition, slot labeling, and intent classification benchmarks. We set a new state-of-the-art for few-shot slot labeling, improving substantially upon the previous 5-shot (75.0% to 90.9%) and 1-shot (70.4% to 81.0%) state-of-the-art results. Furthermore, our model generates large improvements (46.27% to 63.83%) in low resource slot labeling over a BERT baseline by incorporating label semantics. We also maintain competitive results on high resource tasks, performing within two points of the state-of-the-art on all tasks and setting a new state-of-the-art on the SNIPS dataset.

pdf bib
Dialogue Response Ranking Training with Large-Scale Human Feedback Data
Xiang Gao | Yizhe Zhang | Michel Galley | Chris Brockett | Bill Dolan

Existing open-domain dialog models are generally trained to minimize the perplexity of target human responses. However, some human replies are more engaging than others, spawning more followup interactions. Current conversational models are increasingly capable of producing turns that are context-relevant, but in order to produce compelling agents, these models need to be able to predict and optimize for turns that are genuinely engaging. We leverage social media feedback data (number of replies and upvotes) to build a large-scale training dataset for feedback prediction. To alleviate possible distortion between the feedback and engagingness, we convert the ranking problem to a comparison of response pairs which involve few confounding factors. We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data and the resulting ranker outperformed several baselines. Particularly, our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback. We finally combine the feedback prediction models and a human-like scoring model to rank the machine-generated dialog responses. Crowd-sourced human evaluation shows that our ranking method correlates better with real human preferences than baseline models.

pdf bib
Semantic Evaluation for Text-to-SQL with Distilled Test Suites
Ruiqi Zhong | Tao Yu | Dan Klein

We propose test suite accuracy to approximate semantic accuracy for Text-to-SQL models. Our method distills a small test suite of databases that achieves high code coverage for the gold query from a large number of randomly generated databases. At evaluation time, it computes the denotation accuracy of the predicted queries on the distilled test suite, hence calculating a tight upper-bound for semantic accuracy efficiently. We use our proposed method to evaluate 21 models submitted to the Spider leader board and manually verify that our method is always correct on 100 examples. In contrast, the current Spider metric leads to a 2.5% false negative rate on average and 8.1% in the worst case, indicating that test suite accuracy is needed. Our implementation, along with distilled test suites for eleven Text-to-SQL datasets, is publicly available.

pdf bib
Cross-Thought for Sentence Encoder Pre-training
Shuohang Wang | Yuwei Fang | Siqi Sun | Zhe Gan | Yu Cheng | Jingjing Liu | Jing Jiang

In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering. Instead of using the original signals of full sentences, we train a Transformer-based sequence encoder over a large set of short sequences, which allows the model to automatically select the most useful information for predicting masked words. Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders trained with continuous sentence signals as well as traditional masked language modeling baselines. Our proposed approach also achieves new state of the art on HotpotQA (full-wiki setting) by improving intermediate information retrieval performance.

pdf bib
AutoQA: From Databases To QA Semantic Parsers With Only Synthetic Training Data
Silei Xu | Sina Semnani | Giovanni Campagna | Monica Lam

We propose AutoQA, a methodology and toolkit to generate semantic parsers that answer questions on databases, with no manual effort. Given a database schema and its data, AutoQA automatically generates a large set of high-quality questions for training that covers different database operations. It uses automatic paraphrasing combined with template-based parsing to find alternative expressions of an attribute in different parts of speech. It also uses a novel filtered auto-paraphraser to generate correct paraphrases of entire sentences. We apply AutoQA to the Schema2QA dataset and obtain an average logical form accuracy of 62.9% when tested on natural questions, which is only 6.4% lower than a model trained with expert natural language annotations and paraphrase data collected from crowdworkers. To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset. AutoQA achieves 69.8% answer accuracy, 16.4% higher than the state-of-the-art zero-shot models and only 5.2% lower than the same model trained with human data.

pdf bib
A Spectral Method for Unsupervised Multi-Document Summarization
Kexiang Wang | Baobao Chang | Zhifang Sui

Multi-document summarization (MDS) aims at producing a good-quality summary for several related documents. In this paper, we propose a spectral-based hypothesis, which states that the goodness of summary candidate is closely linked to its so-called spectral impact. Here spectral impact considers the perturbation to the dominant eigenvalue of affinity matrix when dropping the summary candidate from the document cluster. The hypothesis is validated by three theoretical perspectives: semantic scaling, propagation dynamics and matrix perturbation. According to the hypothesis, we formulate the MDS task as the combinatorial optimization of spectral impact and propose an accelerated greedy solution based on a surrogate of spectral impact. The evaluation results on various datasets demonstrate: (1) The performance of the summary candidate is positively correlated with its spectral impact, which accords with our hypothesis; (2) Our spectral-based method has a competitive result as compared to state-of-the-art MDS systems.

pdf bib
What Have We Achieved on Text Summarization?
Dandan Huang | Leyang Cui | Sen Yang | Guangsheng Bao | Kun Wang | Jun Xie | Yue Zhang

Deep learning has led to significant improvement in text summarization with various methods investigated and improved ROUGE scores reported over the years. However, gaps still exist between summaries produced by automatic summarizers and human professionals. Aiming to gain more understanding of summarization systems with respect to their strengths and limits on a fine-grained syntactic and semantic level, we consult the Multidimensional Quality Metric (MQM) and quantify 8 major sources of errors on 10 representative summarization models manually. Primarily, we find that 1) under similar settings, extractive summarizers are in general better than their abstractive counterparts thanks to strength in faithfulness and factual-consistency; 2) milestone techniques such as copy, coverage and hybrid extractive/abstractive methods do bring specific improvements but also demonstrate limitations; 3) pre-training techniques, and in particular sequence-to-sequence pre-training, are highly effective for improving text summarization, with BART giving the best results.

pdf bib
Q-learning with Language Model for Edit-based Unsupervised Summarization
Ryosuke Kohita | Akifumi Wachi | Yang Zhao | Ryuki Tachibana

Unsupervised methods are promising for abstractive textsummarization in that the parallel corpora is not required. However, their performance is still far from being satisfied, therefore research on promising solutions is on-going. In this paper, we propose a new approach based on Q-learning with an edit-based summarization. The method combines two key modules to form an Editorial Agent and Language Model converter (EALM). The agent predicts edit actions (e.t., delete, keep, and replace), and then the LM converter deterministically generates a summary on the basis of the action signals. Q-learning is leveraged to train the agent to produce proper edit actions. Experimental results show that EALM delivered competitive performance compared with the previous encoder-decoder-based methods, even with truly zero paired data (i.e., no validation set). Defining the task as Q-learning enables us not only to develop a competitive method but also to make the latest techniques in reinforcement learning available for unsupervised summarization. We also conduct qualitative analysis, providing insights into future study on unsupervised summarizers.

pdf bib
Friendly Topic Assistant for Transformer Based Abstractive Summarization
Zhengjue Wang | Zhibin Duan | Hao Zhang | Chaojie Wang | Long Tian | Bo Chen | Mingyuan Zhou

Abstractive document summarization is a comprehensive task including document understanding and summary generation, in which area Transformer-based models have achieved the state-of-the-art performance. Compared with Transformers, topic models are better at learning explicit document semantics, and hence could be integrated into Transformers to further boost their performance. To this end, we rearrange and explore the semantics learned by a topic model, and then propose a topic assistant (TA) including three modules. TA is compatible with various Transformer-based models and user-friendly since i) TA is a plug-and-play model that does not break any structure of the original Transformer network, making users easily fine-tune Transformer+TA based on a well pre-trained model; ii) TA only introduces a small number of extra parameters. Experimental results on three datasets demonstrate that TA is able to improve the performance of several Transformer-based models.

pdf bib
Contrastive Distillation on Intermediate Representations for Language Model Compression
Siqi Sun | Zhe Gan | Yuwei Fang | Yu Cheng | Shuohang Wang | Jingjing Liu

Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.

pdf bib
TernaryBERT: Distillation-aware Ultra-low Bit BERT
Wei Zhang | Lu Hou | Yichun Yin | Lifeng Shang | Xiao Chen | Xin Jiang | Qun Liu

Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks. However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.

pdf bib
Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks
Trapit Bansal | Rishikesh Jha | Tsendsuren Munkhdalai | Andrew McCallum

Self-supervised pre-training of transformer models has revolutionized NLP applications. Such pre-training with language modeling objectives provides a useful initial point for parameters that generalize well to new tasks with fine-tuning. However, fine-tuning is still data inefficient — when there are few labeled examples, accuracy can be low. Data efficiency can be improved by optimizing pre-training directly for future fine-tuning with few examples; this can be treated as a meta-learning problem. However, standard meta-learning techniques require many training tasks in order to generalize; unfortunately, finding a diverse set of such supervised tasks is usually difficult. This paper proposes a self-supervised approach to generate a large, rich, meta-learning task distribution from unlabeled text. This is achieved using a cloze-style objective, but creating separate multi-class classification tasks by gathering tokens-to-be blanked from among only a handful of vocabulary terms. This yields as many unique meta-training tasks as the number of subsets of vocabulary terms. We meta-train a transformer model on this distribution of tasks using a recent meta-learning framework. On 17 NLP tasks, we show that this meta-training leads to better few-shot generalization than language-model pre-training followed by finetuning. Furthermore, we show how the self-supervised tasks can be combined with supervised tasks for meta-learning, providing substantial accuracy gains over previous supervised meta-learning.

pdf bib
Efficient Meta Lifelong-Learning with Limited Memory
Zirui Wang | Sanket Vaibhav Mehta | Barnabas Poczos | Jaime Carbonell

Current natural language processing models work well on a single task, yet they often fail to continuously learn new tasks without forgetting previous ones as they are re-trained throughout their lifetime, a challenge known as lifelong learning. State-of-the-art lifelong language learning methods store past examples in episodic memory and replay them at both training and inference time. However, as we show later in our experiments, there are three significant impediments: (1) needing unrealistically large memory module to achieve good performance, (2) suffering from negative transfer, (3) requiring multiple local adaptation steps for each test example that significantly slows down the inference speed. In this paper, we identify three common principles of lifelong learning methods and propose an efficient meta-lifelong framework that combines them in a synergistic fashion. To achieve sample efficiency, our method trains the model in a manner that it learns a better initialization for local adaptation. Extensive experiments on text classification and question answering benchmarks demonstrate the effectiveness of our framework by achieving state-of-the-art performance using merely 1% memory size and narrowing the gap with multi-task learning. We further show that our method alleviates both catastrophic forgetting and negative transfer at the same time.

pdf bib
Don’t Use English Dev: On the Zero-Shot Cross-Lingual Evaluation of Contextual Embeddings
Phillip Keung | Yichao Lu | Julian Salazar | Vikas Bhardwaj

Multilingual contextual embeddings have demonstrated state-of-the-art performance in zero-shot cross-lingual transfer learning, where multilingual BERT is fine-tuned on one source language and evaluated on a different target language. However, published results for mBERT zero-shot accuracy vary as much as 17 points on the MLDoc classification task across four papers. We show that the standard practice of using English dev accuracy for model selection in the zero-shot setting makes it difficult to obtain reproducible results on the MLDoc and XNLI tasks. English dev accuracy is often uncorrelated (or even anti-correlated) with target language accuracy, and zero-shot performance varies greatly at different points in the same fine-tuning run and between different fine-tuning runs. These reproducibility issues are also present for other tasks with different pre-trained embeddings (e.g., MLQA with XLM-R). We recommend providing oracle scores alongside zero-shot results: still fine-tune using English data, but choose a checkpoint with the target dev set. Reporting this upper bound makes results more consistent by avoiding arbitrarily bad checkpoints.

pdf bib
A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT
Masaaki Nagata | Katsuki Chousa | Masaaki Nishino

We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. Since this step is equivalent to a SQuAD v2.0 style question answering task, we solve it using the multilingual BERT, which is fine-tuned on manually created gold word alignment data. It is nontrivial to obtain accurate alignment from a set of independently predicted spans. We greatly improved the word alignment accuracy by adding to the question the source token’s context and symmetrizing two directional predictions. In experiments using five word alignment datasets from among Chinese, Japanese, German, Romanian, French, and English, we show that our proposed method significantly outperformed previous supervised and unsupervised word alignment methods without any bitexts for pretraining. For example, we achieved 86.7 F1 score for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised method.

pdf bib
Accurate Word Alignment Induction from Neural Machine Translation
Yun Chen | Yang Liu | Guanhua Chen | Xin Jiang | Qun Liu

Despite its original goal to jointly learn to align and translate, prior researches suggest that Transformer captures poor word alignments through its attention mechanism. In this paper, we show that attention weights do capture accurate word alignments and propose two novel word alignment induction methods Shift-Att and Shift-AET. The main idea is to induce alignments at the step when the to-be-aligned target token is the decoder input rather than the decoder output as in previous work. Shift-Att is an interpretation method that induces alignments from the attention weights of Transformer and does not require parameter update or architecture change. Shift-AET extracts alignments from an additional alignment module which is tightly integrated into Transformer and trained in isolation with supervision from symmetrized Shift-Att alignments. Experiments on three publicly available datasets demonstrate that both methods perform better than their corresponding neural baselines and Shift-AET significantly outperforms GIZA++ by 1.4-4.8 AER points.

pdf bib
ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization
Shiyue Zhang | Benjamin Frey | Mohit Bansal

Cherokee is a highly endangered Native American language spoken by the Cherokee people. The Cherokee culture is deeply embedded in its language. However, there are approximately only 2,000 fluent first language Cherokee speakers remaining in the world and the number is declining every year. To help save this endangered language, we introduce ChrEn, a Cherokee-English parallel dataset, to facilitate machine translation research between Cherokee and English. Compared to some popular machine translation language pairs, ChrEn is extremely low-resource, only containing 14k sentence pairs in total. We split our parallel data in ways that facilitate both in-domain and out-of-domain evaluation. We also collect 5k Cherokee monolingual data to enable semi-supervised learning. Besides these datasets, we propose several Cherokee-English and English-Cherokee machine translation systems. We compare SMT (phrase-based) versus NMT (RNN-based and Transformer-based) systems; supervised versus semi-supervised (via language model, back-translation, and BERT/Multilingual-BERT) methods; as well as transfer learning versus multilingual joint training with 4 other languages. Our best results are 15.8/12.7 BLEU for in-domain and 6.5/5.0 BLEU for out-of-domain Chr-En/EnChr translations, respectively; and we hope that our dataset and systems will encourage future work by the community for Cherokee language revitalization.

pdf bib
Unsupervised Discovery of Implicit Gender Bias
Anjalie Field | Yulia Tsvetkov

Despite their prevalence in society, social biases are difficult to identify, primarily because human judgements in this domain can be unreliable. We take an unsupervised approach to identifying gender bias against women at a comment level and present a model that can surface text likely to contain bias. Our main challenge is forcing the model to focus on signs of implicit bias, rather than other artifacts in the data. Thus, our methodology involves reducing the influence of confounds through propensity matching and adversarial learning. Our analysis shows how biased comments directed towards female politicians contain mixed criticisms, while comments directed towards other female public figures focus on appearance and sexualization. Ultimately, our work offers a way to capture subtle biases in various domains without relying on subjective human judgements.

pdf bib
Condolence and Empathy in Online Communities
Naitian Zhou | David Jurgens

Offering condolence is a natural reaction to hearing someone’s distress. Individuals frequently express distress in social media, where some communities can provide support. However, not all condolence is equal—trite responses offer little actual support despite their good intentions. Here, we develop computational tools to create a massive dataset of 11.4M expressions of distress and 2.8M corresponding offerings of condolence in order to examine the dynamics of condolence online. Our study reveals widespread disparity in what types of distress receive supportive condolence rather than just engagement. Building on studies from social psychology, we analyze the language of condolence and develop a new dataset for quantifying the empathy in a condolence using appraisal theory. Finally, we demonstrate that the features of condolence individuals find most helpful online differ substantially in their features from those seen in interpersonal settings.

pdf bib
An Embedding Model for Estimating Legislative Preferences from the Frequency and Sentiment of Tweets
Gregory Spell | Brian Guay | Sunshine Hillygus | Lawrence Carin

Legislator preferences are typically represented as measures of general ideology estimated from roll call votes on legislation, potentially masking important nuances in legislators’ political attitudes. In this paper we introduce a method of measuring more specific legislator attitudes using an alternative expression of preferences: tweeting. Specifically, we present an embedding-based model for predicting the frequency and sentiment of legislator tweets. To illustrate our method, we model legislators’ attitudes towards President Donald Trump as vector embeddings that interact with embeddings for Trump himself constructed using a neural network from the text of his daily tweets. We demonstrate the predictive performance of our model on tweets authored by members of the U.S. House and Senate related to the president from November 2016 to February 2018. We further assess the quality of our learned representations for legislators by comparing to traditional measures of legislator preferences.

pdf bib
Measuring Information Propagation in Literary Social Networks
Matthew Sims | David Bamman

We present the task of modeling information propagation in literature, in which we seek to identify pieces of information passing from character A to character B to character C, only given a description of their activity in text. We describe a new pipeline for measuring information propagation in this domain and publish a new dataset for speaker attribution, enabling the evaluation of an important component of this pipeline on a wider range of literary texts than previously studied. Using this pipeline, we analyze the dynamics of information propagation in over 5,000 works of fiction, finding that information flows through characters that fill structural holes connecting different communities, and that characters who are women are depicted as filling this role much more frequently than characters who are men.

pdf bib
Social Chemistry 101: Learning to Reason about Social and Moral Norms
Maxwell Forbes | Jena D. Hwang | Vered Shwartz | Maarten Sap | Yejin Choi

Social norms—the unspoken commonsense rules about acceptable social behavior—are crucial in understanding the underlying causes and intents of people’s actions in narratives. For example, underlying an action such as “wanting to call cops on my neighbor” are social norms that inform our conduct, such as “It is expected that you report crimes.” We present SOCIAL CHEMISTRY, a new conceptual formalism to study people’s everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce SOCIAL-CHEM-101, a large-scale corpus that catalogs 292k rules-of-thumb such as “It is rude to run a blender at 5am” as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people’s judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes SOCIAL-CHEM-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.

pdf bib
Event Extraction by Answering (Almost) Natural Questions
Xinya Du | Claire Cardie

The problem of event extraction requires detecting the event trigger and extracting its corresponding arguments. Existing work in event argument extraction typically relies heavily on entity recognition as a preprocessing/concurrent step, causing the well-known problem of error propagation. To avoid this issue, we introduce a new paradigm for event extraction by formulating it as a question answering (QA) task that extracts the event arguments in an end-to-end manner. Empirical results demonstrate that our framework outperforms prior methods substantially; in addition, it is capable of extracting event arguments for roles not seen at training time (i.e., in a zero-shot learning setting).

pdf bib
Connecting the Dots: Event Graph Schema Induction with Path Language Modeling
Manling Li | Qi Zeng | Ying Lin | Kyunghyun Cho | Heng Ji | Jonathan May | Nathanael Chambers | Clare Voss

Event schemas can guide our understanding and ability to make predictions with respect to what might happen next. We propose a new Event Graph Schema, where two event types are connected through multiple paths involving entities that fill important roles in a coherent story. We then introduce Path Language Model, an auto-regressive language model trained on event-event paths, and select salient and coherent paths to probabilistically construct these graph schemas. We design two evaluation metrics, instance coverage and instance coherence, to evaluate the quality of graph schema induction, by checking when coherent event instances are covered by the schema graph. Intrinsic evaluations show that our approach is highly effective at inducing salient and coherent schemas. Extrinsic evaluations show the induced schema repository provides significant improvement to downstream end-to-end Information Extraction over a state-of-the-art joint neural extraction model, when used as additional global features to unfold instance graphs.

pdf bib
Joint Constrained Learning for Event-Event Relation Extraction
Haoyu Wang | Muhao Chen | Hongming Zhang | Dan Roth

Understanding natural language involves recognizing how multiple event mentions structurally and temporally interact with each other. In this process, one can induce event complexes that organize multi-granular events with temporal order and membership relations interweaving among them. Due to the lack of jointly labeled data for these relational phenomena and the restriction on the structures they articulate, we propose a joint constrained learning framework for modeling event-event relations. Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations of events by converting these constraints into differentiable learning objectives. We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data, and outperforms SOTA methods on benchmarks for both temporal relation extraction and event hierarchy construction, replacing a commonly used but more expensive global inference process. We also present a promising case study to show the effectiveness of our approach to inducing event complexes on an external corpus.

pdf bib
Incremental Event Detection via Knowledge Consolidation Networks
Pengfei Cao | Yubo Chen | Jun Zhao | Taifeng Wang

Conventional approaches to event detection usually require a fixed set of pre-defined event types. Such a requirement is often challenged in real-world applications, as new events continually occur. Due to huge computation cost and storage budge, it is infeasible to store all previous data and re-train the model with all previous data and new data, every time new events arrive. We formulate such challenging scenarios as incremental event detection, which requires a model to learn new classes incrementally without performance degradation on previous classes. However, existing incremental learning methods cannot handle semantic ambiguity and training data imbalance problems between old and new classes in the task of incremental event detection. In this paper, we propose a Knowledge Consolidation Network (KCN) to address the above issues. Specifically, we devise two components, prototype enhanced retrospection and hierarchical distillation, to mitigate the adverse effects of semantic ambiguity and class imbalance, respectively. Experimental results demonstrate the effectiveness of the proposed method, outperforming the state-of-the-art model by 19% and 13.4% of whole F1 score on ACE benchmark and TAC KBP benchmark, respectively.

pdf bib
Semi-supervised New Event Type Induction and Event Detection
Lifu Huang | Heng Ji

Most previous event extraction studies assume a set of target event types and corresponding event annotations are given, which could be very expensive. In this paper, we work on a new task of semi-supervised event type induction, aiming to automatically discover a set of unseen types from a given corpus by leveraging annotations available for a few seen types. We design a Semi-Supervised Vector Quantized Variational Autoencoder framework to automatically learn a discrete latent type representation for each seen and unseen type and optimize them using seen type event annotations. A variational autoencoder is further introduced to enforce the reconstruction of each event mention conditioned on its latent type distribution. Experiments show that our approach can not only achieve state-of-the-art performance on supervised event detection but also discover high-quality new event types.

pdf bib
Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph
Haozhe Ji | Pei Ke | Shaohan Huang | Furu Wei | Xiaoyan Zhu | Minlie Huang

Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.

pdf bib
Reformulating Unsupervised Style Transfer as Paraphrase Generation
Kalpesh Krishna | John Wieting | Mohit Iyyer

Modern NLP defines the task of style transfer as modifying the style of a given sentence without appreciably changing its semantics, which implies that the outputs of style transfer systems should be paraphrases of their inputs. However, many existing systems purportedly designed for style transfer inherently warp the input’s meaning through attribute transfer, which changes semantic properties such as sentiment. In this paper, we reformulate unsupervised style transfer as a paraphrase generation problem, and present a simple methodology based on fine-tuning pretrained language models on automatically generated paraphrase data. Despite its simplicity, our method significantly outperforms state-of-the-art style transfer systems on both human and automatic evaluations. We also survey 23 style transfer papers and discover that existing automatic metrics can be easily gamed and propose fixed variants. Finally, we pivot to a more real-world style transfer setting by collecting a large dataset of 15M sentences in 11 diverse styles, which we use for an in-depth analysis of our system.

pdf bib
De-Biased Court’s View Generation with Causality
Yiquan Wu | Kun Kuang | Yating Zhang | Xiaozhong Liu | Changlong Sun | Jun Xiao | Yueting Zhuang | Luo Si | Fei Wu

Court’s view generation is a novel but essential task for legal AI, aiming at improving the interpretability of judgment prediction results and enabling automatic legal document generation. While prior text-to-text natural language generation (NLG) approaches can be used to address this problem, neglecting the confounding bias from the data generation mechanism can limit the model performance, and the bias may pollute the learning outcomes. In this paper, we propose a novel Attentional and Counterfactual based Natural Language Generation (AC-NLG) method, consisting of an attentional encoder and a pair of innovative counterfactual decoders. The attentional encoder leverages the plaintiff’s claim and fact description as input to learn a claim-aware encoder from which the claim-related information in fact description can be emphasized. The counterfactual decoders are employed to eliminate the confounding bias in data and generate judgment-discriminative court’s views (both supportive and non-supportive views) by incorporating with a synergistic judgment predictive model. Comprehensive experiments show the effectiveness of our method under both quantitative and qualitative evaluation metrics.

pdf bib
PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation
Xinyu Hua | Lu Wang

Pre-trained Transformers have enabled impressive breakthroughs in generating long and fluent text, yet their outputs are often “rambling” without coherently arranged content. In this work, we present a novel content-controlled text generation framework, PAIR, with planning and iterative refinement, which is built upon a large model, BART. We first adapt the BERT model to automatically construct the content plans, consisting of keyphrase assignments and their corresponding sentence-level positions. The BART model is employed for generation without modifying its structure. We then propose a refinement algorithm to gradually enhance the generation quality within the sequence-to-sequence framework. Evaluation with automatic metrics shows that adding planning consistently improves the generation quality on three distinct domains, with an average of 20 BLEU points and 12 METEOR points improvements. In addition, human judges rate our system outputs to be more relevant and coherent than comparisons without planning.

pdf bib
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin | Vered Shwartz | Peter West | Chandra Bhagavatula | Jena D. Hwang | Ronan Le Bras | Antoine Bosselut | Yejin Choi

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

pdf bib
Where Are You? Localization from Embodied Dialog
Meera Hahn | Jacob Krantz | Dhruv Batra | Devi Parikh | James Rehg | Stefan Lee | Peter Anderson

We present WHERE ARE YOU? (WAY), a dataset of ~6k dialogs in which two humans – an Observer and a Locator – complete a cooperative localization task. The Observer is spawned at random in a 3D environment and can navigate from first-person views while answering questions from the Locator. The Locator must localize the Observer in a detailed top-down map by asking questions and giving instructions. Based on this dataset, we define three challenging tasks: Localization from Embodied Dialog or LED (localizing the Observer from dialog history), Embodied Visual Dialog (modeling the Observer), and Cooperative Localization (modeling both agents). In this paper, we focus on the LED task – providing a strong baseline model with detailed ablations characterizing both dataset biases and the importance of various modeling choices. Our best model achieves 32.7% success at identifying the Observer’s location within 3m in unseen buildings, vs. 70.4% for human Locators.

pdf bib
Learning to Represent Image and Text with Denotation Graph
Bowen Zhang | Hexiang Hu | Vihan Jain | Eugene Ie | Fei Sha

Learning to fuse vision and language information and representing them is an important research problem with many applications. Recent progresses have leveraged the ideas of pre-training (from language modeling) and attention layers in Transformers to learn representation from datasets containing images aligned with linguistic expressions that describe the images. In this paper, we propose learning representations from a set of implied, visually grounded expressions between image and text, automatically mined from those datasets. In particular, we use denotation graphs to represent how specific concepts (such as sentences describing images) can be linked to abstract and generic concepts (such as short phrases) that are also visually grounded. This type of generic-to-specific relations can be discovered using linguistic analysis tools. We propose methods to incorporate such relations into learning representation. We show that state-of-the-art multimodal learning models can be further improved by leveraging automatically harvested structural relations. The representations lead to stronger empirical results on downstream tasks of cross-modal image retrieval, referring expression, and compositional attribute-object recognition. Both our codes and the extracted denotation graphs on the Flickr30K and the COCO datasets are publically available on https://sha-lab.github.io/DG.

pdf bib
Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning
Zhiyuan Fang | Tejas Gokhale | Pratyay Banerjee | Chitta Baral | Yezhou Yang

Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent’s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating commonsense captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset “Video-to-Commonsense (V2C)” that contains ~9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions.

pdf bib
Does my multimodal model learn cross-modal interactions? It’s harder to tell than you might think!
Jack Hessel | Lillian Lee

Modeling expressive cross-modal interactions seems crucial in multimodal tasks, such as visual question answering. However, sometimes high-performing black-box algorithms turn out to be mostly exploiting unimodal signals in the data. We propose a new diagnostic tool, empirical multimodally-additive function projection (EMAP), for isolating whether or not cross-modal interactions improve performance for a given model on a given task. This function projection modifies model predictions so that cross-modal interactions are eliminated, isolating the additive, unimodal structure. For seven image+text classification tasks (on each of which we set new state-of-the-art benchmarks), we find that, in many cases, removing cross-modal interactions results in little to no performance degradation. Surprisingly, this holds even when expressive models, with capacity to consider interactions, otherwise outperform less expressive models; thus, performance improvements, even when present, often cannot be attributed to consideration of cross-modal feature interactions. We hence recommend that researchers in multimodal machine learning report the performance not only of unimodal baselines, but also the EMAP of their best-performing model.

pdf bib
MUTANT: A Training Paradigm for Out-of-Distribution Generalization in Visual Question Answering
Tejas Gokhale | Pratyay Banerjee | Chitta Baral | Yezhou Yang

While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present MUTANT, a training paradigm that exposes the model to perceptually similar, yet semantically distinct mutations of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, MUTANT does not rely on the knowledge about the nature of train and test answer distributions. MUTANT establishes a new state-of-the-art accuracy on VQA-CP with a 10.57% improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering.

pdf bib
Mitigating Gender Bias for Neural Dialogue Generation with Adversarial Learning
Haochen Liu | Wentao Wang | Yiqi Wang | Hui Liu | Zitao Liu | Jiliang Tang

Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect people’s gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality.

pdf bib
Will I Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness
Hyunwoo Kim | Byeongchang Kim | Gunhee Kim

We explore the task of improving persona consistency of dialogue agents. Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency. However, such additional labels and training can be demanding. Also, we find even the best-performing persona-based agents are insensitive to contradictory words. Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener. Our approach, based on the Rational Speech Acts framework (Frank and Goodman, 2012), can enforce dialogue agents to refrain from uttering contradiction. We further extend the framework by learning the distractor selection, which has been usually done manually or randomly. Results on Dialogue NLI (Welleck et al., 2019) and PersonaChat (Zhang et al., 2018) dataset show that our approach reduces contradiction and improves consistency of existing dialogue models. Moreover, we show that it can be generalized to improve context-consistency beyond persona in dialogues.

pdf bib
TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue
Chien-Sheng Wu | Steven C.H. Hoi | Richard Socher | Caiming Xiong

The underlying difference of linguistic patterns between general text and task-oriented dialogue makes existing pre-trained language models less useful in practice. In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling. To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling. We propose a contrastive objective function to simulate the response selection task. Our pre-trained task-oriented dialogue BERT (TOD-BERT) outperforms strong baselines like BERT on four downstream task-oriented dialogue applications, including intention recognition, dialogue state tracking, dialogue act prediction, and response selection. We also show that TOD-BERT has a stronger few-shot ability that can mitigate the data scarcity problem for task-oriented dialogue.

pdf bib
RiSAWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset with Rich Semantic Annotations for Task-Oriented Dialogue Modeling
Jun Quan | Shian Zhang | Qian Cao | Zizhong Li | Deyi Xiong

In order to alleviate the shortage of multi-domain data and to capture discourse phenomena for task-oriented dialogue modeling, we propose RiSAWOZ, a large-scale multi-domain Chinese Wizard-of-Oz dataset with Rich Semantic Annotations. RiSAWOZ contains 11.2K human-to-human (H2H) multi-turn semantically annotated dialogues, with more than 150K utterances spanning over 12 domains, which is larger than all previous annotated H2H conversational datasets. Both single- and multi-domain dialogues are constructed, accounting for 65% and 35%, respectively. Each dialogue is labeled with comprehensive dialogue annotations, including dialogue goal in the form of natural language description, domain, dialogue states and acts at both the user and system side. In addition to traditional dialogue annotations, we especially provide linguistic annotations on discourse phenomena, e.g., ellipsis and coreference, in dialogues, which are useful for dialogue coreference and ellipsis resolution tasks. Apart from the fully annotated dataset, we also present a detailed description of the data collection procedure, statistics and analysis of the dataset. A series of benchmark models and results are reported, including natural language understanding (intent detection & slot filling), dialogue state tracking and dialogue context-to-text generation, as well as coreference and ellipsis resolution, which facilitate the baseline comparison for future research on this corpus.

pdf bib
Filtering Noisy Dialogue Corpora by Connectivity and Content Relatedness
Reina Akama | Sho Yokoi | Jun Suzuki | Kentaro Inui

Large-scale dialogue datasets have recently become available for training neural dialogue agents. However, these datasets have been reported to contain a non-negligible number of unacceptable utterance pairs. In this paper, we propose a method for scoring the quality of utterance pairs in terms of their connectivity and relatedness. The proposed scoring method is designed based on findings widely shared in the dialogue and linguistics research communities. We demonstrate that it has a relatively good correlation with the human judgment of dialogue quality. Furthermore, the method is applied to filter out potentially unacceptable utterance pairs from a large-scale noisy dialogue corpus to ensure its quality. We experimentally confirm that training data filtered by the proposed method improves the quality of neural dialogue agents in response generation.

pdf bib
Latent Geographical Factors for Analyzing the Evolution of Dialects in Contact
Yugo Murawaki

Analyzing the evolution of dialects remains a challenging problem because contact phenomena hinder the application of the standard tree model. Previous statistical approaches to this problem resort to admixture analysis, where each dialect is seen as a mixture of latent ancestral populations. However, such ancestral populations are hardly interpretable in the context of the tree model. In this paper, we propose a probabilistic generative model that represents latent factors as geographical distributions. We argue that the proposed model has higher affinity with the tree model because a tree can alternatively be represented as a set of geographical distributions. Experiments involving synthetic and real data suggest that the proposed method is both quantitatively and qualitatively superior to the admixture model.

pdf bib
Predicting Reference: What do Language Models Learn about Discourse Models?
Shiva Upadhye | Leon Bergen | Andrew Kehler

Whereas there is a growing literature that probes neural language models to assess the degree to which they have latently acquired grammatical knowledge, little if any research has investigated their acquisition of discourse modeling ability. We address this question by drawing on a rich psycholinguistic literature that has established how different contexts affect referential biases concerning who is likely to be referred to next. The results reveal that, for the most part, the prediction behavior of neural language models does not resemble that of human language users.

pdf bib
Word class flexibility: A deep contextualized approach
Bai Li | Guillaume Thomas | Yang Xu | Frank Rudzicz

Word class flexibility refers to the phenomenon whereby a single word form is used across different grammatical categories. Extensive work in linguistic typology has sought to characterize word class flexibility across languages, but quantifying this phenomenon accurately and at scale has been fraught with difficulties. We propose a principled methodology to explore regularity in word class flexibility. Our method builds on recent work in contextualized word embeddings to quantify semantic shift between word classes (e.g., noun-to-verb, verb-to-noun), and we apply this method to 37 languages. We find that contextualized embeddings not only capture human judgment of class variation within words in English, but also uncover shared tendencies in class flexibility across languages. Specifically, we find greater semantic variation when flexible lemmas are used in their dominant word class, supporting the view that word class flexibility is a directional process. Our work highlights the utility of deep contextualized models in linguistic typology.

pdf bib
Shallow-to-Deep Training for Neural Machine Translation
Bei Li | Ziyang Wang | Hui Liu | Yufan Jiang | Quan Du | Tong Xiao | Huizhen Wang | Jingbo Zhu

Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT’16 English-German and WMT’14 English-French translation tasks show that it is 1:4 faster than training from scratch, and achieves a BLEU score of 30:33 and 43:29 on two tasks. The code is publicly available at https://github.com/libeineu/SDT-Training.

pdf bib
Iterative Refinement in the Continuous Space for Non-Autoregressive Neural Machine Translation
Jason Lee | Raphael Shu | Kyunghyun Cho

We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et al., 2020), we train an inference network to approximate the gradient of the marginal log probability of the target sentence, using the latent variable instead. This allows us to use gradient-based optimization to find the target sentence at inference time that approximately maximizes its marginal probability. As each refinement step only involves computation in the latent space of low dimensionality (we use 8 in our experiments), we avoid computational overhead incurred by existing non-autoregressive inference procedures that often refine in token space. We compare our approach to a recently proposed EM-like inference procedure (Shu et al., 2020) that optimizes in a hybrid space, consisting of both discrete and continuous variables. We evaluate our approach on WMT’14 En→De, WMT’16 Ro→En and IWSLT’16 De→En, and observe two advantages over the EM-like inference: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2) it is more effective, resulting in higher marginal probabilities and BLEU scores with the same number of refinement steps. On WMT’14 En→De, for instance, our approach is able to decode 6.2 times faster than the autoregressive model with minimal degradation to translation quality (0.9 BLEU).

pdf bib
Why Skip If You Can Combine: A Simple Knowledge Distillation Technique for Intermediate Layers
Yimeng Wu | Peyman Passban | Mehdi Rezagholizadeh | Qun Liu

With the growth of computing power neural machine translation (NMT) models also grow accordingly and become better. However, they also become harder to deploy on edge devices due to memory constraints. To cope with this problem, a common practice is to distill knowledge from a large and accurately-trained teacher network (T) into a compact student network (S). Although knowledge distillation (KD) is useful in most cases, our study shows that existing KD techniques might not be suitable enough for deep NMT engines, so we propose a novel alternative. In our model, besides matching T and S predictions we have a combinatorial mechanism to inject layer-level supervision from T to S. In this paper, we target low-resource settings and evaluate our translation engines for Portuguese→English, Turkish→English, and English→German directions. Students trained using our technique have 50% fewer parameters and can still deliver comparable results to those of 12-layer teachers.

pdf bib
Multi-task Learning for Multilingual Neural Machine Translation
Yiren Wang | ChengXiang Zhai | Hany Hassan

While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.

pdf bib
Token-level Adaptive Training for Neural Machine Translation
Shuhao Gu | Jinchao Zhang | Fandong Meng | Yang Feng | Wanying Xie | Jie Zhou | Dong Yu

There exists a token imbalance phenomenon in natural language as different tokens appear with different frequencies, which leads to different learning difficulties for tokens in Neural Machine Translation (NMT). The vanilla NMT model usually adopts trivial equal-weighted objectives for target tokens with different frequencies and tends to generate more high-frequency tokens and less low-frequency tokens compared with the golden token distribution. However, low-frequency tokens may carry critical semantic information that will affect the translation quality once they are neglected. In this paper, we explored target token-level adaptive objectives based on token frequencies to assign appropriate weights for each target token during training. We aimed that those meaningful but relatively low-frequency words could be assigned with larger weights in objectives to encourage the model to pay more attention to these tokens. Our method yields consistent improvements in translation quality on ZH-EN, EN-RO, and EN-DE translation tasks, especially on sentences that contain more low-frequency tokens where we can get 1.68, 1.02, and 0.52 BLEU increases compared with baseline, respectively. Further analyses show that our method can also improve the lexical diversity of translation.

pdf bib
Multi-Unit Transformers for Neural Machine Translation
Jianhao Yan | Fandong Meng | Jie Zhou

Transformer models achieve remarkable success in Neural Machine Translation. Many efforts have been devoted to deepening the Transformer by stacking several units (i.e., a combination of Multihead Attentions and FFN) in a cascade, while the investigation over multiple parallel units draws little attention. In this paper, we propose the Multi-Unit Transformer (MUTE) , which aim to promote the expressiveness of the Transformer by introducing diverse and complementary units. Specifically, we use several parallel units and show that modeling with multiple units improves model performance and introduces diversity. Further, to better leverage the advantage of the multi-unit setting, we design biased module and sequential dependency that guide and encourage complementariness among different units. Experimental results on three machine translation tasks, the NIST Chinese-to-English, WMT’14 English-to-German and WMT’18 Chinese-to-English, show that the MUTE models significantly outperform the Transformer-Base, by up to +1.52, +1.90 and +1.10 BLEU points, with only a mild drop in inference speed (about 3.1%). In addition, our methods also surpass the Transformer-Big model, with only 54% of its parameters. These results demonstrate the effectiveness of the MUTE, as well as its efficiency in both the inference process and parameter usage.

pdf bib
On the Sparsity of Neural Machine Translation Models
Yong Wang | Longyue Wang | Victor Li | Zhaopeng Tu

Modern neural machine translation (NMT) models employ a large number of parameters, which leads to serious over-parameterization and typically causes the underutilization of computational resources. In response to this problem, we empirically investigate whether the redundant parameters can be reused to achieve better performance. Experiments and analyses are systematically conducted on different datasets and NMT architectures. We show that: 1) the pruned parameters can be rejuvenated to improve the baseline model by up to +0.8 BLEU points; 2) the rejuvenated parameters are reallocated to enhance the ability of modeling low-level lexical information.

pdf bib
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
Xiang Kong | Zhisong Zhang | Eduard Hovy

In this work, we introduce a novel local autoregressive translation (LAT) mechanism into non-autoregressive translation (NAT) models so as to capture local dependencies among target outputs. Specifically, for each target decoding position, instead of only one token, we predict a short sequence of tokens in an autoregressive way. We further design an efficient merging algorithm to align and merge the output pieces into one final output sequence. We integrate LAT into the conditional masked language model (CMLM) (Ghazvininejad et al.,2019) and similarly adopt iterative decoding. Empirical results on five translation tasks show that compared with CMLM, our method achieves comparable or better performance with fewer decoding iterations, bringing a 2.5x speedup. Further analysis indicates that our method reduces repeated translations and performs better at longer sentences. Our code will be released to the public.

pdf bib
Self-Paced Learning for Neural Machine Translation
Yu Wan | Baosong Yang | Derek F. Wong | Yikai Zhou | Lidia S. Chao | Haibo Zhang | Boxing Chen

Recent studies have proven that the training of neural machine translation (NMT) can be facilitated by mimicking the learning process of humans. Nevertheless, achievements of such kind of curriculum learning rely on the quality of artificial schedule drawn up with the handcrafted features, e.g. sentence length or word rarity. We ameliorate this procedure with a more flexible manner by proposing self-paced learning, where NMT model is allowed to 1) automatically quantify the learning confidence over training examples; and 2) flexibly govern its learning via regulating the loss in each iteration step. Experimental results over multiple translation tasks demonstrate that the proposed model yields better performance than strong baselines and those models trained with human-designed curricula on both translation quality and convergence speed.

pdf bib
Long-Short Term Masking Transformer: A Simple but Effective Baseline for Document-level Neural Machine Translation
Pei Zhang | Boxing Chen | Niyu Ge | Kai Fan

Many document-level neural machine translation (NMT) systems have explored the utility of context-aware architecture, usually requiring an increasing number of parameters and computational complexity. However, few attention is paid to the baseline model. In this paper, we research extensively the pros and cons of the standard transformer in document-level translation, and find that the auto-regressive property can simultaneously bring both the advantage of the consistency and the disadvantage of error accumulation. Therefore, we propose a surprisingly simple long-short term masking self-attention on top of the standard transformer to both effectively capture the long-range dependence and reduce the propagation of errors. We examine our approach on the two publicly available document-level datasets. We can achieve a strong result in BLEU and capture discourse phenomena.

pdf bib
Generating Diverse Translation from Model Distribution with Dropout
Xuanfu Wu | Yang Feng | Chenze Shao

Despite the improvement of translation quality, neural machine translation (NMT) often suffers from the lack of diversity in its generation. In this paper, we propose to generate diverse translations by deriving a large number of possible models with Bayesian modelling and sampling models from them for inference. The possible models are obtained by applying concrete dropout to the NMT model and each of them has specific confidence for its prediction, which corresponds to a posterior model distribution under specific training data in the principle of Bayesian modeling. With variational inference, the posterior model distribution can be approximated with a variational distribution, from which the final models for inference are sampled. We conducted experiments on Chinese-English and English-German translation tasks and the results shows that our method makes a better trade-off between diversity and accuracy.

pdf bib
Non-Autoregressive Machine Translation with Latent Alignments
Chitwan Saharia | William Chan | Saurabh Saxena | Mohammad Norouzi

This paper presents two strong methods, CTC and Imputer, for non-autoregressive machine translation that model latent alignments with dynamic programming. We revisit CTC for machine translation and demonstrate that a simple CTC model can achieve state-of-the-art for single-step non-autoregressive machine translation, contrary to what prior work indicates. In addition, we adapt the Imputer model for non-autoregressive machine translation and demonstrate that Imputer with just 4 generation steps can match the performance of an autoregressive Transformer baseline. Our latent alignment models are simpler than many existing non-autoregressive translation baselines; for example, we do not require target length prediction or re-scoring with an autoregressive model. On the competitive WMT’14 EnDe task, our CTC model achieves 25.7 BLEU with a single generation step, while Imputer achieves 27.5 BLEU with 2 generation steps, and 28.0 BLEU with 4 generation steps. This compares favourably to the autoregressive Transformer baseline at 27.8 BLEU.

pdf bib
Look at the First Sentence: Position Bias in Question Answering
Miyoung Ko | Jinhyuk Lee | Hyunjae Kim | Gangwoo Kim | Jaewoo Kang

Many extractive question answering models are trained to predict start and end positions of answers. The choice of predicting answers as positions is mainly due to its simplicity and effectiveness. In this study, we hypothesize that when the distribution of the answer positions is highly skewed in the training set (e.g., answers lie only in the k-th sentence of each passage), QA models predicting answers as positions can learn spurious positional cues and fail to give answers in different positions. We first illustrate this position bias in popular extractive QA models such as BiDAF and BERT and thoroughly examine how position bias propagates through each layer of BERT. To safely deliver position information without position bias, we train models with various de-biasing methods including entropy regularization and bias ensembling. Among them, we found that using the prior distribution of answer positions as a bias model is very effective at reducing position bias, recovering the performance of BERT from 37.48% to 81.64% when trained on a biased SQuAD dataset.

pdf bib
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Michael Boratko | Xiang Li | Tim O’Gorman | Rajarshi Das | Dan Le | Andrew McCallum

Given questions regarding some prototypical situation — such as Name something that people usually do before they leave the house for work? — a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international trivia game show – Family Feud. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.

pdf bib
IIRC: A Dataset of Incomplete Information Reading Comprehension Questions
James Ferguson | Matt Gardner | Hannaneh Hajishirzi | Tushar Khot | Pradeep Dasigi

Humans often have to read multiple documents to address their information needs. However, most existing reading comprehension (RC) tasks only focus on questions for which the contexts provide all the information required to answer them, thus not evaluating a system’s performance at identifying a potential lack of sufficient information and locating sources for that information. To fill this gap, we present a dataset, IIRC, with more than 13K questions over paragraphs from English Wikipedia that provide only partial information to answer them, with the missing information occurring in one or more linked documents. The questions were written by crowd workers who did not have access to any of the linked documents, leading to questions that have little lexical overlap with the contexts where the answers appear. This process also gave many questions without answers, and those that require discrete reasoning, increasing the difficulty of the task. We follow recent modeling work on various reading comprehension datasets to construct a baseline model for this dataset, finding that it achieves 31.1% F1 on this task, while estimated human performance is 88.4%. The dataset, code for the baseline system, and a leaderboard can be found at https://allennlp.org/iirc.

pdf bib
Unsupervised Adaptation of Question Answering Systems via Generative Self-training
Steven Rennie | Etienne Marcheret | Neil Mallinar | David Nahamoo | Vaibhava Goel

BERT-era question answering systems have recently achieved impressive performance on several question-answering (QA) tasks. These systems are based on representations that have been pre-trained on self-supervised tasks such as word masking and sentence entailment, using massive amounts of data. Nevertheless, additional pre-training closer to the end-task, such as training on synthetic QA pairs, has been shown to improve performance. While recent work has considered augmenting labelled data and leveraging large unlabelled datasets to generate synthetic QA data, directly adapting to target data has received little attention. In this paper we investigate the iterative generation of synthetic QA pairs as a way to realize unsupervised self adaptation. Motivated by the success of the roundtrip consistency method for filtering generated QA pairs, we present iterative generalizations of the approach, which maximize an approximation of a lower bound on the probability of the adaptation data. By adapting on synthetic QA pairs generated on the target data, our method is able to improve QA systems significantly, using an order of magnitude less synthetic data and training computation than existing augmentation approaches.

pdf bib
TORQUE: A Reading Comprehension Dataset of Temporal Ordering Questions
Qiang Ning | Hao Wu | Rujun Han | Nanyun Peng | Matt Gardner | Dan Roth

A critical part of reading is being able to understand the temporal relationships between events described in a passage of text, even when those relationships are not explicitly stated. However, current machine reading comprehension benchmarks have practically no questions that test temporal phenomena, so systems trained on these benchmarks have no capacity to answer questions such as “what happened before/after [some event]?” We introduce TORQUE, a new English reading comprehension benchmark built on 3.2k news snippets with 21k human-generated questions querying temporal relationships. Results show that RoBERTa-large achieves an exact-match score of 51% on the test set of TORQUE, about 30% behind human performance.

pdf bib
ToTTo: A Controlled Table-To-Text Generation Dataset
Ankur Parikh | Xuezhi Wang | Sebastian Gehrmann | Manaal Faruqui | Bhuwan Dhingra | Diyi Yang | Dipanjan Das

We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.

pdf bib
ENT-DESC: Entity Description Generation by Exploring Knowledge Graph
Liying Cheng | Dekun Wu | Lidong Bing | Yan Zhang | Zhanming Jie | Wei Lu | Luo Si

Previous works on knowledge-to-text generation take as input a few RDF triples or key-value pairs conveying the knowledge of some entities to generate a natural language description. Existing datasets, such as WIKIBIO, WebNLG, and E2E, basically have a good alignment between an input triple/pair set and its output text. However, in practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge. In this paper, we introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text. Our dataset involves retrieving abundant knowledge of various types of main entities from a large knowledge graph (KG), which makes the current graph-to-sequence models severely suffer from the problems of information loss and parameter explosion while generating the descriptions. We address these challenges by proposing a multi-graph structure that is able to represent the original graph information more comprehensively. Furthermore, we also incorporate aggregation methods that learn to extract the rich graph information. Extensive experiments demonstrate the effectiveness of our model architecture.

pdf bib
Small but Mighty: New Benchmarks for Split and Rephrase
Li Zhang | Huaiyu Zhu | Siddhartha Brahma | Yunyao Li

Split and Rephrase is a text simplification task of rewriting a complex sentence into simpler ones. As a relatively new task, it is paramount to ensure the soundness of its evaluation benchmark and metric. We find that the widely used benchmark dataset universally contains easily exploitable syntactic cues caused by its automatic generation process. Taking advantage of such cues, we show that even a simple rule-based model can perform on par with the state-of-the-art model. To remedy such limitations, we collect and release two crowdsourced benchmark datasets. We not only make sure that they contain significantly more diverse syntax, but also carefully control for their quality according to a well-defined set of criteria. While no satisfactory automatic metric exists, we apply fine-grained manual evaluation based on these criteria using crowdsourcing, showing that our datasets better represent the task and are significantly more challenging for the models.

pdf bib
Online Back-Parsing for AMR-to-Text Generation
Xuefeng Bai | Linfeng Song | Yue Zhang

AMR-to-text generation aims to recover a text containing the same meaning as an input AMR graph. Current research develops increasingly powerful graph encoders to better represent AMR graphs, with decoders based on standard language modeling being used to generate outputs. We propose a decoder that back predicts projected AMR graphs on the target sentence during text generation. As the result, our outputs can better preserve the input meaning than standard decoders. Experiments on two AMR benchmarks show the superiority of our model over the previous state-of-the-art system based on graph Transformer.

pdf bib
Reading Between the Lines: Exploring Infilling in Visual Narratives
Khyathi Raghavi Chandu | Ruo-Ping Dong | Alan W Black

Generating long form narratives such as stories and procedures from multiple modalities has been a long standing dream for artificial intelligence. In this regard, there is often crucial subtext that is derived from the surrounding contexts. The general seq2seq training methods render the models shorthanded while attempting to bridge the gap between these neighbouring contexts. In this paper, we tackle this problem by using infilling techniques involving prediction of missing steps in a narrative while generating textual descriptions from a sequence of images. We also present a new large scale visual procedure telling (ViPT) dataset with a total of 46,200 procedures and around 340k pairwise images and textual descriptions that is rich in such contextual dependencies. Generating steps using infilling technique demonstrates the effectiveness in visual procedures with more coherent texts. We conclusively show a METEOR score of 27.51 on procedures which is higher than the state-of-the-art on visual storytelling. We also demonstrate the effects of interposing new text with missing images during inference. The code and the dataset will be publicly available at https://visual-narratives.github.io/Visual-Narratives/.

pdf bib
Acrostic Poem Generation
Rajat Agarwal | Katharina Kann

We propose a new task in the area of computational creativity: acrostic poem generation in English. Acrostic poems are poems that contain a hidden message; typically, the first letter of each line spells out a word or short phrase. We define the task as a generation task with multiple constraints: given an input word, 1) the initial letters of each line should spell out the provided word, 2) the poem’s semantics should also relate to it, and 3) the poem should conform to a rhyming scheme. We further provide a baseline model for the task, which consists of a conditional neural language model in combination with a neural rhyming model. Since no dedicated datasets for acrostic poem generation exist, we create training data for our task by first training a separate topic prediction model on a small set of topic-annotated poems and then predicting topics for additional poems. Our experiments show that the acrostic poems generated by our baseline are received well by humans and do not lose much quality due to the additional constraints. Last, we confirm that poems generated by our model are indeed closely related to the provided prompts, and that pretraining on Wikipedia can boost performance.

pdf bib
Local Additivity Based Data Augmentation for Semi-supervised NER
Jiaao Chen | Zhenghui Wang | Ran Tian | Zichao Yang | Diyi Yang

Named Entity Recognition (NER) is one of the first stages in deep language understanding yet current NER models heavily rely on human-annotated data. In this work, to alleviate the dependence on labeled data, we propose a Local Additivity based Data Augmentation (LADA) method for semi-supervised NER, in which we create virtual samples by interpolating sequences close to each other. Our approach has two variations: Intra-LADA and Inter-LADA, where Intra-LADA performs interpolations among tokens within one sentence, and Inter-LADA samples different sentences to interpolate. Through linear additions between sampled training data, LADA creates an infinite amount of labeled data and improves both entity and context learning. We further extend LADA to the semi-supervised setting by designing a novel consistency loss for unlabeled data. Experiments conducted on two NER benchmarks demonstrate the effectiveness of our methods over several strong baselines. We have publicly released our code at https://github.com/GT-SALT/LADA

pdf bib
Grounded Compositional Outputs for Adaptive Language Modeling
Nikolaos Pappas | Phoebe Mulcaire | Noah A. Smith

Language models have emerged as a central component across NLP, and a great deal of progress depends on the ability to cheaply adapt them (e.g., through finetuning) to new domains and tasks. A language model’s vocabulary—typically selected before training and permanently fixed later—affects its size and is part of what makes it resistant to such adaptation. Prior work has used compositional input embeddings based on surface forms to ameliorate this issue. In this work, we go one step beyond and propose a fully compositional output embedding layer for language models, which is further grounded in information from a structured lexicon (WordNet), namely semantically related words and free-text definitions. To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary. We evaluate the model on conventional language modeling as well as challenging cross-domain settings with an open vocabulary, finding that it matches or outperforms previous state-of-the-art output embedding methods and adaptation approaches. Our analysis attributes the improvements to sample efficiency: our model is more accurate for low-frequency words.

pdf bib
SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness
Nathan Ng | Kyunghyun Cho | Marzyeh Ghassemi

Models that perform well on a training domain often fail to generalize to out-of-domain (OOD) examples. Data augmentation is a common method used to prevent overfitting and improve OOD generalization. However, in natural language, it is difficult to generate new examples that stay on the underlying data manifold. We introduce SSMBA, a data augmentation method for generating synthetic training examples by using a pair of corruption and reconstruction functions to move randomly on a data manifold. We investigate the use of SSMBA in the natural language domain, leveraging the manifold assumption to reconstruct corrupted text with masked language models. In experiments on robustness benchmarks across 3 tasks and 9 datasets, SSMBA consistently outperforms existing data augmentation methods and baseline models on both in-domain and OOD data, achieving gains of 0.8% on OOD Amazon reviews, 1.8% accuracy on OOD MNLI, and 1.4 BLEU on in-domain IWSLT14 German-English.

pdf bib
SetConv: A New Approach for Learning from Imbalanced Data
Yang Gao | Yi-Fan Li | Yu Lin | Charu Aggarwal | Latifur Khan

For many real-world classification problems, e.g., sentiment classification, most existing machine learning methods are biased towards the majority class when the Imbalance Ratio (IR) is high. To address this problem, we propose a set convolution (SetConv) operation and an episodic training strategy to extract a single representative for each class, so that classifiers can later be trained on a balanced class distribution. We prove that our proposed algorithm is permutation-invariant despite the order of inputs, and experiments on multiple large-scale benchmark text datasets show the superiority of our proposed framework when compared to other SOTA methods.

pdf bib
Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering
Yanlin Feng | Xinyue Chen | Bill Yuchen Lin | Peifeng Wang | Jun Yan | Xiang Ren

Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the model’s prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) has with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies, with the code for experiments released.

pdf bib
Improving Bilingual Lexicon Induction for Low Frequency Words
Jiaji Huang | Xingyu Cai | Kenneth Church

This paper designs a Monolingual Lexicon Induction task and observes that two factors accompany the degraded accuracy of bilingual lexicon induction for rare words. First, a diminishing margin between similarities in low frequency regime, and secondly, exacerbated hubness at low frequency. Based on the observation, we further propose two methods to address these two factors, respectively. The larger issue is hubness. Addressing that improves induction accuracy significantly, especially for low-frequency words.

pdf bib
Learning VAE-LDA Models with Rounded Reparameterization Trick
Runzhi Tian | Yongyi Mao | Richong Zhang

The introduction of VAE provides an efficient framework for the learning of generative models, including generative topic models. However, when the topic model is a Latent Dirichlet Allocation (LDA) model, a central technique of VAE, the reparameterization trick, fails to be applicable. This is because no reparameterization form of Dirichlet distributions is known to date that allows the use of the reparameterization trick. In this work, we propose a new method, which we call Rounded Reparameterization Trick (RRT), to reparameterize Dirichlet distributions for the learning of VAE-LDA models. This method, when applied to a VAE-LDA model, is shown experimentally to outperform the existing neural topic models on several benchmark datasets and on a synthetic dataset.

pdf bib
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong | Haoming Jiang | Yuchen Zhuang | Jie Lyu | Tuo Zhao | Chao Zhang

Fine-tuned pre-trained language models can suffer from severe miscalibration for both in-distribution and out-of-distribution (OOD) data due to over-parameterization. To mitigate this issue, we propose a regularized fine-tuning method. Our method introduces two types of regularization for better calibration: (1) On-manifold regularization, which generates pseudo on-manifold samples through interpolation within the data manifold. Augmented training with these pseudo samples imposes a smoothness regularization to improve in-distribution calibration. (2) Off-manifold regularization, which encourages the model to output uniform distributions for pseudo off-manifold samples to address the over-confidence issue for OOD data. Our experiments demonstrate that the proposed method outperforms existing calibration methods for text classification in terms of expectation calibration error, misclassification detection, and OOD detection on six datasets. Our code can be found at https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning.

pdf bib
Scaling Hidden Markov Language Models
Justin Chiu | Alexander Rush

The hidden Markov model (HMM) is a fundamental tool for sequence modeling that cleanly separates the hidden state from the emission structure. However, this separation makes it difficult to fit HMMs to large datasets in modern NLP, and they have fallen out of use due to very poor performance compared to fully observed models. This work revisits the challenge of scaling HMMs to language modeling datasets, taking ideas from recent approaches to neural modeling. We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization. Experiments show that this approach leads to models that are much more accurate than previous HMMs and n-gram-based methods, making progress towards the performance of state-of-the-art NN models.

pdf bib
Coding Textual Inputs Boosts the Accuracy of Neural Networks
Abdul Rafae Khan | Jia Xu | Weiwei Sun

Natural Language Processing (NLP) tasks are usually performed word by word on textual inputs. We can use arbitrary symbols to represent the linguistic meaning of a word and use these symbols as inputs. As “alternatives” to a text representation, we introduce Soundex, MetaPhone, NYSIIS, logogram to NLP, and develop fixed-output-length coding and its extension using Huffman coding. Each of those codings combines different character/digital sequences and constructs a new vocabulary based on codewords. We find that the integration of those codewords with text provides more reliable inputs to Neural-Network-based NLP systems through redundancy than text-alone inputs. Experiments demonstrate that our approach outperforms the state-of-the-art models on the application of machine translation, language modeling, and part-of-speech tagging. The source code is available at https://github.com/abdulrafae/coding_nmt.

pdf bib
Learning from Task Descriptions
Orion Weller | Nicholas Lourie | Matt Gardner | Matthew E. Peters

Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this frame- work with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model’s ability to solve each task. Moreover, the dataset’s structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.

pdf bib
Hashtags, Emotions, and Comments: A Large-Scale Dataset to Understand Fine-Grained Social Emotions to Online Topics
Keyang Ding | Jing Li | Yuji Zhang

This paper studies social emotions to online discussion topics. While most prior work focus on emotions from writers, we investigate readers’ responses and explore the public feelings to an online topic. A large-scale dataset is collected from Chinese microblog Sina Weibo with over 13 thousand trending topics, emotion votes in 24 fine-grained types from massive participants, and user comments to allow context understanding. In experiments, we examine baseline performance to predict a topic’s possible social emotions in a multilabel classification setting. The results show that a seq2seq model with user comment modeling performs the best, even surpassing human prediction. More analyses shed light on the effects of emotion types, topic description lengths, contexts from user comments, and the limited capacity of the existing models.

pdf bib
Named Entity Recognition for Social Media Texts with Semantic Augmentation
Yuyang Nie | Yuanhe Tian | Xiang Wan | Yan Song | Bo Dai

Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets.

pdf bib
Coupled Hierarchical Transformer for Stance-Aware Rumor Verification in Social Media Conversations
Jianfei Yu | Jing Jiang | Ling Min Serena Khoo | Hai Leong Chieu | Rui Xia

The prevalent use of social media enables rapid spread of rumors on a massive scale, which leads to the emerging need of automatic rumor verification (RV). A number of previous studies focus on leveraging stance classification to enhance RV with multi-task learning (MTL) methods. However, most of these methods failed to employ pre-trained contextualized embeddings such as BERT, and did not exploit inter-task dependencies by using predicted stance labels to improve the RV task. Therefore, in this paper, to extend BERT to obtain thread representations, we first propose a Hierarchical Transformer, which divides each long thread into shorter subthreads, and employs BERT to separately represent each subthread, followed by a global Transformer layer to encode all the subthreads. We further propose a Coupled Transformer Module to capture the inter-task interactions and a Post-Level Attention layer to use the predicted stance labels for RV, respectively. Experiments on two benchmark datasets show the superiority of our Coupled Hierarchical Transformer model over existing MTL approaches.

pdf bib
Social Media Attributions in the Context of Water Crisis
Rupak Sarkar | Sayantan Mahinder | Hirak Sarkar | Ashiqur KhudaBukhsh

Attribution of natural disasters/collective misfortune is a widely-studied political science problem. However, such studies typically rely on surveys, or expert opinions, or external signals such as voting outcomes. In this paper, we explore the viability of using unstructured, noisy social media data to complement traditional surveys through automatically extracting attribution factors. We present a novel prediction task of attribution tie detection of identifying the factors (e.g., poor city planning, exploding population etc.) held responsible for the crisis in a social media document. We focus on the 2019 Chennai water crisis that rapidly escalated into a discussion topic with global importance following alarming water-crisis statistics. On a challenging data set constructed from YouTube comments (72,098 comments posted by 43,859 users on 623 videos relevant to the crisis), we present a neural baseline to identify attribution ties that achieves a reasonable performance (accuracy: 87.34% on attribution detection and 81.37% on attribution resolution). We release the first annotated data set of 2,500 comments in this important domain.

pdf bib
On the Reliability and Validity of Detecting Approval of Political Actors in Tweets
Indira Sen | Fabian Flöck | Claudia Wagner

Social media sites like Twitter possess the potential to complement surveys that measure political opinions and, more specifically, political actors’ approval. However, new challenges related to the reliability and validity of social-media-based estimates arise. Various sentiment analysis and stance detection methods have been developed and used in previous research to measure users’ political opinions based on their content on social media. In this work, we attempt to gauge the efficacy of untargeted sentiment, targeted sentiment, and stance detection methods in labeling various political actors’ approval by benchmarking them across several datasets. We also contrast the performance of these pretrained methods that can be used in an off-the-shelf (OTS) manner against a set of models trained on minimal custom data. We find that OTS methods have low generalizability on unseen and familiar targets, while low-resource custom models are more robust. Our work sheds light on the strengths and limitations of existing methods proposed for understanding politicians’ approval from tweets.

pdf bib
Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text
Dongfang Li | Baotian Hu | Qingcai Chen | Weihua Peng | Anqi Wang

Machine reading comprehension (MRC) has achieved significant progress on the open domain in recent years, mainly due to large-scale pre-trained language models. However, it performs much worse in specific domains such as the medical field due to the lack of extensive training data and professional structural knowledge neglect. As an effort, we first collect a large scale medical multi-choice question dataset (more than 21k instances) for the National Licensed Pharmacist Examination in China. It is a challenging medical examination with a passing rate of less than 14.2% in 2018. Then we propose a novel reading comprehension model KMQA, which can fully exploit the structural medical knowledge (i.e., medical knowledge graph) and the reference medical plain text (i.e., text snippets retrieved from reference books). The experimental results indicate that the KMQA outperforms existing competitive models with a large margin and passes the exam with 61.8% accuracy rate on the test set.

pdf bib
Generating Radiology Reports via Memory-driven Transformer
Zhihong Chen | Yan Song | Tsung-Hui Chang | Xiang Wan

Medical imaging is frequently used in clinical practice and trials for diagnosis and treatment. Writing imaging reports is time-consuming and can be error-prone for inexperienced radiologists. Therefore, automatically generating radiology reports is highly desired to lighten the workload of radiologists and accordingly promote clinical automation, which is an essential task to apply artificial intelligence to the medical domain. In this paper, we propose to generate radiology reports with memory-driven Transformer, where a relational memory is designed to record key information of the generation process and a memory-driven conditional layer normalization is applied to incorporating the memory into the decoder of Transformer. Experimental results on two prevailing radiology report datasets, IU X-Ray and MIMIC-CXR, show that our proposed approach outperforms previous models with respect to both language generation metrics and clinical evaluations. Particularly, this is the first work reporting the generation results on MIMIC-CXR to the best of our knowledge. Further analyses also demonstrate that our approach is able to generate long reports with necessary medical terms as well as meaningful image-text attention mappings.

pdf bib
Planning and Generating Natural and Diverse Disfluent Texts as Augmentation for Disfluency Detection
Jingfeng Yang | Diyi Yang | Zhaoran Ma

Existing approaches to disfluency detection heavily depend on human-annotated data. Numbers of data augmentation methods have been proposed to alleviate the dependence on labeled data. However, current augmentation approaches such as random insertion or repetition fail to resemble training corpus well and usually resulted in unnatural and limited types of disfluencies. In this work, we propose a simple Planner-Generator based disfluency generation model to generate natural and diverse disfluent texts as augmented data, where the Planner decides on where to insert disfluent segments and the Generator follows the prediction to generate corresponding disfluent segments. We further utilize this augmented data for pretraining and leverage it for the task of disfluency detection. Experiments demonstrated that our two-stage disfluency generation model outperforms existing baselines; those disfluent sentences generated significantly aided the task of disfluency detection and led to state-of-the-art performance on Switchboard corpus.

pdf bib
Predicting Clinical Trial Results by Implicit Evidence Integration
Qiao Jin | Chuanqi Tan | Mosha Chen | Xiaozhong Liu | Songfang Huang

Clinical trials provide essential guidance for practicing Evidence-Based Medicine, though often accompanying with unendurable costs and risks. To optimize the design of clinical trials, we introduce a novel Clinical Trial Result Prediction (CTRP) task. In the CTRP framework, a model takes a PICO-formatted clinical trial proposal with its background as input and predicts the result, i.e. how the Intervention group compares with the Comparison group in terms of the measured Outcome in the studied Population. While structured clinical evidence is prohibitively expensive for manual collection, we exploit large-scale unstructured sentences from medical literature that implicitly contain PICOs and results as evidence. Specifically, we pre-train a model to predict the disentangled results from such implicit evidence and fine-tune the model with limited data on the downstream datasets. Experiments on the benchmark Evidence Integration dataset show that the proposed model outperforms the baselines by large margins, e.g., with a 10.7% relative gain over BioBERT in macro-F1. Moreover, the performance improvement is also validated on another dataset composed of clinical trials related to COVID-19.

pdf bib
Explainable Clinical Decision Support from Text
Jinyue Feng | Chantal Shaib | Frank Rudzicz

Clinical prediction models often use structured variables and provide outcomes that are not readily interpretable by clinicians. Further, free-text medical notes may contain information not immediately available in structured variables. We propose a hierarchical CNN-transformer model with explicit attention as an interpretable, multi-task clinical language model, which achieves an AUROC of 0.75 and 0.78 on sepsis and mortality prediction, respectively. We also explore the relationships between learned features from structured and unstructured variables using projection-weighted canonical correlation analysis. Finally, we outline a protocol to evaluate model usability in a clinical decision support context. From domain-expert evaluations, our model generates informative rationales that have promising real-life applications.

pdf bib
A Knowledge-driven Generative Model for Multi-implication Chinese Medical Procedure Entity Normalization
Jinghui Yan | Yining Wang | Lu Xiang | Yu Zhou | Chengqing Zong

Medical entity normalization, which links medical mentions in the text to entities in knowledge bases, is an important research topic in medical natural language processing. In this paper, we focus on Chinese medical procedure entity normalization. However, nonstandard Chinese expressions and combined procedures present challenges in our problem. The existing strategies relying on the discriminative model are poorly to cope with normalizing combined procedure mentions. We propose a sequence generative framework to directly generate all the corresponding medical procedure entities. we adopt two strategies: category-based constraint decoding and category-based model refining to avoid unrealistic results. The method is capable of linking entities when a mention contains multiple procedure concepts and our comprehensive experiments demonstrate that the proposed model can achieve remarkable improvements over existing baselines, particularly significant in the case of multi-implication Chinese medical procedures.

pdf bib
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
Akshay Smit | Saahil Jain | Pranav Rajpurkar | Anuj Pareek | Andrew Ng | Matthew Lungren

The extraction of labels from radiology text reports enables large-scale training of medical imaging models. Existing approaches to report labeling typically rely either on sophisticated feature engineering based on medical domain knowledge or manual annotations by experts. In this work, we introduce a BERT-based approach to medical image report labeling that exploits both the scale of available rule-based systems and the quality of expert annotations. We demonstrate superior performance of a biomedically pretrained BERT model first trained on annotations of a rule-based labeler and then finetuned on a small set of expert annotations augmented with automated backtranslation. We find that our final model, CheXbert, is able to outperform the previous best rules-based labeler with statistical significance, setting a new SOTA for report labeling on one of the largest datasets of chest x-rays.

pdf bib
Benchmarking Meaning Representations in Neural Semantic Parsing
Jiaqi Guo | Qian Liu | Jian-Guang Lou | Zhenwen Li | Xueqing Liu | Tao Xie | Ting Liu

Meaning representation is an important component of semantic parsing. Although researchers have designed a lot of meaning representations, recent work focuses on only a few of them. Thus, the impact of meaning representation on semantic parsing is less understood. Furthermore, existing work’s performance is often not comprehensively evaluated due to the lack of readily-available execution engines. Upon identifying these gaps, we propose , a new unified benchmark on meaning representations, by integrating existing semantic parsing datasets, completing the missing logical forms, and implementing the missing execution engines. The resulting unified benchmark contains the complete enumeration of logical forms and execution engines over three datasets × four meaning representations. A thorough experimental study on Unimer reveals that neural semantic parsing approaches exhibit notably different performance when they are trained to generate different meaning representations. Also, program alias and grammar rules heavily impact the performance of different meaning representations. Our benchmark, execution engines and implementation can be found on: https://github.com/JasperGuo/Unimer.

pdf bib
Analogous Process Structure Induction for Sub-event Sequence Prediction
Hongming Zhang | Muhao Chen | Haoyu Wang | Yangqiu Song | Dan Roth

Computational and cognitive studies of event understanding suggest that identifying, comprehending, and predicting events depend on having structured representations of a sequence of events and on conceptualizing (abstracting) its components into (soft) event categories. Thus, knowledge about a known process such as “buying a car” can be used in the context of a new but analogous process such as “buying a house”. Nevertheless, most event understanding work in NLP is still at the ground level and does not consider abstraction. In this paper, we propose an Analogous Process Structure Induction (APSI) framework, which leverages analogies among processes and conceptualization of sub-event instances to predict the whole sub-event sequence of previously unseen open-domain processes. As our experiments and analysis indicate, APSI supports the generation of meaningful sub-event sequences for unseen processes and can help predict missing events.

pdf bib
SLM: Learning a Discourse Language Representation with Sentence Unshuffling
Haejun Lee | Drew A. Hudson | Kangwook Lee | Christopher D. Manning

We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation in a fully self-supervised manner. Recent pre-training methods in NLP focus on learning either bottom or top-level language representations: contextualized word representations derived from language model objectives at one extreme and a whole sequence representation learned by order classification of two given textual segments at the other. However, these models are not directly encouraged to capture representations of intermediate-size structures that exist in natural languages such as sentences and the relationships among them. To that end, we propose a new approach to encourage learning of a contextualized sentence-level representation by shuffling the sequence of input sentences and training a hierarchical transformer model to reconstruct the original ordering. Through experiments on downstream tasks such as GLUE, SQuAD, and DiscoEval, we show that this feature of our model improves the performance of the original BERT by large margins.

pdf bib
Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by Learning to Rank
Eleftheria Briakou | Marine Carpuat

Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences.

pdf bib
A Bilingual Generative Transformer for Semantic Sentence Embedding
John Wieting | Graham Neubig | Taylor Berg-Kirkpatrick

Semantic sentence embedding models encode natural language sentences into vectors, such that closeness in embedding space indicates closeness in the semantics between the sentences. Bilingual data offers a useful signal for learning such embeddings: properties shared by both sentences in a translation pair are likely semantic, while divergent properties are likely stylistic or language-specific. We propose a deep latent variable model that attempts to perform source separation on parallel sentences, isolating what they have in common in a latent semantic vector, and explaining what is left over with language-specific latent vectors. Our proposed approach differs from past work on semantic sentence encoding in two ways. First, by using a variational probabilistic framework, we introduce priors that encourage source separation, and can use our model’s posterior to predict sentence embeddings for monolingual data at test time. Second, we use high-capacity transformers as both data generating distributions and inference networks – contrasting with most past work on sentence embeddings. In experiments, our approach substantially outperforms the state-of-the-art on a standard suite of unsupervised semantic similarity evaluations. Further, we demonstrate that our approach yields the largest gains on more difficult subsets of these evaluations where simple word overlap is not a good indicator of similarity.

pdf bib
Semantically Inspired AMR Alignment for the Portuguese Language
Rafael Anchiêta | Thiago Pardo

Abstract Meaning Representation (AMR) is a graph-based semantic formalism where the nodes are concepts and edges are relations among them. Most of AMR parsing methods require alignment between the nodes of the graph and the words of the sentence. However, this alignment is not provided by manual annotations and available automatic aligners focus only on the English language, not performing well for other languages. Aiming to fulfill this gap, we developed an alignment method for the Portuguese language based on a more semantically matched word-concept pair. We performed both intrinsic and extrinsic evaluations and showed that our alignment approach outperforms the alignment strategies developed for English, improving AMR parsers, and achieving competitive results with a parser designed for the Portuguese language.

pdf bib
An Unsupervised Sentence Embedding Method by Mutual Information Maximization
Yan Zhang | Ruidan He | Zuozhu Liu | Kwan Hui Lim | Lidong Bing

BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.

pdf bib
Compositional Phrase Alignment and Beyond
Yuki Arase | Jun’ichi Tsujii

Phrase alignment is the basis for modelling sentence pair interactions, such as paraphrase and textual entailment recognition. Most phrase alignments are compositional processes such that an alignment of a phrase pair is constructed based on the alignments of their child phrases. Nonetheless, studies have revealed that non-compositional alignments involving long-distance phrase reordering are prevalent in practice. We address the phrase alignment problem by combining an unordered tree mapping algorithm and phrase representation modelling that explicitly embeds the similarity distribution in the sentences onto powerful contextualized representations. Experimental results demonstrate that our method effectively handles compositional and non-compositional global phrase alignments. Our method significantly outperforms that used in a previous study and achieves a performance competitive with that of experienced human annotators.

pdf bib
Table Fact Verification with Structure-Aware Transformer
Hongzhi Zhang | Yingyao Wang | Sirui Wang | Xuezhi Cao | Fuzheng Zhang | Zhongyuan Wang

Verifying fact on semi-structured evidence like tables requires the ability to encode structural information and perform symbolic reasoning. Pre-trained language models trained on natural language could not be directly applied to encode tables, because simply linearizing tables into sequences will lose the cell alignment information. To better utilize pre-trained transformers for table representation, we propose a Structure-Aware Transformer (SAT), which injects the table structural information into the mask of the self-attention layer. A method to combine symbolic and linguistic reasoning is also explored for this task. Our method outperforms baseline with 4.93% on TabFact, a large scale table verification dataset.

pdf bib
Double Graph Based Reasoning for Document-level Relation Extraction
Shuang Zeng | Runxin Xu | Baobao Chang | Lei Li

Document-level relation extraction aims to extract relations among entities within a document. Different from sentence-level relation extraction, it requires reasoning over multiple sentences across paragraphs. In this paper, we propose Graph Aggregation-and-Inference Network (GAIN), a method to recognize such relations for long paragraphs. GAIN constructs two graphs, a heterogeneous mention-level graph (MG) and an entity-level graph (EG). The former captures complex interaction among different mentions and the latter aggregates mentions underlying for the same entities. Based on the graphs we propose a novel path reasoning mechanism to infer relations between entities. Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art. Our code is available at https://github.com/PKUnlp-icler/GAIN.

pdf bib
Event Extraction as Machine Reading Comprehension
Jian Liu | Yubo Chen | Kang Liu | Wei Bi | Xiaojiang Liu

Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts. Previous methods for EE typically model it as a classification task, which are usually prone to the data scarcity problem. In this paper, we propose a new learning paradigm of EE, by explicitly casting it as a machine reading comprehension problem (MRC). Our approach includes an unsupervised question generation process, which can transfer event schema into a set of natural questions, followed by a BERT-based question-answering process to retrieve answers as EE results. This learning paradigm enables us to strengthen the reasoning process of EE, by introducing sophisticated models in MRC, and relieve the data scarcity problem, by introducing the large-scale datasets in MRC. The empirical results show that: i) our approach attains state-of-the-art performance by considerable margins over previous methods. ii) Our model is excelled in the data-scarce scenario, for example, obtaining 49.8% in F1 for event argument extraction with only 1% data, compared with 2.2% of the previous method. iii) Our model also fits with zero-shot scenarios, achieving 37.0% and 16% in F1 on two datasets without using any EE training data.

pdf bib
MAVEN: A Massive General Domain Event Detection Dataset
Xiaozhi Wang | Ziqi Wang | Xu Han | Wangyi Jiang | Rong Han | Zhiyuan Liu | Juanzi Li | Peng Li | Yankai Lin | Jie Zhou

Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from https://github.com/THU-KEG/MAVEN-dataset.

pdf bib
Knowledge Graph Alignment with Entity-Pair Embedding
Zhichun Wang | Jinjian Yang | Xiaoju Ye

Knowledge Graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and achieved promising results. These approaches first embed entities in low-dimensional vector spaces, and then obtain entity alignments by computations on their vector representations. Although continuous improvements have been achieved by recent work, the performances of existing approaches are still not satisfactory. In this work, we present a new approach that directly learns embeddings of entity-pairs for KG alignment. Our approach first generates a pair-wise connectivity graph (PCG) of two KGs, whose nodes are entity-pairs and edges correspond to relation-pairs; it then learns node (entity-pair) embeddings of the PCG, which are used to predict equivalent relations of entities. To get desirable embeddings, a convolutional neural network is used to generate similarity features of entity-pairs from their attributes; and a graph neural network is employed to propagate the similarity features and get the final embeddings of entity-pairs. Experiments on five real-world datasets show that our approach can achieve the state-of-the-art KG alignment results.

pdf bib
Adaptive Attentional Network for Few-Shot Knowledge Graph Completion
Jiawei Sheng | Shu Guo | Zhenyu Chen | Juwei Yue | Lihong Wang | Tingwen Liu | Hongbo Xu

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes. The source code is available at https://github.com/JiaweiSheng/FAAN.

pdf bib
Pre-training Entity Relation Encoder with Intra-span and Inter-span Information
Yijun Wang | Changzhi Sun | Yuanbin Wu | Junchi Yan | Peng Gao | Guotong Xie

In this paper, we integrate span-related information into pre-trained encoder for entity relation extraction task. Instead of using general-purpose sentence encoder (e.g., existing universal pre-trained models), we introduce a span encoder and a span pair encoder to the pre-training network, which makes it easier to import intra-span and inter-span information into the pre-trained model. To learn the encoders, we devise three customized pre-training objectives from different perspectives, which target on tokens, spans, and span pairs. In particular, a span encoder is trained to recover a random shuffling of tokens in a span, and a span pair encoder is trained to predict positive pairs that are from the same sentences and negative pairs that are from different sentences using contrastive loss. Experimental results show that the proposed pre-training method outperforms distantly supervised pre-training, and achieves promising performance on two entity relation extraction benchmark datasets (ACE05, SciERC).

pdf bib
Two are Better than One: Joint Entity and Relation Extraction with Table-Sequence Encoders
Jue Wang | Wei Lu

Named entity recognition and relation extraction are two important fundamental problems. Joint learning algorithms have been proposed to solve both tasks simultaneously, and many of them cast the joint task as a table-filling problem. However, they typically focused on learning a single encoder (usually learning representation in the form of a table) to capture information required for both tasks within the same space. We argue that it can be beneficial to design two distinct encoders to capture such two different types of information in the learning process. In this work, we propose the novel table-sequence encoders where two different encoders – a table encoder and a sequence encoder are designed to help each other in the representation learning process. Our experiments confirm the advantages of having two encoders over one encoder. On several standard datasets, our model shows significant improvements over existing approaches.

pdf bib
Beyond [CLS] through Ranking by Generation
Cicero Nogueira dos Santos | Xiaofei Ma | Ramesh Nallapati | Zhiheng Huang | Bing Xiang

Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document’s language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.

pdf bib
Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too!
Suzanna Sia | Ayush Dalmia | Sabrina J. Mielke

Topic models are a useful analysis tool to uncover the underlying themes within document collections. The dominant approach is to use probabilistic topic models that posit a generative story, but in this paper we propose an alternative way to obtain topics: clustering pre-trained word embeddings while incorporating document information for weighted clustering and reranking top words. We provide benchmarks for the combination of different word embeddings and clustering algorithms, and analyse their performance under dimensionality reduction with PCA. The best performing combination for our approach performs as well as classical topic models, but with lower runtime and computational complexity.

pdf bib
Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning
Yuning Mao | Yanru Qu | Yiqing Xie | Xiang Ren | Jiawei Han

While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.

pdf bib
Improving Neural Topic Models using Knowledge Distillation
Alexander Miserlis Hoyle | Pranav Goel | Philip Resnik

Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics.

pdf bib
Short Text Topic Modeling with Topic Distribution Quantization and Negative Sampling Decoder
Xiaobao Wu | Chunping Li | Yan Zhu | Yishu Miao

Topic models have been prevailing for many years on discovering latent semantics while modeling long documents. However, for short texts they generally suffer from data sparsity because of extremely limited word co-occurrences; thus tend to yield repetitive or trivial topics with low quality. In this paper, to address this issue, we propose a novel neural topic model in the framework of autoencoding with a new topic distribution quantization approach generating peakier distributions that are more appropriate for modeling short texts. Besides the encoding, to tackle this issue in terms of decoding, we further propose a novel negative sampling decoder learning from negative samples to avoid yielding repetitive topics. We observe that our model can highly improve short text topic modeling performance. Through extensive experiments on real-world datasets, we demonstrate our model can outperform both strong traditional and neural baselines under extreme data sparsity scenes, producing high-quality topics.

pdf bib
Querying Across Genres for Medical Claims in News
Chaoyuan Zuo | Narayan Acharya | Ritwik Banerjee

We present a query-based biomedical information retrieval task across two vastly different genres – newswire and research literature – where the goal is to find the research publication that supports the primary claim made in a health-related news article. For this task, we present a new dataset of 5,034 claims from news paired with research abstracts. Our approach consists of two steps: (i) selecting the most relevant candidates from a collection of 222k research abstracts, and (ii) re-ranking this list. We compare the classical IR approach using BM25 with more recent transformer-based models. Our results show that cross-genre medical IR is a viable task, but incorporating domain-specific knowledge is crucial.

pdf bib
Incorporating Multimodal Information in Open-Domain Web Keyphrase Extraction
Yansen Wang | Zhen Fan | Carolyn Rose

Open-domain Keyphrase extraction (KPE) on the Web is a fundamental yet complex NLP task with a wide range of practical applications within the field of Information Retrieval. In contrast to other document types, web page designs are intended for easy navigation and information finding. Effective designs encode within the layout and formatting signals that point to where the important information can be found. In this work, we propose a modeling approach that leverages these multi-modal signals to aid in the KPE task. In particular, we leverage both lexical and visual features (e.g., size, font, position) at the micro-level to enable effective strategy induction and meta-level features that describe pages at a macro-level to aid in strategy selection. Our evaluation demonstrates that a combination of effective strategy induction and strategy selection within this approach for the KPE task outperforms state-of-the-art models. A qualitative post-hoc analysis illustrates how these features function within the model.

pdf bib
CMU-MOSEAS: A Multimodal Language Dataset for Spanish, Portuguese, German and French
AmirAli Bagher Zadeh | Yansheng Cao | Simon Hessner | Paul Pu Liang | Soujanya Poria | Louis-Philippe Morency

Modeling multimodal language is a core research area in natural language processing. While languages such as English have relatively large multimodal language resources, other widely spoken languages across the globe have few or no large-scale datasets in this area. This disproportionately affects native speakers of languages other than English. As a step towards building more equitable and inclusive multimodal systems, we introduce the first large-scale multimodal language dataset for Spanish, Portuguese, German and French. The proposed dataset, called CMU-MOSEAS (CMU Multimodal Opinion Sentiment, Emotions and Attributes), is the largest of its kind with 40,000 total labelled sentences. It covers a diverse set topics and speakers, and carries supervision of 20 labels including sentiment (and subjectivity), emotions, and attributes. Our evaluations on a state-of-the-art multimodal model demonstrates that CMU-MOSEAS enables further research for multilingual studies in multimodal language.

pdf bib
Combining Self-Training and Self-Supervised Learning for Unsupervised Disfluency Detection
Shaolei Wang | Zhongyuan Wang | Wanxiang Che | Ting Liu

Most existing approaches to disfluency detection heavily rely on human-annotated corpora, which is expensive to obtain in practice. There have been several proposals to alleviate this issue with, for instance, self-supervised learning techniques, but they still require human-annotated corpora. In this work, we explore the unsupervised learning paradigm which can potentially work with unlabeled text corpora that are cheaper and easier to obtain. Our model builds upon the recent work on Noisy Student Training, a semi-supervised learning approach that extends the idea of self-training. Experimental results on the commonly used English Switchboard test set show that our approach achieves competitive performance compared to the previous state-of-the-art supervised systems using contextualized word embeddings (e.g. BERT and ELECTRA).

pdf bib
Multimodal Routing: Improving Local and Global Interpretability of Multimodal Language Analysis
Yao-Hung Hubert Tsai | Martin Ma | Muqiao Yang | Ruslan Salakhutdinov | Louis-Philippe Morency

The human language can be expressed through multiple sources of information known as modalities, including tones of voice, facial gestures, and spoken language. Recent multimodal learning with strong performances on human-centric tasks such as sentiment analysis and emotion recognition are often black-box, with very limited interpretability. In this paper we propose, which dynamically adjusts weights between input modalities and output representations differently for each input sample. Multimodal routing can identify relative importance of both individual modalities and cross-modality factors. Moreover, the weight assignment by routing allows us to interpret modality-prediction relationships not only globally (i.e. general trends over the whole dataset), but also locally for each single input sample, meanwhile keeping competitive performance compared to state-of-the-art methods.

pdf bib
Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos
Nayu Liu | Xian Sun | Hongfeng Yu | Wenkai Zhang | Guangluan Xu

Multimodal summarization for open-domain videos is an emerging task, aiming to generate a summary from multisource information (video, audio, transcript). Despite the success of recent multiencoder-decoder frameworks on this task, existing methods lack fine-grained multimodality interactions of multisource inputs. Besides, unlike other multimodal tasks, this task has longer multimodal sequences with more redundancy and noise. To address these two issues, we propose a multistage fusion network with the fusion forget gate module, which builds upon this approach by modeling fine-grained interactions between the modalities through a multistep fusion schema and controlling the flow of redundant information between multimodal long sequences via a forgetting module. Experimental results on the How2 dataset show that our proposed model achieves a new state-of-the-art performance. Comprehensive analysis empirically verifies the effectiveness of our fusion schema and forgetting module on multiple encoder-decoder architectures. Specially, when using high noise ASR transcripts (WER>30%), our model still achieves performance close to the ground-truth transcript model, which reduces manual annotation cost.

pdf bib
BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded Dialogues
Hung Le | Doyen Sahoo | Nancy Chen | Steven C.H. Hoi

Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over multiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we proposed Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.

pdf bib
UniConv: A Unified Conversational Neural Architecture for Multi-domain Task-oriented Dialogues
Hung Le | Doyen Sahoo | Chenghao Liu | Nancy Chen | Steven C.H. Hoi

Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons. First, tracking dialogue states of multiple domains is non-trivial as the dialogue agent must obtain complete states from all relevant domains, some of which might have shared slots among domains as well as unique slots specifically for one domain only. Second, the dialogue agent must also process various types of information across domains, including dialogue context, dialogue states, and database, to generate natural responses to users. Unlike the existing approaches that are often designed to train each module separately, we propose “UniConv” - a novel unified neural architecture for end-to-end conversational systems in multi-domain task-oriented dialogues, which is designed to jointly train (i) a Bi-level State Tracker which tracks dialogue states by learning signals at both slot and domain level independently, and (ii) a Joint Dialogue Act and Response Generator which incorporates information from various input components and models dialogue acts and target responses simultaneously. We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark, achieving superior performance over competitive baselines.

pdf bib
GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems
Shiquan Yang | Rui Zhang | Sarah Erfani

End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs. There are two challenges for such systems: one is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history. In this paper, we address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue. To effectively leverage the structural information in dialogue history, we propose a new recurrent cell architecture which allows representation learning on graphs. To exploit the relations between entities in KBs, the model combines multi-hop reasoning ability based on the graph structure. Experimental results show that the proposed model achieves consistent improvement over state-of-the-art models on two different task-oriented dialogue datasets.

pdf bib
Structured Attention for Unsupervised Dialogue Structure Induction
Liang Qiu | Yizhou Zhao | Weiyan Shi | Yuan Liang | Feng Shi | Tao Yuan | Zhou Yu | Song-Chun Zhu

Inducing a meaningful structural representation from one or a set of dialogues is a crucial but challenging task in computational linguistics. Advancement made in this area is critical for dialogue system design and discourse analysis. It can also be extended to solve grammatical inference. In this work, we propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion. Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias. Experiments show that on two-party dialogue datasets, VRNN with structured attention learns semantic structures that are similar to templates used to generate this dialogue corpus. While on multi-party dialogue datasets, our model learns an interactive structure demonstrating its capability of distinguishing speakers or addresses, automatically disentangling dialogues without explicit human annotation.

pdf bib
Cross Copy Network for Dialogue Generation
Changzhen Ji | Xin Zhou | Yating Zhang | Xiaozhong Liu | Changlong Sun | Conghui Zhu | Tiejun Zhao

In the past few years, audiences from different fields witness the achievements of sequence-to-sequence models (e.g., LSTM+attention, Pointer Generator Networks and Transformer) to enhance dialogue content generation. While content fluency and accuracy often serve as the major indicators for model training, dialogue logics, carrying critical information for some particular domains, are often ignored. Take customer service and court debate dialogue as examples, compatible logics can be observed across different dialogue instances, and this information can provide vital evidence for utterance generation. In this paper, we propose a novel network architecture - Cross Copy Networks (CCN) to explore the current dialog context and similar dialogue instances’ logical structure simultaneously. Experiments with two tasks, court debate and customer service content generation, proved that the proposed algorithm is superior to existing state-of-art content generation models.

pdf bib
Multi-turn Response Selection using Dialogue Dependency Relations
Qi Jia | Yizhu Liu | Siyu Ren | Kenny Zhu | Haifeng Tang

Multi-turn response selection is a task designed for developing dialogue agents. The performance on this task has a remarkable improvement with pre-trained language models. However, these models simply concatenate the turns in dialogue history as the input and largely ignore the dependencies between the turns. In this paper, we propose a dialogue extraction algorithm to transform a dialogue history into threads based on their dependency relations. Each thread can be regarded as a self-contained sub-dialogue. We also propose Thread-Encoder model to encode threads and candidates into compact representations by pre-trained Transformers and finally get the matching score through an attention layer. The experiments show that dependency relations are helpful for dialogue context understanding, and our model outperforms the state-of-the-art baselines on both DSTC7 and DSTC8*, with competitive results on UbuntuV2.

pdf bib
Parallel Interactive Networks for Multi-Domain Dialogue State Generation
Junfan Chen | Richong Zhang | Yongyi Mao | Jie Xu

The dependencies between system and user utterances in the same turn and across different turns are not fully considered in existing multidomain dialogue state tracking (MDST) models. In this study, we argue that the incorporation of these dependencies is crucial for the design of MDST and propose Parallel Interactive Networks (PIN) to model these dependencies. Specifically, we integrate an interactive encoder to jointly model the in-turn dependencies and cross-turn dependencies. The slot-level context is introduced to extract more expressive features for different slots. And a distributed copy mechanism is utilized to selectively copy words from historical system utterances or historical user utterances. Empirical studies demonstrated the superiority of the proposed PIN model.

pdf bib
SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling
Di Wu | Liang Ding | Fan Lu | Jian Xie

Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to x10.77). In-depth analysis show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.

pdf bib
An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction
Bhargavi Paranjape | Mandar Joshi | John Thickstun | Hannaneh Hajishirzi | Luke Zettlemoyer

Decisions of complex models for language understanding can be explained by limiting the inputs they are provided to a relevant subsequence of the original text — a rationale. Models that condition predictions on a concise rationale, while being more interpretable, tend to be less accurate than models that are able to use the entire context. In this paper, we show that it is possible to better manage the trade-off between concise explanations and high task accuracy by optimizing a bound on the Information Bottleneck (IB) objective. Our approach jointly learns an explainer that predicts sparse binary masks over input sentences without explicit supervision, and an end-task predictor that considers only the residual sentences. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on the ERASER benchmark demonstrate significant gains over previous work for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples with gold masks) can close the performance gap with a model that uses the full input.

pdf bib
CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
Nikita Nangia | Clara Vania | Rasika Bhalerao | Samuel R. Bowman

Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.

pdf bib
LOGAN: Local Group Bias Detection by Clustering
Jieyu Zhao | Kai-Wei Chang

Machine learning techniques have been widely used in natural language processing (NLP). However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.

pdf bib
RNNs can generate bounded hierarchical languages with optimal memory
John Hewitt | Michael Hahn | Surya Ganguli | Percy Liang | Christopher D. Manning

Recurrent neural networks empirically generate natural language with high syntactic fidelity. However, their success is not well-understood theoretically. We provide theoretical insight into this success, proving in a finite-precision setting that RNNs can efficiently generate bounded hierarchical languages that reflect the scaffolding of natural language syntax. We introduce Dyck-(k,m), the language of well-nested brackets (of k types) and m-bounded nesting depth, reflecting the bounded memory needs and long-distance dependencies of natural language syntax. The best known results use O(km2) memory (hidden units) to generate these languages. We prove that an RNN with O(m log k) hidden units suffices, an exponential reduction in memory, by an explicit construction. Finally, we show that no algorithm, even with unbounded computation, can suffice with o(m log k) hidden units.

pdf bib
Detecting Independent Pronoun Bias with Partially-Synthetic Data Generation
Robert Munro | Alex (Carmen) Morrison

We report that state-of-the-art parsers consistently failed to identify “hers” and “theirs” as pronouns but identified the masculine equivalent “his”. We find that the same biases exist in recent language models like BERT. While some of the bias comes from known sources, like training data with gender imbalances, we find that the bias is _amplified_ in the language models and that linguistic differences between English pronouns that are not inherently biased can become biases in some machine learning models. We introduce a new technique for measuring bias in models, using Bayesian approximations to generate partially-synthetic data from the model itself.

pdf bib
Visually Grounded Continual Learning of Compositional Phrases
Xisen Jin | Junyi Du | Arka Sadhu | Ram Nevatia | Xiang Ren

Humans acquire language continually with much more limited access to data samples at a time, as compared to contemporary NLP systems. To study this human-like language acquisition ability, we present VisCOLL, a visually grounded language learning task, which simulates the continual acquisition of compositional phrases from streaming visual scenes. In the task, models are trained on a paired image-caption stream which has shifting object distribution; while being constantly evaluated by a visually-grounded masked language prediction task on held-out test sets. VisCOLL compounds the challenges of continual learning (i.e., learning from continuously shifting data distribution) and compositional generalization (i.e., generalizing to novel compositions). To facilitate research on VisCOLL, we construct two datasets, COCO-shift and Flickr-shift, and benchmark them using different continual learning methods. Results reveal that SoTA continual learning approaches provide little to no improvements on VisCOLL, since storing examples of all possible compositions is infeasible. We conduct further ablations and analysis to guide future work.

pdf bib
MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase Grounding
Qinxin Wang | Hao Tan | Sheng Shen | Michael Mahoney | Zhewei Yao

Phrase localization is a task that studies the mapping from textual phrases to regions of an image. Given difficulties in annotating phrase-to-object datasets at scale, we develop a Multimodal Alignment Framework (MAF) to leverage more widely-available caption-image datasets, which can then be used as a form of weak supervision. We first present algorithms to model phrase-object relevance by leveraging fine-grained visual representations and visually-aware language representations. By adopting a contrastive objective, our method uses information in caption-image pairs to boost the performance in weakly-supervised scenarios. Experiments conducted on the widely-adopted Flickr30k dataset show a significant improvement over existing weakly-supervised methods. With the help of the visually-aware language representations, we can also improve the previous best unsupervised result by 5.56%. We conduct ablation studies to show that both our novel model and our weakly-supervised strategies significantly contribute to our strong results.

pdf bib
Domain-Specific Lexical Grounding in Noisy Visual-Textual Documents
Gregory Yauney | Jack Hessel | David Mimno

Images can give us insights into the contextual meanings of words, but current image-text grounding approaches require detailed annotations. Such granular annotation is rare, expensive, and unavailable in most domain-specific contexts. In contrast, unlabeled multi-image, multi-sentence documents are abundant. Can lexical grounding be learned from such documents, even though they have significant lexical and visual overlap? Working with a case study dataset of real estate listings, we demonstrate the challenge of distinguishing highly correlated grounded terms, such as “kitchen” and “bedroom”, and introduce metrics to assess this document similarity. We present a simple unsupervised clustering-based method that increases precision and recall beyond object detection and image tagging baselines when evaluated on labeled subsets of the dataset. The proposed method is particularly effective for local contextual meanings of a word, for example associating “granite” with countertops in the real estate dataset and with rocky landscapes in a Wikipedia dataset.

pdf bib
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
Linjie Li | Yen-Chun Chen | Yu Cheng | Zhe Gan | Licheng Yu | Jingjing Liu

We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.

pdf bib
Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision
Hao Tan | Mohit Bansal

Humans learn language by listening, speaking, writing, reading, and also, via interaction with the multimodal real world. Existing language pre-training frameworks show the effectiveness of text-only self-supervision while we explore the idea of a visually-supervised language model in this paper. We find that the main reason hindering this exploration is the large divergence in magnitude and distributions between the visually-grounded language datasets and pure-language corpora. Therefore, we develop a technique named “vokenization” that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images (which we call “vokens”). The “vokenizer” is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora. Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks such as GLUE, SQuAD, and SWAG.

pdf bib
Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News
Reuben Tan | Bryan Plummer | Kate Saenko

Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset which is comprised of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. Coupled with providing a relatively effective approach based on detecting visual-semantic inconsistencies, the valuable insights gleaned from our user study experiments and, consequently, this paper will serve as an effective first line of defense and a valuable reference for future work in defending against machine-generated disinformation.

pdf bib
Enhancing Aspect Term Extraction with Soft Prototypes
Zhuang Chen | Tieyun Qian

Aspect term extraction (ATE) aims to extract aspect terms from a review sentence that users have expressed opinions on. Existing studies mostly focus on designing neural sequence taggers to extract linguistic features from the token level. However, since the aspect terms and context words usually exhibit long-tail distributions, these taggers often converge to an inferior state without enough sample exposure. In this paper, we propose to tackle this problem by correlating words with each other through soft prototypes. These prototypes, generated by a soft retrieval process, can introduce global knowledge from internal or external data and serve as the supporting evidence for discovering the aspect terms. Our proposed model is a general framework and can be combined with almost all sequence taggers. Experiments on four SemEval datasets show that our model boosts the performance of three typical ATE methods by a large margin.

pdf bib
FedED: Federated Learning via Ensemble Distillation for Medical Relation Extraction
Dianbo Sui | Yubo Chen | Jun Zhao | Yantao Jia | Yuantao Xie | Weijian Sun

Unlike other domains, medical texts are inevitably accompanied by private information, so sharing or copying these texts is strictly restricted. However, training a medical relation extraction model requires collecting these privacy-sensitive texts and storing them on one machine, which comes in conflict with privacy protection. In this paper, we propose a privacy-preserving medical relation extraction model based on federated learning, which enables training a central model with no single piece of private local data being shared or exchanged. Though federated learning has distinct advantages in privacy protection, it suffers from the communication bottleneck, which is mainly caused by the need to upload cumbersome local parameters. To overcome this bottleneck, we leverage a strategy based on knowledge distillation. Such a strategy uses the uploaded predictions of ensemble local models to train the central model without requiring uploading local parameters. Experiments on three publicly available medical relation extraction datasets demonstrate the effectiveness of our method.

pdf bib
Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product
Tiangang Zhu | Yue Wang | Haoran Li | Youzheng Wu | Xiaodong He | Bowen Zhou

Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset are available at https://github.com/jd-aig/JAVE.

pdf bib
A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
Mingming Sun | Wenyue Hua | Zoey Liu | Xin Wang | Kangjie Zheng | Ping Li

Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.

pdf bib
Retrofitting Structure-aware Transformer Language Model for End Tasks
Hao Fei | Yafeng Ren | Donghong Ji

We consider retrofitting structure-aware Transformer language model for facilitating end tasks by proposing to exploit syntactic distance to encode both the phrasal constituency and dependency connection into the language model. A middle-layer structural learning strategy is leveraged for structure integration, accomplished with main semantic task training under multi-task learning scheme. Experimental results show that the retrofitted structure-aware Transformer language model achieves improved perplexity, meanwhile inducing accurate syntactic phrases. By performing structure-aware fine-tuning, our model achieves significant improvements for both semantic- and syntactic-dependent tasks.

pdf bib
Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang | Zhijiang Guo | Zhiyang Teng | Wei Lu | Shay B. Cohen | Zuozhu Liu | Lidong Bing

AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.

pdf bib
If beam search is the answer, what was the question?
Clara Meister | Ryan Cotterell | Tim Vieira

Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.

pdf bib
Understanding the Mechanics of SPIGOT: Surrogate Gradients for Latent Structure Learning
Tsvetomila Mihaylova | Vlad Niculae | André F. T. Martins

Latent structure models are a powerful tool for modeling language data: they can mitigate the error propagation and annotation bottleneck in pipeline systems, while simultaneously uncovering linguistic insights about the data. One challenge with end-to-end training of these models is the argmax operation, which has null gradient. In this paper, we focus on surrogate gradients, a popular strategy to deal with this problem. We explore latent structure learning through the angle of pulling back the downstream learning objective. In this paradigm, we discover a principled motivation for both the straight-through estimator (STE) as well as the recently-proposed SPIGOT – a variant of STE for structured models. Our perspective leads to new algorithms in the same family. We empirically compare the known and the novel pulled-back estimators against the popular alternatives, yielding new insight for practitioners and revealing intriguing failure cases.

pdf bib
Is the Best Better? Bayesian Statistical Model Comparison for Natural Language Processing
Piotr Szymański | Kyle Gorman

Recent work raises concerns about the use of standard splits to compare natural language processing models. We propose a Bayesian statistical model comparison technique which uses k-fold cross-validation across multiple data sets to estimate the likelihood that one model will outperform the other, or that the two will produce practically equivalent results. We use this technique to rank six English part-of-speech taggers across two data sets and three evaluation metrics.

pdf bib
Exploring Logically Dependent Multi-task Learning with Causal Inference
Wenqing Chen | Jidong Tian | Liqiang Xiao | Hao He | Yaohui Jin

Previous studies have shown that hierarchical multi-task learning (MTL) can utilize task dependencies by stacking encoders and outperform democratic MTL. However, stacking encoders only considers the dependencies of feature representations and ignores the label dependencies in logically dependent tasks. Furthermore, how to properly utilize the labels remains an issue due to the cascading errors between tasks. In this paper, we view logically dependent MTL from the perspective of causal inference and suggest a mediation assumption instead of the confounding assumption in conventional MTL models. We propose a model including two key mechanisms: label transfer (LT) for each task to utilize the labels of all its lower-level tasks, and Gumbel sampling (GS) to deal with cascading errors. In the field of causal inference, GS in our model is essentially a counterfactual reasoning process, trying to estimate the causal effect between tasks and utilize it to improve MTL. We conduct experiments on two English datasets and one Chinese dataset. Experiment results show that our model achieves state-of-the-art on six out of seven subtasks and improves predictions’ consistency.

pdf bib
Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
Mengjie Zhao | Tao Lin | Fei Mi | Martin Jaggi | Hinrich Schütze

We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT, RoBERTa, and DistilBERT on eleven diverse NLP tasks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred. Intrinsic evaluations show that representations computed by our binary masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning.

pdf bib
Dynamic Context Selection for Document-level Neural Machine Translation via Reinforcement Learning
Xiaomian Kang | Yang Zhao | Jiajun Zhang | Chengqing Zong

Document-level neural machine translation has yielded attractive improvements. However, majority of existing methods roughly use all context sentences in a fixed scope. They neglect the fact that different source sentences need different sizes of context. To address this problem, we propose an effective approach to select dynamic context so that the document-level translation model can utilize the more useful selected context sentences to produce better translations. Specifically, we introduce a selection module that is independent of the translation module to score each candidate context sentence. Then, we propose two strategies to explicitly select a variable number of context sentences and feed them into the translation module. We train the two modules end-to-end via reinforcement learning. A novel reward is proposed to encourage the selection and utilization of dynamic context sentences. Experiments demonstrate that our approach can select adaptive context sentences for different source sentences, and significantly improves the performance of document-level translation methods.

pdf bib
Data Rejuvenation: Exploiting Inactive Training Examples for Neural Machine Translation
Wenxiang Jiao | Xing Wang | Shilin He | Irwin King | Michael Lyu | Zhaopeng Tu

Large-scale training datasets lie at the core of the recent success of neural machine translation (NMT) models. However, the complex patterns and potential noises in the large-scale data make training NMT models difficult. In this work, we explore to identify the inactive training examples which contribute less to the model performance, and show that the existence of inactive examples depends on the data distribution. We further introduce data rejuvenation to improve the training of NMT models on large-scale datasets by exploiting inactive examples. The proposed framework consists of three phases. First, we train an identification model on the original training data, and use it to distinguish inactive examples and active examples by their sentence-level output probabilities. Then, we train a rejuvenation model on the active examples, which is used to re-label the inactive examples with forward- translation. Finally, the rejuvenated examples and the active examples are combined to train the final NMT model. Experimental results on WMT14 English-German and English-French datasets show that the proposed data rejuvenation consistently and significantly improves performance for several strong NMT models. Extensive analyses reveal that our approach stabilizes and accelerates the training process of NMT models, resulting in final models with better generalization capability.

pdf bib
Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Prathyusha Jwalapuram | Shafiq Joty | Youlin Shen

Popular Neural Machine Translation model training uses strategies like backtranslation to improve BLEU scores, requiring large amounts of additional data and training. We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model. Through a combination of targeted fine-tuning objectives and intuitive re-use of the training data the model has failed to adequately learn from, we improve the model performance of both a sentence-level and a contextual model without using any additional data. We target the improvement of pronoun translations through our fine-tuning and evaluate our models on a pronoun benchmark testset. Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets, while our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En testset, with corresponding improvements in pronoun translation. We further show the generalizability of our method by reproducing the improvements on two additional language pairs, Fr-En and Cs-En.

pdf bib
Learning Adaptive Segmentation Policy for Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Haifeng Wang

Balancing accuracy and latency is a great challenge for simultaneous translation. To achieve high accuracy, the model usually needs to wait for more streaming text before translation, which results in increased latency. However, keeping low latency would probably hurt accuracy. Therefore, it is essential to segment the ASR output into appropriate units for translation. Inspired by human interpreters, we propose a novel adaptive segmentation policy for simultaneous translation. The policy learns to segment the source text by considering possible translations produced by the translation model, maintaining consistency between the segmentation and translation. Experimental results on Chinese-English and German-English translation show that our method achieves a better accuracy-latency trade-off over recently proposed state-of-the-art methods.

pdf bib
Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous Languages
Zheng Li | Mukul Kumar | William Headden | Bing Yin | Ying Wei | Yu Zhang | Qiang Yang

Recent emergence of multilingual pre-training language model (mPLM) has enabled breakthroughs on various downstream cross-lingual transfer (CLT) tasks. However, mPLM-based methods usually involve two problems: (1) simply fine-tuning may not adapt general-purpose multilingual representations to be task-aware on low-resource languages; (2) ignore how cross-lingual adaptation happens for downstream tasks. To address the issues, we propose a meta graph learning (MGL) method. Unlike prior works that transfer from scratch, MGL can learn to cross-lingual transfer by extracting meta-knowledge from historical CLT experiences (tasks), making mPLM insensitive to low-resource languages. Besides, for each CLT task, MGL formulates its transfer process as information propagation over a dynamic graph, where the geometric structure can automatically capture intrinsic language relationships to explicitly guide cross-lingual transfer. Empirically, extensive experiments on both public and real-world datasets demonstrate the effectiveness of the MGL method.

pdf bib
UDapter: Language Adaptation for Truly Universal Dependency Parsing
Ahmet Üstün | Arianna Bisazza | Gosse Bouma | Gertjan van Noord

Recent advances in multilingual dependency parsing have brought the idea of a truly universal parser closer to reality. However, cross-language interference and restrained model capacity remain major obstacles. To address this, we propose a novel multilingual task adaptation approach based on contextual parameter generation and adapter modules. This approach enables to learn adapters via language embeddings while sharing model parameters across languages. It also allows for an easy but effective integration of existing linguistic typology features into the parsing network. The resulting parser, UDapter, outperforms strong monolingual and multilingual baselines on the majority of both high-resource and low-resource (zero-shot) languages, showing the success of the proposed adaptation approach. Our in-depth analyses show that soft parameter sharing via typological features is key to this success.

pdf bib
Uncertainty-Aware Label Refinement for Sequence Labeling
Tao Gui | Jiacheng Ye | Qi Zhang | Zhengyan Li | Zichu Fei | Yeyun Gong | Xuanjing Huang

Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.

pdf bib
Adversarial Attack and Defense of Structured Prediction Models
Wenjuan Han | Liwen Zhang | Yong Jiang | Kewei Tu

Building an effective adversarial attacker and elaborating on countermeasures for adversarial attacks for natural language processing (NLP) have attracted a lot of research in recent years. However, most of the existing approaches focus on classification problems. In this paper, we investigate attacks and defenses for structured prediction tasks in NLP. Besides the difficulty of perturbing discrete words and the sentence fluency problem faced by attackers in any NLP tasks, there is a specific challenge to attackers of structured prediction models: the structured output of structured prediction models is sensitive to small perturbations in the input. To address these problems, we propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model with feedbacks from multiple reference models of the same structured prediction task. Based on the proposed attack, we further reinforce the victim model with adversarial training, making its prediction more robust and accurate. We evaluate the proposed framework in dependency parsing and part-of-speech tagging. Automatic and human evaluations show that our proposed framework succeeds in both attacking state-of-the-art structured prediction models and boosting them with adversarial training.

pdf bib
Position-Aware Tagging for Aspect Sentiment Triplet Extraction
Lu Xu | Hao Li | Wei Lu | Lidong Bing

Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.

pdf bib
Simultaneous Machine Translation with Visual Context
Ozan Caglayan | Julia Ive | Veneta Haralampieva | Pranava Madhyastha | Loïc Barrault | Lucia Specia

Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus has to start with an incomplete source text, which is read progressively, creating the need for anticipation. In this paper, we seek to understand whether the addition of visual information can compensate for the missing source context. To this end, we analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks. Our results show that visual context is helpful and that visually-grounded models based on explicit object region information are much better than commonly used global features, reaching up to 3 BLEU points improvement under low latency scenarios. Our qualitative analysis illustrates cases where only the multimodal systems are able to translate correctly from English into gender-marked languages, as well as deal with differences in word order, such as adjective-noun placement between English and French.

pdf bib
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti | Goran Glavaš | Olga Majewska | Qianchu Liu | Ivan Vulić | Anna Korhonen

In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.

pdf bib
The Secret is in the Spectra: Predicting Cross-lingual Task Performance with Spectral Similarity Measures
Haim Dubossarsky | Ivan Vulić | Roi Reichart | Anna Korhonen

Performance in cross-lingual NLP tasks is impacted by the (dis)similarity of languages at hand: e.g., previous work has suggested there is a connection between the expected success of bilingual lexicon induction (BLI) and the assumption of (approximate) isomorphism between monolingual embedding spaces. In this work we present a large-scale study focused on the correlations between monolingual embedding space similarity and task performance, covering thousands of language pairs and four different tasks: BLI, parsing, POS tagging and MT. We hypothesize that statistics of the spectrum of each monolingual embedding space indicate how well they can be aligned. We then introduce several isomorphism measures between two embedding spaces, based on the relevant statistics of their individual spectra. We empirically show that (1) language similarity scores derived from such spectral isomorphism measures are strongly associated with performance observed in different cross-lingual tasks, and (2) our spectral-based measures consistently outperform previous standard isomorphism measures, while being computationally more tractable and easier to interpret. Finally, our measures capture complementary information to typologically driven language distance measures, and the combination of measures from the two families yields even higher task performance correlations.

pdf bib
Bridging Linguistic Typology and Multilingual Machine Translation with Multi-View Language Representations
Arturo Oncevay | Barry Haddow | Alexandra Birch

Sparse language vectors from linguistic typology databases and learned embeddings from tasks like multilingual machine translation have been investigated in isolation, without analysing how they could benefit from each other’s language characterisation. We propose to fuse both views using singular vector canonical correlation analysis and study what kind of information is induced from each source. By inferring typological features and language phylogenies, we observe that our representations embed typology and strengthen correlations with language relationships. We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy in tasks that require information about language similarities, such as language clustering and ranking candidates for multilingual transfer. With our method, we can easily project and assess new languages without expensive retraining of massive multilingual or ranking models, which are major disadvantages of related approaches.

pdf bib
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang | Yang Deng | Jing Ma | Wai Lam

Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.

pdf bib
Context-Aware Answer Extraction in Question Answering
Yeon Seonwoo | Ji-Hoon Kim | Jung-Woo Ha | Alice Oh

Extractive QA models have shown very promising performance in predicting the correct answer to a question for a given passage. However, they sometimes result in predicting the correct answer text but in a context irrelevant to the given question. This discrepancy becomes especially important as the number of occurrences of the answer text in a passage increases. To resolve this issue, we propose BLANC (BLock AttentioN for Context prediction) based on two main ideas: context prediction as an auxiliary task in multi-task learning manner, and a block attention method that learns the context prediction task. With experiments on reading comprehension, we show that BLANC outperforms the state-of-the-art QA models, and the performance gap increases as the number of answer text occurrences increases. We also conduct an experiment of training the models using SQuAD and predicting the supporting facts on HotpotQA and show that BLANC outperforms all baseline models in this zero-shot setting.

pdf bib
What do Models Learn from Question Answering Datasets?
Priyanka Sen | Amir Saffari

While models have reached superhuman performance on popular question answering (QA) datasets such as SQuAD, they have yet to outperform humans on the task of question answering itself. In this paper, we investigate if models are learning reading comprehension from QA datasets by evaluating BERT-based models across five datasets. We evaluate models on their generalizability to out-of-domain examples, responses to missing or incorrect data, and ability to handle question variations. We find that no single dataset is robust to all of our experiments and identify shortcomings in both datasets and evaluation methods. Following our analysis, we make recommendations for building future QA datasets that better evaluate the task of question answering through reading comprehension. We also release code to convert QA datasets to a shared format for easier experimentation at https://github.com/amazon-research/qa-dataset-converter

pdf bib
Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading
Yifan Gao | Chien-Sheng Wu | Jingjing Li | Shafiq Joty | Steven C.H. Hoi | Caiming Xiong | Irwin King | Michael Lyu

Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose “Discern”, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding of both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision “yes/no/irrelevant” of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.

pdf bib
A Method for Building a Commonsense Inference Dataset based on Basic Events
Kazumasa Omura | Daisuke Kawahara | Sadao Kurohashi

We present a scalable, low-bias, and low-cost method for building a commonsense inference dataset that combines automatic extraction from a corpus and crowdsourcing. Each problem is a multiple-choice question that asks contingency between basic events. We applied the proposed method to a Japanese corpus and acquired 104k problems. While humans can solve the resulting problems with high accuracy (88.9%), the accuracy of a high-performance transfer learning model is reasonably low (76.0%). We also confirmed through dataset analysis that the resulting dataset contains low bias. We released the datatset to facilitate language understanding research.

pdf bib
Neural Deepfake Detection with Factual Structure of Text
Wanjun Zhong | Duyu Tang | Zenan Xu | Ruize Wang | Nan Duan | Ming Zhou | Jiahai Wang | Jian Yin

Deepfake detection, the task of automatically discriminating machine-generated text, is increasingly critical with recent advances in natural language generative models. Existing approaches to deepfake detection typically represent documents with coarse-grained representations. However, they struggle to capture factual structures of documents, which is a discriminative factor between machine-generated and human-written text according to our statistical analysis. To address this, we propose a graph-based model that utilizes the factual structure of a document for deepfake detection of text. Our approach represents the factual structure of a given document as an entity graph, which is further utilized to learn sentence representations with a graph neural network. Sentence representations are then composed to a document representation for making predictions, where consistent relations between neighboring sentences are sequentially modeled. Results of experiments on two public deepfake datasets show that our approach significantly improves strong base models built with RoBERTa. Model analysis further indicates that our model can distinguish the difference in the factual structure between machine-generated text and human-written text.

pdf bib
MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on a Massive Scale
Andreas Rücklé | Jonas Pfeiffer | Iryna Gurevych

We study the zero-shot transfer capabilities of text matching models on a massive scale, by self-supervised training on 140 source domains from community question answering forums in English. We investigate the model performances on nine benchmarks of answer selection and question similarity tasks, and show that all 140 models transfer surprisingly well, where the large majority of models substantially outperforms common IR baselines. We also demonstrate that considering a broad selection of source domains is crucial for obtaining the best zero-shot transfer performances, which contrasts the standard procedure that merely relies on the largest and most similar domains. In addition, we extensively study how to best combine multiple source domains. We propose to incorporate self-supervised with supervised multi-task learning on all available source domains. Our best zero-shot transfer model considerably outperforms in-domain BERT and the previous state of the art on six benchmarks. Fine-tuning of our model with in-domain data results in additional large gains and achieves the new state of the art on all nine benchmarks.

pdf bib
XL-AMR: Enabling Cross-Lingual AMR Parsing with Transfer Learning Techniques
Rexhina Blloshmi | Rocco Tripodi | Roberto Navigli

Abstract Meaning Representation (AMR) is a popular formalism of natural language that represents the meaning of a sentence as a semantic graph. It is agnostic about how to derive meanings from strings and for this reason it lends itself well to the encoding of semantics across languages. However, cross-lingual AMR parsing is a hard task, because training data are scarce in languages other than English and the existing English AMR parsers are not directly suited to being used in a cross-lingual setting. In this work we tackle these two problems so as to enable cross-lingual AMR parsing: we explore different transfer learning techniques for producing automatic AMR annotations across languages and develop a cross-lingual AMR parser, XL-AMR. This can be trained on the produced data and does not rely on AMR aligners or source-copy mechanisms as is commonly the case in English AMR parsing. The results of XL-AMR significantly surpass those previously reported in Chinese, German, Italian and Spanish. Finally we provide a qualitative analysis which sheds light on the suitability of AMR across languages. We release XL-AMR at github.com/SapienzaNLP/xl-amr.

pdf bib
Improving AMR Parsing with Sequence-to-Sequence Pre-training
Dongqin Xu | Junhui Li | Muhua Zhu | Min Zhang | Guodong Zhou

In the literature, the research on abstract meaning representation (AMR) parsing is much restricted by the size of human-curated dataset which is critical to build an AMR parser with good performance. To alleviate such data size restriction, pre-trained models have been drawing more and more attention in AMR parsing. However, previous pre-trained models, like BERT, are implemented for general purpose which may not work as expected for the specific task of AMR parsing. In this paper, we focus on sequence-to-sequence (seq2seq) AMR parsing and propose a seq2seq pre-training approach to build pre-trained models in both single and joint way on three relevant tasks, i.e., machine translation, syntactic parsing, and AMR parsing itself. Moreover, we extend the vanilla fine-tuning method to a multi-task learning fine-tuning method that optimizes for the performance of AMR parsing while endeavors to preserve the response of pre-trained models. Extensive experimental results on two English benchmark datasets show that both the single and joint pre-trained models significantly improve the performance (e.g., from 71.5 to 80.2 on AMR 2.0), which reaches the state of the art. The result is very encouraging since we achieve this with seq2seq models rather than complex models. We make our code and model available at https://github.com/xdqkid/S2S-AMR-Parser.

pdf bib
Hate-Speech and Offensive Language Detection in Roman Urdu
Hammad Rizwan | Muhammad Haroon Shakeel | Asim Karim

The task of automatic hate-speech and offensive language detection in social media content is of utmost importance due to its implications in unprejudiced society concerning race, gender, or religion. Existing research in this area, however, is mainly focused on the English language, limiting the applicability to particular demographics. Despite its prevalence, Roman Urdu (RU) lacks language resources, annotated datasets, and language models for this task. In this study, we: (1) Present a lexicon of hateful words in RU, (2) Develop an annotated dataset called RUHSOLD consisting of 10,012 tweets in RU with both coarse-grained and fine-grained labels of hate-speech and offensive language, (3) Explore the feasibility of transfer learning of five existing embedding models to RU, (4) Propose a novel deep learning architecture called CNN-gram for hate-speech and offensive language detection and compare its performance with seven current baseline approaches on RUHSOLD dataset, and (5) Train domain-specific embeddings on more than 4.7 million tweets and make them publicly available. We conclude that transfer learning is more beneficial as compared to training embedding from scratch and that the proposed model exhibits greater robustness as compared to the baselines.

pdf bib
Suicidal Risk Detection for Military Personnel
Sungjoon Park | Kiwoong Park | Jaimeen Ahn | Alice Oh

We analyze social media for detecting the suicidal risk of military personnel, which is especially crucial for countries with compulsory military service such as the Republic of Korea. From a widely-used Korean social Q&A site, we collect posts containing military-relevant content written by active-duty military personnel. We then annotate the posts with two groups of experts: military experts and mental health experts. Our dataset includes 2,791 posts with 13,955 corresponding expert annotations of suicidal risk levels, and this dataset is available to researchers who consent to research ethics agreement. Using various fine-tuned state-of-the-art language models, we predict the level of suicide risk, reaching .88 F1 score for classifying the risks.

pdf bib
Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets
Nedjma Ousidhoum | Yangqiu Song | Dit-Yan Yeung

Work on bias in hate speech typically aims to improve classification performance while relatively overlooking the quality of the data. We examine selection bias in hate speech in a language and label independent fashion. We first use topic models to discover latent semantics in eleven hate speech corpora, then, we present two bias evaluation metrics based on the semantic similarity between topics and search words frequently used to build corpora. We discuss the possibility of revising the data collection process by comparing datasets and analyzing contrastive case studies.

pdf bib
HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media
Hsin-Yu Chen | Cheng-Te Li

In the computational detection of cyberbullying, existing work largely focused on building generic classifiers that rely exclusively on text analysis of social media sessions. Despite their empirical success, we argue that a critical missing piece is the model explainability, i.e., why a particular piece of media session is detected as cyberbullying. In this paper, therefore, we propose a novel deep model, HEterogeneous Neural Interaction Networks (HENIN), for explainable cyberbullying detection. HENIN contains the following components: a comment encoder, a post-comment co-attention sub-network, and session-session and post-post interaction extractors. Extensive experiments conducted on real datasets exhibit not only the promising performance of HENIN, but also highlight evidential comments so that one can understand why a media session is identified as cyberbullying.

pdf bib
Reactive Supervision: A New Method for Collecting Sarcasm Data
Boaz Shmueli | Lun-Wei Ku | Soumya Ray

Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.

pdf bib
Self-Induced Curriculum Learning in Self-Supervised Neural Machine Translation
Dana Ruiter | Josef van Genabith | Cristina España-Bonet

Self-supervised neural machine translation (SSNMT) jointly learns to identify and select suitable training data from comparable (rather than parallel) corpora and to translate, in a way that the two tasks support each other in a virtuous circle. In this study, we provide an in-depth analysis of the sampling choices the SSNMT model makes during training. We show how, without it having been told to do so, the model self-selects samples of increasing (i) complexity and (ii) task-relevance in combination with (iii) performing a denoising curriculum. We observe that the dynamics of the mutual-supervision signals of both system internal representation types are vital for the extraction and translation performance. We show that in terms of the Gunning-Fog Readability index, SSNMT starts extracting and learning from Wikipedia data suitable for high school students and quickly moves towards content suitable for first year undergraduate students.

pdf bib
Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Subword Systems
Jindřich Libovický | Alexander Fraser

Applying the Transformer architecture on the character level usually requires very deep architectures that are difficult and slow to train. These problems can be partially overcome by incorporating a segmentation into tokens in the model. We show that by initially training a subword model and then finetuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring token segmentation. We use only the vanilla 6-layer Transformer Base architecture. Our character-level models better capture morphological phenomena and show more robustness to noise at the expense of somewhat worse overall translation quality. Our study is a significant step towards high-performance and easy to train character-based models that are not extremely large.

pdf bib
Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages
Michael A. Hedderich | David Adelani | Dawei Zhu | Jesujoba Alabi | Udia Markus | Dietrich Klakow

Multilingual transformer models like mBERT and XLM-RoBERTa have obtained great improvements for many NLP tasks on a variety of languages. However, recent works also showed that results from high-resource languages could not be easily transferred to realistic, low-resource scenarios. In this work, we study trends in performance for different amounts of available resources for the three African languages Hausa, isiXhosa and on both NER and topic classification. We show that in combination with transfer learning or distant supervision, these models can achieve with as little as 10 or 100 labeled sentences the same performance as baselines with much more supervised training data. However, we also find settings where this does not hold. Our discussions and additional experiments on assumptions such as time and hardware restrictions highlight challenges and opportunities in low-resource learning.

pdf bib
Translation Quality Estimation by Jointly Learning to Score and Rank
Jingyi Zhang | Josef van Genabith

The translation quality estimation (QE) task, particularly the QE as a Metric task, aims to evaluate the general quality of a translation based on the translation and the source sentence without using reference translations. Supervised learning of this QE task requires human evaluation of translation quality as training data. Human evaluation of translation quality can be performed in different ways, including assigning an absolute score to a translation or ranking different translations. In order to make use of different types of human evaluation data for supervised learning, we present a multi-task learning QE model that jointly learns two tasks: score a translation and rank two translations. Our QE model exploits cross-lingual sentence embeddings from pre-trained multilingual language models. We obtain new state-of-the-art results on the WMT 2019 QE as a Metric task and outperform sentBLEU on the WMT 2019 Metrics task.

pdf bib
Direct Segmentation Models for Streaming Speech Translation
Javier Iranzo-Sánchez | Adrià Giménez Pastor | Joan Albert Silvestre-Cerdà | Pau Baquero-Arnal | Jorge Civera Saiz | Alfons Juan

The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into hopefully, semantically self-contained chunks to be fed into the MT system. This is specially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and throughly experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work.

pdf bib
Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for Bengali-English Machine Translation
Tahmid Hasan | Abhik Bhattacharjee | Kazi Samin | Masum Hasan | Madhusudan Basak | M. Sohel Rahman | Rifat Shahriyar

Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.

pdf bib
CSP:Code-Switching Pre-training for Neural Machine Translation
Zhen Yang | Bojie Hu | Ambyera Han | Shen Huang | Qi Ju

This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP randomly replaces some words in the source sentence with their translation words in the target language. Specifically, we firstly perform lexicon induction with unsupervised word embedding mapping between the source and target languages, and then randomly replace some words in the input sentence with their translation words according to the extracted translation lexicons. CSP adopts the encoder-decoder framework: its encoder takes the code-mixed sentence as input, and its decoder predicts the replaced fragment of the input sentence. In this way, CSP is able to pre-train the NMT model by explicitly making the most of the alignment information extracted from the source and target monolingual corpus. Additionally, we relieve the pretrain-finetune discrepancy caused by the artificial symbols like [mask]. To verify the effectiveness of the proposed method, we conduct extensive experiments on unsupervised and supervised NMT. Experimental results show that CSP achieves significant improvements over baselines without pre-training or with other pre-training methods.

pdf bib
Type B Reflexivization as an Unambiguous Testbed for Multilingual Multi-Task Gender Bias
Ana Valeria González | Maria Barrett | Rasmus Hvingelby | Kellie Webster | Anders Søgaard

The one-sided focus on English in previous studies of gender bias in NLP misses out on opportunities in other languages: English challenge datasets such as GAP and WinoGender highlight model preferences that are “hallucinatory”, e.g., disambiguating gender-ambiguous occurrences of ‘doctor’ as male doctors. We show that for languages with type B reflexivization, e.g., Swedish and Russian, we can construct multi-task challenge datasets for detecting gender bias that lead to unambiguously wrong model predictions: In these languages, the direct translation of ‘the doctor removed his mask’ is not ambiguous between a coreferential reading and a disjoint reading. Instead, the coreferential reading requires a non-gendered pronoun, and the gendered, possessive pronouns are anti-reflexive. We present a multilingual, multi-task challenge dataset, which spans four languages and four NLP tasks and focuses only on this phenomenon. We find evidence for gender bias across all task-language combinations and correlate model bias with national labor market statistics.

pdf bib
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information
Zehui Lin | Xiao Pan | Mingxuan Wang | Xipeng Qiu | Jiangtao Feng | Hao Zhou | Lei Li

We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.

pdf bib
Losing Heads in the Lottery: Pruning Transformer Attention in Neural Machine Translation
Maximiliana Behnke | Kenneth Heafield

The attention mechanism is the crucial component of the transformer architecture. Recent research shows that most attention heads are not confident in their decisions and can be pruned. However, removing them before training a model results in lower quality. In this paper, we apply the lottery ticket hypothesis to prune heads in the early stages of training. Our experiments on machine translation show that it is possible to remove up to three-quarters of attention heads from transformer-big during early training with an average -0.1 change in BLEU for Turkish→English. The pruned model is 1.5 times as fast at inference, albeit at the cost of longer training. Our method is complementary to other approaches, such as teacher-student, with English→German student model gaining an additional 10% speed-up with 75% encoder attention removed and 0.2 BLEU loss.

pdf bib
Towards Enhancing Faithfulness for Neural Machine Translation
Rongxiang Weng | Heng Yu | Xiangpeng Wei | Weihua Luo

Neural machine translation (NMT) has achieved great success due to the ability to generate high-quality sentences. Compared with human translations, one of the drawbacks of current NMT is that translations are not usually faithful to the input, e.g., omitting information or generating unrelated fragments, which inevitably decreases the overall quality, especially for human readers. In this paper, we propose a novel training strategy with a multi-task learning paradigm to build a faithfulness enhanced NMT model (named FEnmt). During the NMT training process, we sample a subset from the training set and translate them to get fragments that have been mistranslated. Afterward, the proposed multi-task learning paradigm is employed on both encoder and decoder to guide NMT to correctly translate these fragments. Both automatic and human evaluations verify that our FEnmt could improve translation quality by effectively reducing unfaithful translations.

pdf bib
COMET: A Neural Framework for MT Evaluation
Ricardo Rei | Craig Stewart | Ana C Farinha | Alon Lavie

We present COMET, a neural framework for training multilingual machine translation evaluation models which obtains new state-of-the-art levels of correlation with human judgements. Our framework leverages recent breakthroughs in cross-lingual pretrained language modeling resulting in highly multilingual and adaptable MT evaluation models that exploit information from both the source input and a target-language reference translation in order to more accurately predict MT quality. To showcase our framework, we train three models with different types of human judgements: Direct Assessments, Human-mediated Translation Edit Rate and Multidimensional Quality Metric. Our models achieve new state-of-the-art performance on the WMT 2019 Metrics shared task and demonstrate robustness to high-performing systems.

pdf bib
Reusing a Pretrained Language Model on Languages with Limited Corpora for Unsupervised NMT
Alexandra Chronopoulou | Dario Stojanovski | Alexander Fraser

Using a language model (LM) pretrained on two languages with large monolingual data in order to initialize an unsupervised neural machine translation (UNMT) system yields state-of-the-art results. When limited data is available for one language, however, this method leads to poor translations. We present an effective approach that reuses an LM that is pretrained only on the high-resource language. The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model. To reuse the pretrained LM, we have to modify its predefined vocabulary, to account for the new language. We therefore propose a novel vocabulary extension method. Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq), yielding more than +8.3 BLEU points for all four translation directions.

pdf bib
LNMap: Departures from Isomorphic Assumption in Bilingual Lexicon Induction Through Non-Linear Mapping in Latent Space
Tasnim Mohiuddin | M Saiful Bari | Shafiq Joty

Most of the successful and predominant methods for Bilingual Lexicon Induction (BLI) are mapping-based, where a linear mapping function is learned with the assumption that the word embedding spaces of different languages exhibit similar geometric structures (i.e. approximately isomorphic). However, several recent studies have criticized this simplified assumption showing that it does not hold in general even for closely related languages. In this work, we propose a novel semi-supervised method to learn cross-lingual word embeddings for BLI. Our model is independent of the isomorphic assumption and uses non-linear mapping in the latent space of two independently pre-trained autoencoders. Through extensive experiments on fifteen (15) different language pairs (in both directions) comprising resource-rich and low-resource languages from two different datasets, we demonstrate that our method outperforms existing models by a good margin. Ablation studies show the importance of different model components and the necessity of non-linear mapping.

pdf bib
Uncertainty-Aware Semantic Augmentation for Neural Machine Translation
Xiangpeng Wei | Heng Yu | Yue Hu | Rongxiang Weng | Luxi Xing | Weihua Luo

As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.

pdf bib
Can Automatic Post-Editing Improve NMT?
Shamil Chollampatt | Raymond Hendy Susanto | Liling Tan | Ewa Szymanska

Automatic post-editing (APE) aims to improve machine translations, thereby reducing human post-editing effort. APE has had notable success when used with statistical machine translation (SMT) systems but has not been as successful over neural machine translation (NMT) systems. This has raised questions on the relevance of APE task in the current scenario. However, the training of APE models has been heavily reliant on large-scale artificial corpora combined with only limited human post-edited data. We hypothesize that APE models have been underperforming in improving NMT translations due to the lack of adequate supervision. To ascertain our hypothesis, we compile a larger corpus of human post-edits of English to German NMT. We empirically show that a state-of-art neural APE model trained on this corpus can significantly improve a strong in-domain NMT system, challenging the current understanding in the field. We further investigate the effects of varying training data sizes, using artificial training data, and domain specificity for the APE task. We release this new corpus under CC BY-NC-SA 4.0 license at https://github.com/shamilcm/pedra.

pdf bib
Parsing Gapping Constructions Based on Grammatical and Semantic Roles
Yoshihide Kato | Shigeki Matsubara

A gapping construction consists of a coordinated structure where redundant elements are elided from all but one conjuncts. This paper proposes a method of parsing sentences with gapping to recover elided elements. The proposed method is based on constituent trees annotated with grammatical and semantic roles that are useful for identifying elided elements. Our method outperforms the previous method in terms of F-measure and recall.

pdf bib
Span-based discontinuous constituency parsing: a family of exact chart-based algorithms with time complexities from O(nˆ6) down to O(nˆ3)
Caio Corro

We introduce a novel chart-based algorithm for span-based parsing of discontinuous constituency trees of block degree two, including ill-nested structures. In particular, we show that we can build variants of our parser with smaller search spaces and time complexities ranging from O(nˆ6) down to O(nˆ3). The cubic time variant covers 98% of constituents observed in linguistic treebanks while having the same complexity as continuous constituency parsers. We evaluate our approach on German and English treebanks (Negra, Tiger, and DPTB) and report state-of-the-art results in the fully supervised setting. We also experiment with pre-trained word embeddings and Bert-based neural networks.

pdf bib
Some Languages Seem Easier to Parse Because Their Treebanks Leak
Anders Søgaard

Cross-language differences in (universal) dependency parsing performance are mostly attributed to treebank size, average sentence length, average dependency length, morphological complexity, and domain differences. We point at a factor not previously discussed: If we abstract away from words and dependency labels, how many graphs in the test data were seen in the training data? We compute graph isomorphisms, and show that, treebank size aside, overlap between training and test graphs explain more of the observed variation than standard explanations such as the above.

pdf bib
Discontinuous Constituent Parsing as Sequence Labeling
David Vilares | Carlos Gómez-Rodríguez

This paper reduces discontinuous parsing to sequence labeling. It first shows that existing reductions for constituent parsing as labeling do not support discontinuities. Second, it fills this gap and proposes to encode tree discontinuities as nearly ordered permutations of the input sequence. Third, it studies whether such discontinuous representations are learnable. The experiments show that despite the architectural simplicity, under the right representation, the models are fast and accurate.

pdf bib
Modularized Syntactic Neural Networks for Sentence Classification
Haiyan Wu | Ying Liu | Shaoyun Shi

This paper focuses on tree-based modeling for the sentence classification task. In existing works, aggregating on a syntax tree usually considers local information of sub-trees. In contrast, in addition to the local information, our proposed Modularized Syntactic Neural Network (MSNN) utilizes the syntax category labels and takes advantage of the global context while modeling sub-trees. In MSNN, each node of a syntax tree is modeled by a label-related syntax module. Each syntax module aggregates the outputs of lower-level modules, and finally, the root module provides the sentence representation. We design a tree-parallel mini-batch strategy for efficient training and predicting. Experimental results on four benchmark datasets show that our MSNN significantly outperforms previous state-of-the-art tree-based methods on the sentence classification task.

pdf bib
TED-CDB: A Large-Scale Chinese Discourse Relation Dataset on TED Talks
Wanqiu Long | Bonnie Webber | Deyi Xiong

As different genres are known to differ in their communicative properties and as previously, for Chinese, discourse relations have only been annotated over news text, we have created the TED-CDB dataset. TED-CDB comprises a large set of TED talks in Chinese that have been manually annotated according to the goals and principles of Penn Discourse Treebank, but adapted to features that are not present in English. It serves as a unique Chinese corpus of spoken discourse. Benchmark experiments show that TED-CDB poses a challenge for state-of-the-art discourse relation classifiers, whose F1 performance on 4-way classification is 60%. This is a dramatic drop of 35% from performance on the news text in the Chinese Discourse Treebank. Transfer learning experiments have been carried out with the TED-CDB for both same-language cross-domain transfer and same-domain cross-language transfer. Both demonstrate that the TED-CDB can improve the performance of systems being developed for languages other than Chinese and would be helpful for insufficient or unbalanced data in other corpora. The dataset and our Chinese annotation guidelines will be made freely available.

pdf bib
QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines
Valentina Pyatkin | Ayal Klein | Reut Tsarfaty | Ido Dagan

Discourse relations describe how two propositions relate to one another, and identifying them automatically is an integral part of natural language understanding. However, annotating discourse relations typically requires expert annotators. Recently, different semantic aspects of a sentence have been represented and crowd-sourced via question-and-answer (QA) pairs. This paper proposes a novel representation of discourse relations as QA pairs, which in turn allows us to crowd-source wide-coverage data annotated with discourse relations, via an intuitively appealing interface for composing such questions and answers. Based on our proposed representation, we collect a novel and wide-coverage QADiscourse dataset, and present baseline algorithms for predicting QADiscourse relations.

pdf bib
Discourse Self-Attention for Discourse Element Identification in Argumentative Student Essays
Wei Song | Ziyao Song | Ruiji Fu | Lizhen Liu | Miaomiao Cheng | Ting Liu

This paper proposes to adapt self-attention to discourse level for modeling discourse elements in argumentative student essays. Specifically, we focus on two issues. First, we propose structural sentence positional encodings to explicitly represent sentence positions. Second, we propose to use inter-sentence attentions to capture sentence interactions and enhance sentence representation. We conduct experiments on two datasets: a Chinese dataset and an English dataset. We find that (i) sentence positional encoding can lead to a large improvement for identifying discourse elements; (ii) a structural relative positional encoding of sentences shows to be most effective; (iii) inter-sentence attention vectors are useful as a kind of sentence representations for identifying discourse elements.

pdf bib
MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models
Peng Xu | Mostofa Patwary | Mohammad Shoeybi | Raul Puri | Pascale Fung | Anima Anandkumar | Bryan Catanzaro

Existing pre-trained large language models have shown unparalleled generative capabilities. However, they are not controllable. In this paper, we propose MEGATRON-CNTRL, a novel framework that uses large-scale language models and adds control to text generation by incorporating an external knowledge base. Our framework consists of a keyword predictor, a knowledge retriever, a contextual knowledge ranker, and a conditional text generator. As we do not have access to ground-truth supervision for the knowledge ranker, we make use of weak supervision from sentence embedding. The empirical results show that our model generates more fluent, consistent, and coherent stories with less repetition and higher diversity compared to prior work on the ROC story dataset. We showcase the controllability of our model by replacing the keywords used to generate stories and re-running the generation process. Human evaluation results show that 77.5% of these stories are successfully controlled by the new keywords. Furthermore, by scaling our model from 124 million to 8.3 billion parameters we demonstrate that larger models improve both the quality of generation (from 74.5% to 93.0% for consistency) and controllability (from 77.5% to 91.5%).

pdf bib
Incomplete Utterance Rewriting as Semantic Segmentation
Qian Liu | Bei Chen | Jian-Guang Lou | Bin Zhou | Dongmei Zhang

Recent years the task of incomplete utterance rewriting has raised a large attention. Previous works usually shape it as a machine translation task and employ sequence to sequence based architecture with copy mechanism. In this paper, we present a novel and extensive approach, which formulates it as a semantic segmentation task. Instead of generating from scratch, such a formulation introduces edit operations and shapes the problem as prediction of a word-level edit matrix. Benefiting from being able to capture both local and global information, our approach achieves state-of-the-art performance on several public datasets. Furthermore, our approach is four times faster than the standard approach in inference.

pdf bib
Improving Grammatical Error Correction Models with Purpose-Built Adversarial Examples
Lihao Wang | Xiaoqing Zheng

A sequence-to-sequence (seq2seq) learning with neural networks empirically shows to be an effective framework for grammatical error correction (GEC), which takes a sentence with errors as input and outputs the corrected one. However, the performance of GEC models with the seq2seq framework heavily relies on the size and quality of the corpus on hand. We propose a method inspired by adversarial training to generate more meaningful and valuable training examples by continually identifying the weak spots of a model, and to enhance the model by gradually adding the generated adversarial examples to the training set. Extensive experimental results show that such adversarial training can improve both the generalization and robustness of GEC models.

pdf bib
Homophonic Pun Generation with Lexically Constrained Rewriting
Zhiwei Yu | Hongyu Zang | Xiaojun Wan

Punning is a creative way to make conversation enjoyable and literary writing elegant. In this paper, we focus on the task of generating a pun sentence given a pair of homophones. We first find the constraint words supporting the semantic incongruity for a sentence. Then we rewrite the sentence with explicit positive and negative constraints. Our model achieves the state-of-the-art results in both automatic and human evaluations. We further make an error analysis and discuss the challenges for the computational pun models.

pdf bib
How to Make Neural Natural Language Generation as Reliable as Templates in Task-Oriented Dialogue
Henry Elder | Alexander O’Connor | Jennifer Foster

Neural Natural Language Generation (NLG) systems are well known for their unreliability. To overcome this issue, we propose a data augmentation approach which allows us to restrict the output of a network and guarantee reliability. While this restriction means generation will be less diverse than if randomly sampled, we include experiments that demonstrate the tendency of existing neural generation approaches to produce dull and repetitive text, and we argue that reliability is more important than diversity for this task. The system trained using this approach scored 100% in semantic accuracy on the E2E NLG Challenge dataset, the same as a template system.

pdf bib
Multilingual AMR-to-Text Generation
Angela Fan | Claire Gardent

Generating text from structured data is challenging because it requires bridging the gap between (i) structure and natural language (NL) and (ii) semantically underspecified input and fully specified NL output. Multilingual generation brings in an additional challenge: that of generating into languages with varied word order and morphological properties. In this work, we focus on Abstract Meaning Representations (AMRs) as structured input, where previous research has overwhelmingly focused on generating only into English. We leverage advances in cross-lingual embeddings, pretraining, and multilingual models to create multilingual AMR-to-text models that generate in twenty one different languages. Our multilingual models surpass baselines that generate into one language in eighteen languages, based on automatic metrics. We analyze the ability of our multilingual models to accurately capture morphology and word order using human evaluation, and find that native speakers judge our generations to be fluent.

pdf bib
Exploring the Linear Subspace Hypothesis in Gender Bias Mitigation
Francisco Vargas | Ryan Cotterell

Bolukbasi et al. (2016) presents one of the first gender bias mitigation techniques for word embeddings. Their method takes pre-trained word embeddings as input and attempts to isolate a linear subspace that captures most of the gender bias in the embeddings. As judged by an analogical evaluation task, their method virtually eliminates gender bias in the embeddings. However, an implicit and untested assumption of their method is that the bias subspace is actually linear. In this work, we generalize their method to a kernelized, non-linear version. We take inspiration from kernel principal component analysis and derive a non-linear bias isolation technique. We discuss and overcome some of the practical drawbacks of our method for non-linear gender bias mitigation in word embeddings and analyze empirically whether the bias subspace is actually linear. Our analysis shows that gender bias is in fact well captured by a linear subspace, justifying the assumption of Bolukbasi et al. (2016).

pdf bib
Lifelong Language Knowledge Distillation
Yung-Sung Chuang | Shang-Yu Su | Yun-Nung Chen

It is challenging to perform lifelong language learning (LLL) on a stream of different tasks without any performance degradation comparing to the multi-task counterparts. To address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily applied to existing LLL architectures in order to mitigate the degradation. Specifically, when the LLL model is trained on a new task, we assign a teacher model to first learn the new task, and pass the knowledge to the LLL model via knowledge distillation. Therefore, the LLL model can better adapt to the new task while keeping the previously learned knowledge. Experiments show that the proposed L2KD consistently improves previous state-of-the-art models, and the degradation comparing to multi-task models in LLL tasks is well mitigated for both sequence generation and text classification tasks.

pdf bib
Sparse Parallel Training of Hierarchical Dirichlet Process Topic Models
Alexander Terenin | Måns Magnusson | Leif Jonsson

To scale non-parametric extensions of probabilistic topic models such as Latent Dirichlet allocation to larger data sets, practitioners rely increasingly on parallel and distributed systems. In this work, we study data-parallel training for the hierarchical Dirichlet process (HDP) topic model. Based upon a representation of certain conditional distributions within an HDP, we propose a doubly sparse data-parallel sampler for the HDP topic model. This sampler utilizes all available sources of sparsity found in natural language - an important way to make computation efficient. We benchmark our method on a well-known corpus (PubMed) with 8m documents and 768m tokens, using a single multi-core machine in under four days.

pdf bib
Multi-label Few/Zero-shot Learning with Knowledge Aggregated from Multiple Label Graphs
Jueqing Lu | Lan Du | Ming Liu | Joanna Dipnall

Few/Zero-shot learning is a big challenge of many classifications tasks, where a classifier is required to recognise instances of classes that have very few or even no training samples. It becomes more difficult in multi-label classification, where each instance is labelled with more than one class. In this paper, we present a simple multi-graph aggregation model that fuses knowledge from multiple label graphs encoding different semantic label relationships in order to study how the aggregated knowledge can benefit multi-label zero/few-shot document classification. The model utilises three kinds of semantic information, i.e., the pre-trained word embeddings, label description, and pre-defined label relations. Experimental results derived on two large clinical datasets (i.e., MIMIC-II and MIMIC-III ) and the EU legislation dataset show that methods equipped with the multi-graph knowledge aggregation achieve significant performance improvement across almost all the measures on few/zero-shot labels.

pdf bib
Word Rotator’s Distance
Sho Yokoi | Ryo Takahashi | Reina Akama | Jun Suzuki | Kentaro Inui

One key principle for assessing textual similarity is measuring the degree of semantic overlap between texts by considering the word alignment. Such alignment-based approaches are both intuitive and interpretable; however, they are empirically inferior to the simple cosine similarity between general-purpose sentence vectors. We focus on the fact that the norm of word vectors is a good proxy for word importance, and the angle of them is a good proxy for word similarity. However, alignment-based approaches do not distinguish the norm and direction, whereas sentence-vector approaches automatically use the norm as the word importance. Accordingly, we propose decoupling word vectors into their norm and direction then computing the alignment-based similarity with the help of earth mover’s distance (optimal transport), which we refer to as word rotator’s distance. Furthermore, we demonstrate how to grow the norm and direction of word vectors (vector converter); this is a new systematic approach derived from the sentence-vector estimation methods, which can significantly improve the performance of the proposed method. On several STS benchmarks, the proposed methods outperform not only alignment-based approaches but also strong baselines. The source code is avaliable at https://github.com/eumesy/wrd

pdf bib
Disentangle-based Continual Graph Representation Learning
Xiaoyu Kou | Yankai Lin | Shaobo Liu | Peng Li | Jie Zhou | Yan Zhang

Graph embedding (GE) methods embed nodes (and/or edges) in graph into a low-dimensional semantic space, and have shown its effectiveness in modeling multi-relational data. However, existing GE models are not practical in real-world applications since it overlooked the streaming nature of incoming data. To address this issue, we study the problem of continual graph representation learning which aims to continually train a GE model on new data to learn incessantly emerging multi-relational data while avoiding catastrophically forgetting old learned knowledge. Moreover, we propose a disentangle-based continual graph representation learning (DiCGRL) framework inspired by the human’s ability to learn procedural knowledge. The experimental results show that DiCGRL could effectively alleviate the catastrophic forgetting problem and outperform state-of-the-art continual learning models. The code and datasets are released on https://github.com/KXY-PUBLIC/DiCGRL.

pdf bib
Semi-Supervised Bilingual Lexicon Induction with Two-way Interaction
Xu Zhao | Zihao Wang | Hao Wu | Yong Zhang

Semi-supervision is a promising paradigm for Bilingual Lexicon Induction (BLI) with limited annotations. However, previous semisupervised methods do not fully utilize the knowledge hidden in annotated and nonannotated data, which hinders further improvement of their performance. In this paper, we propose a new semi-supervised BLI framework to encourage the interaction between the supervised signal and unsupervised alignment. We design two message-passing mechanisms to transfer knowledge between annotated and non-annotated data, named prior optimal transport and bi-directional lexicon update respectively. Then, we perform semi-supervised learning based on a cyclic or a parallel parameter feeding routine to update our models. Our framework is a general framework that can incorporate any supervised and unsupervised BLI methods based on optimal transport. Experimental results on MUSE and VecMap datasets show significant improvement of our models. Ablation study also proves that the two-way interaction between the supervised signal and unsupervised alignment accounts for the gain of the overall performance. Results on distant language pairs further illustrate the advantage and robustness of our proposed method.

pdf bib
Wasserstein Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains
Weijie Yu | Chen Xu | Jun Xu | Liang Pang | Xiaopeng Gao | Xiaozhao Wang | Ji-Rong Wen

One approach to matching texts from asymmetrical domains is projecting the input sequences into a common semantic space as feature vectors upon which the matching function can be readily defined and learned. In real-world matching practices, it is often observed that with the training goes on, the feature vectors projected from different domains tend to be indistinguishable. The phenomenon, however, is often overlooked in existing matching models. As a result, the feature vectors are constructed without any regularization, which inevitably increases the difficulty of learning the downstream matching functions. In this paper, we propose a novel match method tailored for text matching in asymmetrical domains, called WD-Match. In WD-Match, a Wasserstein distance-based regularizer is defined to regularize the features vectors projected from different domains. As a result, the method enforces the feature projection function to generate vectors such that those correspond to different domains cannot be easily discriminated. The training process of WD-Match amounts to a game that minimizes the matching loss regularized by the Wasserstein distance. WD-Match can be used to improve different text matching methods, by using the method as its underlying matching model. Four popular text matching methods have been exploited in the paper. Experimental results based on four publicly available benchmarks showed that WD-Match consistently outperformed the underlying methods and the baselines.

pdf bib
A Simple Approach to Learning Unsupervised Multilingual Embeddings
Pratik Jawanpuria | Mayank Meghwanshi | Bamdev Mishra

Recent progress on unsupervised cross-lingual embeddings in the bilingual setting has given the impetus to learning a shared embedding space for several languages. A popular framework to solve the latter problem is to solve the following two sub-problems jointly: 1) learning unsupervised word alignment between several language pairs, and 2) learning how to map the monolingual embeddings of every language to shared multilingual space. In contrast, we propose a simple approach by decoupling the above two sub-problems and solving them separately, one after another, using existing techniques. We show that this proposed approach obtains surprisingly good performance in tasks such as bilingual lexicon induction, cross-lingual word similarity, multilingual document classification, and multilingual dependency parsing. When distant languages are involved, the proposed approach shows robust behavior and outperforms existing unsupervised multilingual word embedding approaches.

pdf bib
Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games
Subhajit Chaudhury | Daiki Kimura | Kartik Talamadupula | Michiaki Tatsubori | Asim Munawar | Ryuki Tachibana

We show that Reinforcement Learning (RL) methods for solving Text-Based Games (TBGs) often fail to generalize on unseen games, especially in small data regimes. To address this issue, we propose Context Relevant Episodic State Truncation (CREST) for irrelevant token removal in observation text for improved generalization. Our method first trains a base model using Q-learning, which typically overfits the training games. The base model’s action token distribution is used to perform observation pruning that removes irrelevant tokens. A second bootstrapped model is then retrained on the pruned observation text. Our bootstrapped agent shows improved generalization in solving unseen TextWorld games, using 10x-20x fewer training games compared to previous state-of-the-art (SOTA) methods despite requiring fewer number of training episodes.

pdf bib
BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover’s Distance
Jianquan Li | Xiaokang Liu | Honghong Zhao | Ruifeng Xu | Min Yang | Yaohong Jin

Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for different NLP tasks. In addition, we leverage Earth Mover’s Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables effective matching for the many-to-many layer mapping. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the model’s performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression

pdf bib
Slot Attention with Value Normalization for Multi-Domain Dialogue State Tracking
Yexiang Wang | Yi Guo | Siqi Zhu

Incompleteness of domain ontology and unavailability of some values are two inevitable problems of dialogue state tracking (DST). Existing approaches generally fall into two extremes: choosing models without ontology or embedding ontology in models leading to over-dependence. In this paper, we propose a new architecture to cleverly exploit ontology, which consists of Slot Attention (SA) and Value Normalization (VN), referred to as SAVN. Moreover, we supplement the annotation of supporting span for MultiWOZ 2.1, which is the shortest span in utterances to support the labeled value. SA shares knowledge between slots and utterances and only needs a simple structure to predict the supporting span. VN is designed specifically for the use of ontology, which can convert supporting spans to the values. Empirical results demonstrate that SAVN achieves the state-of-the-art joint accuracy of 54.52% on MultiWOZ 2.0 and 54.86% on MultiWOZ 2.1. Besides, we evaluate VN with incomplete ontology. The results show that even if only 30% ontology is used, VN can also contribute to our model.

pdf bib
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Sebastian Riedel | Pasquale Minervini | Pontus Stenetorp

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf bib
Multi-Step Inference for Reasoning Over Paragraphs
Jiangming Liu | Matt Gardner | Shay B. Cohen | Mirella Lapata

Complex reasoning over text requires understanding and chaining together free-form predicates and logical connectives. Prior work has largely tried to do this either symbolically or with black-box transformers. We present a middle ground between these two extremes: a compositional model reminiscent of neural module networks that can perform chained logical reasoning. This model first finds relevant sentences in the context and then chains them together using neural modules. Our model gives significant performance improvements (up to 29% relative error reduction when combined with a reranker) on ROPES, a recently-introduced complex reasoning dataset.

pdf bib
Learning a Cost-Effective Annotation Policy for Question Answering
Bernhard Kratzwald | Stefan Feuerriegel | Huan Sun

State-of-the-art question answering (QA) relies upon large amounts of training data for which labeling is time consuming and thus expensive. For this reason, customizing QA systems is challenging. As a remedy, we propose a novel framework for annotating QA datasets that entails learning a cost-effective annotation policy and a semi-supervised annotation scheme. The latter reduces the human effort: it leverages the underlying QA system to suggest potential candidate annotations. Human annotators then simply provide binary feedback on these candidates. Our system is designed such that past annotations continuously improve the future performance and thus overall annotation cost. To the best of our knowledge, this is the first paper to address the problem of annotating questions with minimal annotation cost. We compare our framework against traditional manual annotations in an extensive set of experiments. We find that our approach can reduce up to 21.1% of the annotation cost.

pdf bib
Scene Restoring for Narrative Machine Reading Comprehension
Zhixing Tian | Yuanzhe Zhang | Kang Liu | Jun Zhao | Yantao Jia | Zhicheng Sheng

This paper focuses on machine reading comprehension for narrative passages. Narrative passages usually describe a chain of events. When reading this kind of passage, humans tend to restore a scene according to the text with their prior knowledge, which helps them understand the passage comprehensively. Inspired by this behavior of humans, we propose a method to let the machine imagine a scene during reading narrative for better comprehension. Specifically, we build a scene graph by utilizing Atomic as the external knowledge and propose a novel Graph Dimensional-Iteration Network (GDIN) to encode the graph. We conduct experiments on the ROCStories, a dataset of Story Cloze Test (SCT), and CosmosQA, a dataset of multiple choice. Our method achieves state-of-the-art.

pdf bib
A Simple and Effective Model for Answering Multi-span Questions
Elad Segal | Avia Efrat | Mor Shoham | Amir Globerson | Jonathan Berant

Models for reading comprehension (RC) commonly restrict their output space to the set of all single contiguous spans from the input, in order to alleviate the learning problem and avoid the need for a model that generates text explicitly. However, forcing an answer to be a single span can be restrictive, and some recent datasets also include multi-span questions, i.e., questions whose answer is a set of non-contiguous spans in the text. Naturally, models that return single spans cannot answer these questions. In this work, we propose a simple architecture for answering multi-span questions by casting the task as a sequence tagging problem, namely, predicting for each input token whether it should be part of the output or not. Our model substantially improves performance on span extraction questions from DROP and Quoref by 9.9 and 5.5 EM points respectively.

pdf bib
Top-Rank-Focused Adaptive Vote Collection for the Evaluation of Domain-Specific Semantic Models
Pierangelo Lombardo | Alessio Boiardi | Luca Colombo | Angelo Schiavone | Nicolò Tamagnone

The growth of domain-specific applications of semantic models, boosted by the recent achievements of unsupervised embedding learning algorithms, demands domain-specific evaluation datasets. In many cases, content-based recommenders being a prime example, these models are required to rank words or texts according to their semantic relatedness to a given concept, with particular focus on top ranks. In this work, we give a threefold contribution to address these requirements: (i) we define a protocol for the construction, based on adaptive pairwise comparisons, of a relatedness-based evaluation dataset tailored on the available resources and optimized to be particularly accurate in top-rank evaluation; (ii) we define appropriate metrics, extensions of well-known ranking correlation coefficients, to evaluate a semantic model via the aforementioned dataset by taking into account the greater significance of top ranks. Finally, (iii) we define a stochastic transitivity model to simulate semantic-driven pairwise comparisons, which confirms the effectiveness of the proposed dataset construction protocol.

pdf bib
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
Chengyu Wang | Minghui Qiu | Jun Huang | Xiaofeng He

Pre-trained neural language models bring significant improvement for various NLP tasks, by fine-tuning the models on task-specific training sets. During fine-tuning, the parameters are initialized from pre-trained models directly, which ignores how the learning process of similar NLP tasks in different domains is correlated and mutually reinforced. In this paper, we propose an effective learning procedure named Meta Fine-Tuning (MFT), serving as a meta-learner to solve a group of similar NLP tasks for neural language models. Instead of simply multi-task training over all the datasets, MFT only learns from typical instances of various domains to acquire highly transferable knowledge. It further encourages the language model to encode domain-invariant representations by optimizing a series of novel domain corruption loss functions. After MFT, the model can be fine-tuned for each domain with better parameter initializations and higher generalization ability. We implement MFT upon BERT to solve several multi-domain text mining tasks. Experimental results confirm the effectiveness of MFT and its usefulness for few-shot learning.

pdf bib
Incorporating Behavioral Hypotheses for Query Generation
Ruey-Cheng Chen | Chia-Jung Lee

Generative neural networks have been shown effective on query suggestion. Commonly posed as a conditional generation problem, the task aims to leverage earlier inputs from users in a search session to predict queries that they will likely issue at a later time. User inputs come in various forms such as querying and clicking, each of which can imply different semantic signals channeled through the corresponding behavioral patterns. This paper induces these behavioral biases as hypotheses for query generation, where a generic encoder-decoder Transformer framework is presented to aggregate arbitrary hypotheses of choice. Our experimental results show that the proposed approach leads to significant improvements on top-k word error rate and Bert F1 Score compared to a recent BART model.

pdf bib
Conditional Causal Relationships between Emotions and Causes in Texts
Xinhong Chen | Qing Li | Jianping Wang

The causal relationships between emotions and causes in text have recently received a lot of attention. Most of the existing works focus on the extraction of the causally related clauses from documents. However, none of these works has considered the possibility that the causal relationships among the extracted emotion and cause clauses may only be valid under a specific context, without which the extracted clauses may not be causally related. To address such an issue, we propose a new task of determining whether or not an input pair of emotion and cause has a valid causal relationship under different contexts, and construct a corresponding dataset via manual annotation and negative sampling based on an existing benchmark dataset. Furthermore, we propose a prediction aggregation module with low computational overhead to fine-tune the prediction results based on the characteristics of the input clauses. Experiments demonstrate the effectiveness and generality of our aggregation module.

pdf bib
COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella | Fangyu Liu | Ehsan Shareghi | Nigel Collier

Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.

pdf bib
Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel | Naomi Saphra | Adina Williams | Ryan Cotterell

The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe’s performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.

pdf bib
Interpretation of NLP models through input marginalization
Siwon Kim | Jihun Yi | Eunji Kim | Sungroh Yoon

To demystify the “black box” property of deep neural networks for natural language processing (NLP), several methods have been proposed to interpret their predictions by measuring the change in prediction probability after erasing each token of an input. Since existing methods replace each token with a predefined value (i.e., zero), the resulting sentence lies out of the training data distribution, yielding misleading interpretations. In this study, we raise the out-of-distribution problem induced by the existing interpretation methods and present a remedy; we propose to marginalize each token out. We interpret various NLP models trained for sentiment analysis and natural language inference using the proposed method.

pdf bib
Generating Label Cohesive and Well-Formed Adversarial Claims
Pepa Atanasova | Dustin Wright | Isabelle Augenstein

Adversarial attacks reveal important vulnerabilities and flaws of trained models. One potent type of attack are universal adversarial triggers, which are individual n-grams that, when appended to instances of a class under attack, can trick a model into predicting a target class. However, for inference tasks such as fact checking, these triggers often inadvertently invert the meaning of instances they are inserted in. In addition, such attacks produce semantically nonsensical inputs, as they simply concatenate triggers to existing samples. Here, we investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning and are semantically valid. We extend the HotFlip attack algorithm used for universal trigger generation by jointly minimizing the target class loss of a fact checking model and the entailment class loss of an auxiliary natural language inference model. We then train a conditional language model to generate semantically valid statements, which include the found universal triggers. We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.

pdf bib
Are All Good Word Vector Spaces Isomorphic?
Ivan Vulić | Sebastian Ruder | Anders Søgaard

Existing algorithms for aligning cross-lingual word vector spaces assume that vector spaces are approximately isomorphic. As a result, they perform poorly or fail completely on non-isomorphic spaces. Such non-isomorphism has been hypothesised to result from typological differences between languages. In this work, we ask whether non-isomorphism is also crucially a sign of degenerate word vector spaces. We present a series of experiments across diverse languages which show that variance in performance across language pairs is not only due to typological differences, but can mostly be attributed to the size of the monolingual resources available, and to the properties and duration of monolingual training (e.g. “under-training”).

pdf bib
Cold-Start and Interpretability: Turning Regular Expressions into Trainable Recurrent Neural Networks
Chengyue Jiang | Yinggong Zhao | Shanbo Chu | Libin Shen | Kewei Tu

Neural networks can achieve impressive performance on many natural language processing applications, but they typically need large labeled data for training and are not easily interpretable. On the other hand, symbolic rules such as regular expressions are interpretable, require no training, and often achieve decent accuracy; but rules cannot benefit from labeled data when available and hence underperform neural networks in rich-resource scenarios. In this paper, we propose a type of recurrent neural networks called FA-RNNs that combine the advantages of neural networks and regular expression rules. An FA-RNN can be converted from regular expressions and deployed in zero-shot and cold-start scenarios. It can also utilize labeled data for training to achieve improved prediction accuracy. After training, an FA-RNN often remains interpretable and can be converted back into regular expressions. We apply FA-RNNs to text classification and observe that FA-RNNs significantly outperform previous neural approaches in both zero-shot and low-resource settings and remain very competitive in rich-resource settings.

pdf bib
When BERT Plays the Lottery, All Tickets Are Winning
Sai Prasanna | Anna Rogers | Anna Rumshisky

Large Transformer-based models were shown to be reducible to a smaller number of self-attention heads and layers. We consider this phenomenon from the perspective of the lottery ticket hypothesis, using both structured and magnitude pruning. For fine-tuned BERT, we show that (a) it is possible to find subnetworks achieving performance that is comparable with that of the full model, and (b) similarly-sized subnetworks sampled from the rest of the model perform worse. Strikingly, with structured pruning even the worst possible subnetworks remain highly trainable, indicating that most pre-trained BERT weights are potentially useful. We also study the “good” subnetworks to see if their success can be attributed to superior linguistic knowledge, but find them unstable, and not explained by meaningful self-attention patterns.

pdf bib
On the weak link between importance and prunability of attention heads
Aakriti Budhraja | Madhura Pande | Preksha Nema | Pratyush Kumar | Mitesh M. Khapra

Given the success of Transformer-based models, two directions of study have emerged: interpreting role of individual attention heads and down-sizing the models for efficiency. Our work straddles these two streams: We analyse the importance of basing pruning strategies on the interpreted role of the attention heads. We evaluate this on Transformer and BERT models on multiple NLP tasks. Firstly, we find that a large fraction of the attention heads can be randomly pruned with limited effect on accuracy. Secondly, for Transformers, we find no advantage in pruning attention heads identified to be important based on existing studies that relate importance to the location of a head. On the BERT model too we find no preference for top or bottom layers, though the latter are reported to have higher importance. However, strategies that avoid pruning middle layers and consecutive layers perform better. Finally, during fine-tuning the compensation for pruned attention heads is roughly equally distributed across the un-pruned heads. Our results thus suggest that interpretation of attention heads does not strongly inform pruning.

pdf bib
Towards Interpreting BERT for Reading Comprehension Based QA
Sahana Ramnath | Preksha Nema | Deep Sahni | Mitesh M. Khapra

BERT and its variants have achieved state-of-the-art performance in various NLP tasks. Since then, various works have been proposed to analyze the linguistic information being captured in BERT. However, the current works do not provide an insight into how BERT is able to achieve near human-level performance on the task of Reading Comprehension based Question Answering. In this work, we attempt to interpret BERT for RCQA. Since BERT layers do not have predefined roles, we define a layer’s role or functionality using Integrated Gradients. Based on the defined roles, we perform a preliminary analysis across all layers. We observed that the initial layers focus on query-passage interaction, whereas later layers focus more on contextual understanding and enhancing the answer prediction. Specifically for quantifier questions (how much/how many), we notice that BERT focuses on confusing words (i.e., on other numerical quantities in the passage) in the later layers, but still manages to predict the answer correctly. The fine-tuning and analysis scripts will be publicly available at https://github.com/iitmnlp/BERT-Analysis-RCQA.

pdf bib
How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking
Nicola De Cao | Michael Sejr Schlichtkrull | Wilker Aziz | Ivan Titov

Attribution methods assess the contribution of inputs to the model prediction. One way to do so is erasure: a subset of inputs is considered irrelevant if it can be removed without affecting the prediction. Though conceptually simple, erasure’s objective is intractable and approximate search remains expensive with modern deep NLP models. Erasure is also susceptible to the hindsight bias: the fact that an input can be dropped does not mean that the model ‘knows’ it can be dropped. The resulting pruning is over-aggressive and does not reflect how the model arrives at the prediction. To deal with these challenges, we introduce Differentiable Masking. DiffMask learns to mask-out subsets of the input while maintaining differentiability. The decision to include or disregard an input token is made with a simple model based on intermediate hidden layers of the analyzed model. First, this makes the approach efficient because we predict rather than search. Second, as with probing classifiers, this reveals what the network ‘knows’ at the corresponding layers. This lets us not only plot attribution heatmaps but also analyze how decisions are formed across network layers. We use DiffMask to study BERT models on sentiment classification and question answering.

pdf bib
A Diagnostic Study of Explainability Techniques for Text Classification
Pepa Atanasova | Jakob Grue Simonsen | Christina Lioma | Isabelle Augenstein

Recent developments in machine learning have introduced models that approach human performance at the cost of increased architectural complexity. Efforts to make the rationales behind the models’ predictions transparent have inspired an abundance of new explainability techniques. Provided with an already trained model, they compute saliency scores for the words of an input instance. However, there exists no definitive guide on (i) how to choose such a technique given a particular application task and model architecture, and (ii) the benefits and drawbacks of using each such technique. In this paper, we develop a comprehensive list of diagnostic properties for evaluating existing explainability techniques. We then employ the proposed list to compare a set of diverse explainability techniques on downstream text classification tasks and neural network architectures. We also compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model’s performance and the agreement of its rationales with human ones. Overall, we find that the gradient-based explanations perform best across tasks and model architectures, and we present further insights into the properties of the reviewed explainability techniques.

pdf bib
STL-CQA: Structure-based Transformers with Localization and Encoding for Chart Question Answering
Hrituraj Singh | Sumit Shekhar

Chart Question Answering (CQA) is the task of answering natural language questions about visualisations in the chart image. Recent solutions, inspired by VQA approaches, rely on image-based attention for question/answering while ignoring the inherent chart structure. We propose STL-CQA which improves the question/answering through sequential elements localization, question encoding and then, a structural transformer-based learning approach. We conduct extensive experiments while proposing pre-training tasks, methodology and also an improved dataset with more complex and balanced questions of different types. The proposed methodology shows a significant accuracy improvement compared to the state-of-the-art approaches on various chart Q/A datasets, while outperforming even human baseline on the DVQA Dataset. We also demonstrate interpretability while examining different components in the inference pipeline.

pdf bib
Learning to Contrast the Counterfactual Samples for Robust Visual Question Answering
Zujie Liang | Weitao Jiang | Haifeng Hu | Jiaying Zhu

In the task of Visual Question Answering (VQA), most state-of-the-art models tend to learn spurious correlations in the training set and achieve poor performance in out-of-distribution test data. Some methods of generating counterfactual samples have been proposed to alleviate this problem. However, the counterfactual samples generated by most previous methods are simply added to the training data for augmentation and are not fully utilized. Therefore, we introduce a novel self-supervised contrastive learning mechanism to learn the relationship between original samples, factual samples and counterfactual samples. With the better cross-modal joint embeddings learned from the auxiliary training objective, the reasoning capability and robustness of the VQA model are boosted significantly. We evaluate the effectiveness of our method by surpassing current state-of-the-art models on the VQA-CP dataset, a diagnostic benchmark for assessing the VQA model’s robustness.

pdf bib
Learning Physical Common Sense as Knowledge Graph Completion via BERT Data Augmentation and Constrained Tucker Factorization
Zhenjie Zhao | Evangelos Papalexakis | Xiaojuan Ma

Physical common sense plays an essential role in the cognition abilities of robots for human-robot interaction. Machine learning methods have shown promising results on physical commonsense learning in natural language processing but still suffer from model generalization. In this paper, we formulate physical commonsense learning as a knowledge graph completion problem to better use the latent relationships among training samples. Compared with completing general knowledge graphs, completing a physical commonsense knowledge graph has three unique characteristics: training data are scarce, not all facts can be mined from existing texts, and the number of relationships is small. To deal with these problems, we first use a pre-training language model BERT to augment training data, and then employ constrained tucker factorization to model complex relationships by constraining types and adding negative relationships. We compare our method with existing state-of-the-art knowledge graph embedding methods and show its superior performance.

pdf bib
A Visually-grounded First-person Dialogue Dataset with Verbal and Non-verbal Responses
Hisashi Kamezawa | Noriki Nishida | Nobuyuki Shimizu | Takashi Miyazaki | Hideki Nakayama

In real-world dialogue, first-person visual information about where the other speakers are and what they are paying attention to is crucial to understand their intentions. Non-verbal responses also play an important role in social interactions. In this paper, we propose a visually-grounded first-person dialogue (VFD) dataset with verbal and non-verbal responses. The VFD dataset provides manually annotated (1) first-person images of agents, (2) utterances of human speakers, (3) eye-gaze locations of the speakers, and (4) the agents’ verbal and non-verbal responses. We present experimental results obtained using the proposed VFD dataset and recent neural network models (e.g., BERT, ResNet). The results demonstrate that first-person vision helps neural network models correctly understand human intentions, and the production of non-verbal responses is a challenging task like that of verbal responses. Our dataset is publicly available.

pdf bib
Cross-Media Keyphrase Prediction: A Unified Framework with Multi-Modality Multi-Head Attention and Image Wordings
Yue Wang | Jing Li | Michael Lyu | Irwin King

Social media produces large amounts of contents every day. To help users quickly capture what they need, keyphrase prediction is receiving a growing attention. Nevertheless, most prior efforts focus on text modeling, largely ignoring the rich features embedded in the matching images. In this work, we explore the joint effects of texts and images in predicting the keyphrases for a multimedia post. To better align social media style texts and images, we propose: (1) a novel Multi-Modality MultiHead Attention (M3H-Att) to capture the intricate cross-media interactions; (2) image wordings, in forms of optical characters and image attributes, to bridge the two modalities. Moreover, we design a unified framework to leverage the outputs of keyphrase classification and generation and couple their advantages. Extensive experiments on a large-scale dataset newly collected from Twitter show that our model significantly outperforms the previous state of the art based on traditional attention mechanisms. Further analyses show that our multi-head attention is able to attend information from various aspects and boost classification or generation in diverse scenarios.

pdf bib
VD-BERT: A Unified Vision and Dialog Transformer with BERT
Yue Wang | Shafiq Joty | Michael Lyu | Irwin King | Caiming Xiong | Steven C.H. Hoi

Visual dialog is a challenging vision-language task, where a dialog agent needs to answer a series of questions through reasoning on the image content and dialog history. Prior work has mostly focused on various attention mechanisms to model such intricate interactions. By contrast, in this work, we propose VD-BERT, a simple yet effective framework of unified vision-dialog Transformer that leverages the pretrained BERT language models for Visual Dialog tasks. The model is unified in that (1) it captures all the interactions between the image and the multi-turn dialog using a single-stream Transformer encoder, and (2) it supports both answer ranking and answer generation seamlessly through the same architecture. More crucially, we adapt BERT for the effective fusion of vision and dialog contents via visually grounded training. Without the need of pretraining on external vision-language data, our model yields new state of the art, achieving the top position in both single-model and ensemble settings (74.54 and 75.35 NDCG scores) on the visual dialog leaderboard. Our code and pretrained models are released at https://github.com/salesforce/VD-BERT.

pdf bib
The Grammar of Emergent Languages
Oskar van der Wal | Silvan de Boer | Elia Bruni | Dieuwke Hupkes

In this paper, we consider the syntactic properties of languages emerged in referential games, using unsupervised grammar induction (UGI) techniques originally designed to analyse natural language. We show that the considered UGI techniques are appropriate to analyse emergent languages and we then study if the languages that emerge in a typical referential game setup exhibit syntactic structure, and to what extent this depends on the maximum message length and number of symbols that the agents are allowed to use. Our experiments demonstrate that a certain message length and vocabulary size are required for structure to emerge, but they also illustrate that more sophisticated game scenarios are required to obtain syntactic properties more akin to those observed in human language. We argue that UGI techniques should be part of the standard toolkit for analysing emergent languages and release a comprehensive library to facilitate such analysis for future researchers.

pdf bib
Sub-Instruction Aware Vision-and-Language Navigation
Yicong Hong | Cristian Rodriguez | Qi Wu | Stephen Gould

Vision-and-language navigation requires an agent to navigate through a real 3D environment following natural language instructions. Despite significant advances, few previous works are able to fully utilize the strong correspondence between the visual and textual sequences. Meanwhile, due to the lack of intermediate supervision, the agent’s performance at following each part of the instruction cannot be assessed during navigation. In this work, we focus on the granularity of the visual and language sequences as well as the traceability of agents through the completion of an instruction. We provide agents with fine-grained annotations during training and find that they are able to follow the instruction better and have a higher chance of reaching the target at test time. We enrich the benchmark dataset Room-to-Room (R2R) with sub-instructions and their corresponding paths. To make use of this data, we propose effective sub-instruction attention and shifting modules that select and attend to a single sub-instruction at each time-step. We implement our sub-instruction modules in four state-of-the-art agents, compare with their baseline models, and show that our proposed method improves the performance of all four agents. We release the Fine-Grained R2R dataset (FGR2R) and the code at https://github.com/YicongHong/Fine-Grained-R2R.

pdf bib
Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Xueliang Zhao | Wei Wu | Can Xu | Chongyang Tao | Dongyan Zhao | Rui Yan

We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.

pdf bib
MinTL: Minimalist Transfer Learning for Task-Oriented Dialogue Systems
Zhaojiang Lin | Andrea Madotto | Genta Indra Winata | Pascale Fung

In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, which allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to “carryover” the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.

pdf bib
Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation
Kang Min Yoo | Hanbit Lee | Franck Dernoncourt | Trung Bui | Walter Chang | Sang-goo Lee

Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goaloriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers’ robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs – dialog response generation and user simulation, where our model outperforms previous strong baselines.

pdf bib
Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation
Xiuyi Chen | Fandong Meng | Peng Li | Feilong Chen | Shuang Xu | Bo Xu | Jie Zhou

Knowledge selection plays an important role in knowledge-grounded dialogue, which is a challenging task to generate more informative responses by leveraging external knowledge. Recently, latent variable models have been proposed to deal with the diversity of knowledge selection by using both prior and posterior distributions over knowledge and achieve promising performance. However, these models suffer from a huge gap between prior and posterior knowledge selection. Firstly, the prior selection module may not learn to select knowledge properly because of lacking the necessary posterior information. Secondly, latent variable models suffer from the exposure bias that dialogue generation is based on the knowledge selected from the posterior distribution at training but from the prior distribution at inference. Here, we deal with these issues on two aspects: (1) We enhance the prior selection module with the necessary posterior information obtained from the specially designed Posterior Information Prediction Module (PIPM); (2) We propose a Knowledge Distillation Based Training Strategy (KDBTS) to train the decoder with the knowledge selected from the prior distribution, removing the exposure bias of knowledge selection. Experimental results on two knowledge-grounded dialogue datasets show that both PIPM and KDBTS achieve performance improvement over the state-of-the-art latent variable model and their combination shows further improvement.

pdf bib
Counterfactual Off-Policy Training for Neural Dialogue Generation
Qingfu Zhu | Wei-Nan Zhang | Ting Liu | William Yang Wang

Open-domain dialogue generation suffers from the data insufficiency problem due to the vast size of potential responses. In this paper, we propose to explore potential responses by counterfactual reasoning. Given an observed response, the counterfactual reasoning model automatically infers the outcome of an alternative policy that could have been taken. The resulting counterfactual response synthesized in hindsight is of higher quality than the response synthesized from scratch. Training on the counterfactual responses under the adversarial learning framework helps to explore the high-reward area of the potential response space. An empirical study on the DailyDialog dataset shows that our approach significantly outperforms the HRED model as well as the conventional adversarial learning approaches.

pdf bib
Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired Data
Rongsheng Zhang | Yinhe Zheng | Jianzhi Shao | Xiaoxi Mao | Yadong Xi | Minlie Huang

Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data. Specifically, a data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data. A ranking module is employed to filter out low-quality dialogues. Further, a model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs, thereby preventing dialogue models from being affected by the noise in the augmented data. Automatic and manual evaluation indicates that our method can produce high-quality dialogue pairs with diverse contents, and the proposed data-level and model-level dialogue distillation can improve the performance of competitive baselines.

pdf bib
Task-Completion Dialogue Policy Learning via Monte Carlo Tree Search with Dueling Network
Sihan Wang | Kaijie Zhou | Kunfeng Lai | Jianping Shen

We introduce a framework of Monte Carlo Tree Search with Double-q Dueling network (MCTS-DDU) for task-completion dialogue policy learning. Different from the previous deep model-based reinforcement learning methods, which uses background planning and may suffer from low-quality simulated experiences, MCTS-DDU performs decision-time planning based on dialogue state search trees built by Monte Carlo simulations and is robust to the simulation errors. Such idea arises naturally in human behaviors, e.g. predicting others’ responses and then deciding our own actions. In the simulated movie-ticket booking task, our method outperforms the background planning approaches significantly. We demonstrate the effectiveness of MCTS and the dueling network in detailed ablation studies, and also compare the performance upper bounds of these two planning methods.

pdf bib
Learning a Simple and Effective Model for Multi-turn Response Generation with Auxiliary Tasks
Yufan Zhao | Can Xu | Wei Wu

We study multi-turn response generation for open-domain dialogues. The existing state-of-the-art addresses the problem with deep neural architectures. While these models improved response quality, their complexity also hinders the application of the models in real systems. In this work, we pursue a model that has a simple structure yet can effectively leverage conversation contexts for response generation. To this end, we propose four auxiliary tasks including word order recovery, utterance order recovery, masked word recovery, and masked utterance recovery, and optimize the objectives of these tasks together with maximizing the likelihood of generation. By this means, the auxiliary tasks that relate to context understanding can guide the learning of the generation model to achieve a better local optimum. Empirical studies with three benchmarks indicate that our model can significantly outperform state-of-the-art generation models in terms of response quality on both automatic evaluation and human judgment, and at the same time enjoys a much faster decoding process.

pdf bib
AttnIO: Knowledge Graph Exploration with In-and-Out Attention Flow for Knowledge-Grounded Dialogue
Jaehun Jung | Bokyung Son | Sungwon Lyu

Retrieving the proper knowledge relevant to conversational context is an important challenge in dialogue systems, to engage users with more informative response. Several recent works propose to formulate this knowledge selection problem as a path traversal over an external knowledge graph (KG), but show only a limited utilization of KG structure, leaving rooms of improvement in performance. To this effect, we present AttnIO, a new dialog-conditioned path traversal model that makes a full use of rich structural information in KG based on two directions of attention flows. Through the attention flows, AttnIO is not only capable of exploring a broad range of multi-hop knowledge paths, but also learns to flexibly adjust the varying range of plausible nodes and edges to attend depending on the dialog context. Empirical evaluations present a marked performance improvement of AttnIO compared to all baselines in OpenDialKG dataset. Also, we find that our model can be trained to generate an adequate knowledge path even when the paths are not available and only the destination nodes are given as label, making it more applicable to real-world dialogue systems.

pdf bib
Amalgamating Knowledge from Two Teachers for Task-oriented Dialogue System with Adversarial Training
Wanwei He | Min Yang | Rui Yan | Chengming Li | Ying Shen | Ruifeng Xu

The challenge of both achieving task completion by querying the knowledge base and generating human-like responses for task-oriented dialogue systems is attracting increasing research attention. In this paper, we propose a “Two-Teacher One-Student” learning framework (TTOS) for task-oriented dialogue, with the goal of retrieving accurate KB entities and generating human-like responses simultaneously. TTOS amalgamates knowledge from two teacher networks that together provide comprehensive guidance to build a high-quality task-oriented dialogue system (student network). Each teacher network is trained via reinforcement learning with a goal-specific reward, which can be viewed as an expert towards the goal and transfers the professional characteristic to the student network. Instead of adopting the classic student-teacher learning of forcing the output of a student network to exactly mimic the soft targets produced by the teacher networks, we introduce two discriminators as in generative adversarial network (GAN) to transfer knowledge from two teachers to the student. The usage of discriminators relaxes the rigid coupling between the student and teachers. Extensive experiments on two benchmark datasets (i.e., CamRest and In-Car Assistant) demonstrate that TTOS significantly outperforms baseline methods.

pdf bib
Task-oriented Domain-specific Meta-Embedding for Text Classification
Xin Wu | Yi Cai | Yang Kai | Tao Wang | Qing Li

Meta-embedding learning, which combines complementary information in different word embeddings, have shown superior performances across different Natural Language Processing tasks. However, domain-specific knowledge is still ignored by existing meta-embedding methods, which results in unstable performances across specific domains. Moreover, the importance of general and domain word embeddings is related to downstream tasks, how to regularize meta-embedding to adapt downstream tasks is an unsolved problem. In this paper, we propose a method to incorporate both domain-specific and task-oriented information into meta-embeddings. We conducted extensive experiments on four text classification datasets and the results show the effectiveness of our proposed method.

pdf bib
Don’t Neglect the Obvious: On the Role of Unambiguous Words in Word Sense Disambiguation
Daniel Loureiro | Jose Camacho-Collados

State-of-the-art methods for Word Sense Disambiguation (WSD) combine two different features: the power of pre-trained language models and a propagation method to extend the coverage of such models. This propagation is needed as current sense-annotated corpora lack coverage of many instances in the underlying sense inventory (usually WordNet). At the same time, unambiguous words make for a large portion of all words in WordNet, while being poorly covered in existing sense-annotated corpora. In this paper, we propose a simple method to provide annotations for most unambiguous words in a large corpus. We introduce the UWA (Unambiguous Word Annotations) dataset and show how a state-of-the-art propagation-based model can use it to extend the coverage and quality of its word sense embeddings by a significant margin, improving on its original results on WSD.

pdf bib
Within-Between Lexical Relation Classification
Oren Barkan | Avi Caciularu | Ido Dagan

We propose the novel Within-Between Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.

pdf bib
With More Contexts Comes Better Performance: Contextualized Sense Embeddings for All-Round Word Sense Disambiguation
Bianca Scarlini | Tommaso Pasini | Roberto Navigli

Contextualized word embeddings have been employed effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. However, it is still hard to link them to structured sources of knowledge. In this paper we present ARES (context-AwaRe Embeddings of Senses), a semi-supervised approach to producing sense embeddings for the lexical meanings within a lexical knowledge base that lie in a space that is comparable to that of contextualized word vectors. ARES representations enable a simple 1 Nearest-Neighbour algorithm to outperform state-of-the-art models, not only in the English Word Sense Disambiguation task, but also in the multilingual one, whilst training on sense-annotated data in English only. We further assess the quality of our embeddings in the Word-in-Context task, where, when used as an external source of knowledge, they consistently improve the performance of a neural model, leading it to compete with other more complex architectures. ARES embeddings for all WordNet concepts and the automatically-extracted contexts used for creating the sense representations are freely available at http://sensembert.org/ares.

pdf bib
Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis
Mi Zhang | Tieyun Qian

The state-of-the-art methods in aspect-level sentiment classification have leveraged the graph based models to incorporate the syntactic structure of a sentence. While being effective, these methods ignore the corpus level word co-occurrence information, which reflect the collocations in linguistics like “nothing special”. Moreover, they do not distinguish the different types of syntactic dependency, e.g., a nominal subject relation “food-was” is treated equally as an adjectival complement relation “was-okay” in “food was okay”. To tackle the above two limitations, we propose a novel architecture which convolutes over hierarchical syntactic and lexical graphs. Specifically, we employ a global lexical graph to encode the corpus level word co-occurrence information. Moreover, we build a concept hierarchy on both the syntactic and lexical graphs for differentiating various types of dependency relations or lexical word pairs. Finally, we design a bi-level interactive graph convolution network to fully exploit these two graphs. Extensive experiments on five bench- mark datasets show that our method outperforms the state-of-the-art baselines.

pdf bib
Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis
Yuncong Li | Cunxiang Yin | Sheng-hua Zhong | Xu Pan

Aspect-category sentiment analysis (ACSA) aims to predict sentiment polarities of sentences with respect to given aspect categories. To detect the sentiment toward a particular aspect category in a sentence, most previous methods first generate an aspect category-specific sentence representation for the aspect category, then predict the sentiment polarity based on the representation. These methods ignore the fact that the sentiment of an aspect category mentioned in a sentence is an aggregation of the sentiments of the words indicating the aspect category in the sentence, which leads to suboptimal performance. In this paper, we propose a Multi-Instance Multi-Label Learning Network for Aspect-Category sentiment analysis (AC-MIMLLN), which treats sentences as bags, words as instances, and the words indicating an aspect category as the key instances of the aspect category. Given a sentence and the aspect categories mentioned in the sentence, AC-MIMLLN first predicts the sentiments of the instances, then finds the key instances for the aspect categories, finally obtains the sentiments of the sentence toward the aspect categories by aggregating the key instance sentiments. Experimental results on three public datasets demonstrate the effectiveness of AC-MIMLLN.

pdf bib
Aspect Sentiment Classification with Aspect-Specific Opinion Spans
Lu Xu | Lidong Bing | Wei Lu | Fei Huang

Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.

pdf bib
Emotion-Cause Pair Extraction as Sequence Labeling Based on A Novel Tagging Scheme
Chaofa Yuan | Chuang Fan | Jianzhu Bao | Ruifeng Xu

The task of emotion-cause pair extraction deals with finding all emotions and the corresponding causes in unannotated emotion texts. Most recent studies are based on the likelihood of Cartesian product among all clause candidates, resulting in a high computational cost. Targeting this issue, we regard the task as a sequence labeling problem and propose a novel tagging scheme with coding the distance between linked components into the tags, so that emotions and the corresponding causes can be extracted simultaneously. Accordingly, an end-to-end model is presented to process the input texts from left to right, always with linear time complexity, leading to a speed up. Experimental results show that our proposed model achieves the best performance, outperforming the state-of-the-art method by 2.26% (p<0.001) in F1 measure.

pdf bib
End-to-End Emotion-Cause Pair Extraction based on Sliding Window Multi-Label Learning
Zixiang Ding | Rui Xia | Jianfei Yu

Emotion-cause pair extraction (ECPE) is a new task that aims to extract the potential pairs of emotions and their corresponding causes in a document. The existing methods first perform emotion extraction and cause extraction independently, and then perform emotion-cause pairing and filtering. However, the above methods ignore the fact that the cause and the emotion it triggers are inseparable, and the extraction of the cause without specifying the emotion is pathological, which greatly limits the performance of the above methods in the first step. To tackle these shortcomings, we propose two joint frameworks for ECPE: 1) multi-label learning for the extraction of the cause clauses corresponding to the specified emotion clause (CMLL) and 2) multi-label learning for the extraction of the emotion clauses corresponding to the specified cause clause (EMLL). The window of multi-label learning is centered on the specified emotion clause or cause clause and slides as their positions move. Finally, CMLL and EMLL are integrated to obtain the final result. We evaluate our model on a benchmark emotion cause corpus, the results show that our approach achieves the best performance among all compared systems on the ECPE task.

pdf bib
Multi-modal Multi-label Emotion Detection with Modality and Label Dependence
Dong Zhang | Xincheng Ju | Junhui Li | Shoushan Li | Qiaoming Zhu | Guodong Zhou

As an important research issue in the natural language processing community, multi-label emotion detection has been drawing more and more attention in the last few years. However, almost all existing studies focus on one modality (e.g., textual modality). In this paper, we focus on multi-label emotion detection in a multi-modal scenario. In this scenario, we need to consider both the dependence among different labels (label dependence) and the dependence between each predicting label and different modalities (modality dependence). Particularly, we propose a multi-modal sequence-to-set approach to effectively model both kinds of dependence in multi-modal multi-label emotion detection. The detailed evaluation demonstrates the effectiveness of our approach.

pdf bib
Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis
Xiaoyu Xing | Zhijing Jin | Di Jin | Bingning Wang | Qi Zhang | Xuanjing Huang

Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspect’s sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models’ performance on ARTS by up to 32.85%. Our code and new test set are available at https://github.com/zhijing-jin/ARTS_TestSet

pdf bib
Modeling Content Importance for Summarization with Pre-trained Language Models
Liqiang Xiao | Lu Wang | Hao He | Yaohui Jin

Modeling content importance is an essential yet challenging task for summarization. Previous work is mostly based on statistical methods that estimate word-level salience, which does not consider semantics and larger context when quantifying importance. It is thus hard for these methods to generalize to semantic units of longer text spans. In this work, we apply information theory on top of pre-trained language models and define the concept of importance from the perspective of information amount. It considers both the semantics and context when evaluating the importance of each semantic unit. With the help of pre-trained language models, it can easily generalize to different kinds of semantic units n-grams or sentences. Experiments on CNN/Daily Mail and New York Times datasets demonstrate that our method can better model the importance of content than prior work based on F1 and ROUGE scores.

pdf bib
Unsupervised Reference-Free Summary Quality Evaluation via Contrastive Learning
Hanlu Wu | Tengfei Ma | Lingfei Wu | Tariro Manyumwa | Shouling Ji

Evaluation of a document summarization system has been a critical factor to impact the success of the summarization task. Previous approaches, such as ROUGE, mainly consider the informativeness of the assessed summary and require human-generated references for each test summary. In this work, we propose to evaluate the summary qualities without reference summaries by unsupervised contrastive learning. Specifically, we design a new metric which covers both linguistic qualities and semantic informativeness based on BERT. To learn the metric, for each summary, we construct different types of negative samples with respect to different aspects of the summary qualities, and train our model with a ranking loss. Experiments on Newsroom and CNN/Daily Mail demonstrate that our new evaluation method outperforms other metrics even without reference summaries. Furthermore, we show that our method is general and transferable across datasets.

pdf bib
Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph Network
Ruipeng Jia | Yanan Cao | Hengzhu Tang | Fang Fang | Cong Cao | Shi Wang

Sentence-level extractive text summarization is substantially a node classification task of network mining, adhering to the informative components and concise representations. There are lots of redundant phrases between extracted sentences, but it is difficult to model them exactly by the general supervised methods. Previous sentence encoders, especially BERT, specialize in modeling the relationship between source sentences. While, they have no ability to consider the overlaps of the target selected summary, and there are inherent dependencies among target labels of sentences. In this paper, we propose HAHSum (as shorthand for Hierarchical Attentive Heterogeneous Graph for Text Summarization), which well models different levels of information, including words and sentences, and spotlights redundancy dependencies between sentences. Our approach iteratively refines the sentence representations with redundancy-aware graph and delivers the label dependencies by message passing. Experiments on large scale benchmark corpus (CNN/DM, NYT, and NEWSROOM) demonstrate that HAHSum yields ground-breaking performance and outperforms previous extractive summarizers.

pdf bib
Coarse-to-Fine Query Focused Multi-Document Summarization
Yumo Xu | Mirella Lapata

We consider the problem of better modeling query-cluster interactions to facilitate query focused multi-document summarization. Due to the lack of training data, existing work relies heavily on retrieval-style methods for assembling query relevant summaries. We propose a coarse-to-fine modeling framework which employs progressively more accurate modules for estimating whether text segments are relevant, likely to contain an answer, and central. The modules can be independently developed and leverage training data if available. We present an instantiation of this framework with a trained evidence estimator which relies on distant supervision from question answering (where various resources exist) to identify segments which are likely to answer the query and should be included in the summary. Our framework is robust across domains and query types (i.e., long vs short) and outperforms strong comparison systems on benchmark datasets.

pdf bib
Pre-training for Abstractive Document Summarization by Reinstating Source Text
Yanyan Zou | Xingxing Zhang | Wei Lu | Furu Wei | Ming Zhou

Abstractive document summarization is usually modeled as a sequence-to-sequence (SEQ2SEQ) learning problem. Unfortunately, training large SEQ2SEQ based summarization models on limited supervised summarization data is challenging. This paper presents three sequence-to-sequence pre-training (in shorthand, STEP) objectives which allow us to pre-train a SEQ2SEQ based abstractive summarization model on unlabeled text. The main idea is that, given an input text artificially constructed from a document, a model is pre-trained to reinstate the original document. These objectives include sentence reordering, next sentence generation and masked document generation, which have close relations with the abstractive document summarization task. Experiments on two benchmark summarization datasets (i.e., CNN/DailyMail and New York Times) show that all three objectives can improve performance upon baselines. Compared to models pre-trained on large-scale data (larger than 160GB), our method, with only 19GB text for pre-training, achieves comparable results, which demonstrates its effectiveness.

pdf bib
Learning from Context or Names? An Empirical Study on Neural Relation Extraction
Hao Peng | Tianyu Gao | Xu Han | Yankai Lin | Peng Li | Zhiyuan Liu | Maosong Sun | Jie Zhou

Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding what information in text affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at https://github.com/thunlp/RE-Context-or-Names.

pdf bib
SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction
Xuming Hu | Lijie Wen | Yusong Xu | Chenwei Zhang | Philip Yu

Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we propose a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.

pdf bib
Denoising Relation Extraction from Document-level Distant Supervision
Chaojun Xiao | Yuan Yao | Ruobing Xie | Xu Han | Zhiyuan Liu | Maosong Sun | Fen Lin | Leyu Lin

Distant supervision (DS) has been widely adopted to generate auto-labeled data for sentence-level relation extraction (RE) and achieved great results. However, the existing success of DS cannot be directly transferred to more challenging document-level relation extraction (DocRE), as the inevitable noise caused by DS may be even multiplied in documents and significantly harm the performance of RE. To alleviate this issue, we propose a novel pre-trained model for DocRE, which de-emphasize noisy DS data via multiple pre-training tasks. The experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy data and achieve promising results.

pdf bib
Let’s Stop Incorrect Comparisons in End-to-end Relation Extraction!
Bruno Taillé | Vincent Guigue | Geoffrey Scoutheeten | Patrick Gallinari

Despite efforts to distinguish three different evaluation setups (Bekoulis et al., 2018), numerous end-to-end Relation Extraction (RE) articles present unreliable performance comparison to previous work. In this paper, we first identify several patterns of invalid comparisons in published papers and describe them to avoid their propagation. We then propose a small empirical study to quantify the most common mistake’s impact and evaluate it leads to overestimating the final RE performance by around 5% on ACE05. We also seize this opportunity to study the unexplored ablations of two recent developments: the use of language model pretraining (specifically BERT) and span-level NER. This meta-analysis emphasizes the need for rigor in the report of both the evaluation setting and the dataset statistics. We finally call for unifying the evaluation setting in end-to-end RE.

pdf bib
Exposing Shallow Heuristics of Relation Extraction Models with Challenge Data
Shachar Rosenman | Alon Jacovi | Yoav Goldberg

The process of collecting and annotating training data may introduce distribution artifacts which may limit the ability of models to learn correct generalization behavior. We identify failure modes of SOTA relation extraction (RE) models trained on TACRED, which we attribute to limitations in the data annotation process. We collect and annotate a challenge-set we call Challenging RE (CRE), based on naturally occurring corpus examples, to benchmark this behavior. Our experiments with four state-of-the-art RE models show that they have indeed adopted shallow heuristics that do not generalize to the challenge-set data. Further, we find that alternative question answering modeling performs significantly better than the SOTA models on the challenge-set, despite worse overall TACRED performance. By adding some of the challenge data as training examples, the performance of the model improves. Finally, we provide concrete suggestion on how to improve RE data collection to alleviate this behavior.

pdf bib
Global-to-Local Neural Networks for Document-Level Relation Extraction
Difeng Wang | Wei Hu | Ermei Cao | Weijian Sun

Relation extraction (RE) aims to identify the semantic relations between named entities in text. Recent years have witnessed it raised to the document level, which requires complex reasoning with entities and mentions throughout an entire document. In this paper, we propose a novel model to document-level RE, by encoding the document information in terms of entity global and local representations as well as context relation representations. Entity global representations model the semantic information of all entities in the document, entity local representations aggregate the contextual information of multiple mentions of specific entities, and context relation representations encode the topic information of other relations. Experimental results demonstrate that our model achieves superior performance on two public datasets for document-level RE. It is particularly effective in extracting relations between entities of long distance and having multiple mentions.

pdf bib
Recurrent Interaction Network for Jointly Extracting Entities and Classifying Relations
Kai Sun | Richong Zhang | Samuel Mensah | Yongyi Mao | Xudong Liu

The idea of using multi-task learning approaches to address the joint extraction of entity and relation is motivated by the relatedness between the entity recognition task and the relation classification task. Existing methods using multi-task learning techniques to address the problem learn interactions among the two tasks through a shared network, where the shared information is passed into the task-specific networks for prediction. However, such an approach hinders the model from learning explicit interactions between the two tasks to improve the performance on the individual tasks. As a solution, we design a multi-task learning model which we refer to as recurrent interaction network which allows the learning of interactions dynamically, to effectively model task-specific features for classification. Empirical studies on two real-world datasets confirm the superiority of the proposed model.

pdf bib
Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols
Prachi Jain | Sushant Rathi | Mausam | Soumen Chakrabarti

Research on temporal knowledge bases, which associate a relational fact (s,r,o) with a validity time period (or time instant), is in its early days. Our work considers predicting missing entities (link prediction) and missing time intervals (time prediction) as joint Temporal Knowledge Base Completion (TKBC) tasks, and presents TIMEPLEX, a novel TKBC method, in which entities, relations and, time are all embedded in a uniform, compatible space. TIMEPLEX exploits the recurrent nature of some facts/events and temporal interactions between pairs of relations, yielding state-of-the-art results on both prediction tasks. We also find that existing TKBC models heavily overestimate link prediction performance due to imperfect evaluation mechanisms. In response, we propose improved TKBC evaluation protocols for both link and time prediction tasks, dealing with subtle issues that arise from the partial overlap of time intervals in gold instances and system predictions.

pdf bib
OpenIE6: Iterative Grid Labeling and Coordination Analysis for Open Information Extraction
Keshav Kolluru | Vaibhav Adlakha | Samarth Aggarwal | Mausam | Soumen Chakrabarti

A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand,sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this trade-off by presenting an iterative labeling-based system that establishes a new state of the art for OpenIE, while extracting 10x faster. This is achieved through a novel Iterative Grid Labeling (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. We improve its performance further by applying coverage (soft) constraints on the grid at training time. Moreover, on observing that the best OpenIE systems falter at handling coordination structures, our OpenIE system also incorporates a new coordination analyzer built with the same IGL architecture. This IGL based coordination analyzer helps our OpenIE system handle complicated coordination structures, while also establishing a new state of the art on the task of coordination analysis, with a 12.3 pts improvement in F1 over previous analyzers. Our OpenIE system - OpenIE6 - beats the previous systems by as much as 4 pts in F1, while being much faster.

pdf bib
Public Sentiment Drift Analysis Based on Hierarchical Variational Auto-encoder
Wenyue Zhang | Xiaoli Li | Yang Li | Suge Wang | Deyu Li | Jian Liao | Jianxing Zheng

Detecting public sentiment drift is a challenging task due to sentiment change over time. Existing methods first build a classification model using historical data and subsequently detect drift if the model performs much worse on new data. In this paper, we focus on distribution learning by proposing a novel Hierarchical Variational Auto-Encoder (HVAE) model to learn better distribution representation, and design a new drift measure to directly evaluate distribution changes between historical data and new data. Our experimental results demonstrate that our proposed model achieves better results than three existing state-of-the-art methods.

pdf bib
Point to the Expression: Solving Algebraic Word Problems using the Expression-Pointer Transformer Model
Bugeun Kim | Kyung Seo Ki | Donggeon Lee | Gahgene Gweon

Solving algebraic word problems has recently emerged as an important natural language processing task. To solve algebraic word problems, recent studies suggested neural models that generate solution equations by using ‘Op (operator/operand)’ tokens as a unit of input/output. However, such a neural model suffered two issues: expression fragmentation and operand-context separation. To address each of these two issues, we propose a pure neural model, Expression-Pointer Transformer (EPT), which uses (1) ‘Expression’ token and (2) operand-context pointers when generating solution equations. The performance of the EPT model is tested on three datasets: ALG514, DRAW-1K, and MAWPS. Compared to the state-of-the-art (SoTA) models, the EPT model achieved a comparable performance accuracy in each of the three datasets; 81.3% on ALG514, 59.5% on DRAW-1K, and 84.5% on MAWPS. The contribution of this paper is two-fold; (1) We propose a pure neural model, EPT, which can address the expression fragmentation and the operand-context separation. (2) The fully automatic EPT model, which does not use hand-crafted features, yields comparable performance to existing models using hand-crafted features, and achieves better performance than existing pure neural models by at most 40%.

pdf bib
Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
Jinghui Qin | Lihui Lin | Xiaodan Liang | Rumin Zhang | Liang Lin

A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols’ semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.

pdf bib
Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou | Xuemeng Hu | Rui Wang

Graph Neural Networks (GNNs) that capture the relationships between graph nodes via message passing have been a hot research direction in the natural language processing community. In this paper, we propose Graph Topic Model (GTM), a GNN based neural topic model that represents a corpus as a document relationship graph. Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences. By introducing the graph structure, the relationships between documents are established through their shared words and thus the topical representation of a document is enriched by aggregating information from its neighboring nodes using graph convolution. Extensive experiments on three datasets were conducted and the results demonstrate the effectiveness of the proposed approach.

pdf bib
Routing Enforced Generative Model for Recipe Generation
Zhiwei Yu | Hongyu Zang | Xiaojun Wan

One of the most challenging part of recipe generation is to deal with the complex restrictions among the input ingredients. Previous researches simplify the problem by treating the inputs independently and generating recipes containing as much information as possible. In this work, we propose a routing method to dive into the content selection under the internal restrictions. The routing enforced generative model (RGM) can generate appropriate recipes according to the given ingredients and user preferences. Our model yields new state-of-the-art results on the recipe generation task with significant improvements on BLEU, F1 and human evaluation.

pdf bib
Assessing the Helpfulness of Learning Materials with Inference-Based Learner-Like Agent
Yun-Hsuan Jen | Chieh-Yang Huang | MeiHua Chen | Ting-Hao Huang | Lun-Wei Ku

Many English-as-a-second language learners have trouble using near-synonym words (e.g., small vs.little; briefly vs.shortly) correctly, and often look for example sentences to learn how two nearly synonymous terms differ. Prior work uses hand-crafted scores to recommend sentences but has difficulty in adopting such scores to all the near-synonyms as near-synonyms differ in various ways. We notice that the helpfulness of the learning material would reflect on the learners’ performance. Thus, we propose the inference-based learner-like agent to mimic learner behavior and identify good learning materials by examining the agent’s performance. To enable the agent to behave like a learner, we leverage entailment modeling’s capability of inferring answers from the provided materials. Experimental results show that the proposed agent is equipped with good learner-like behavior to achieve the best performance in both fill-in-the-blank (FITB) and good example sentence selection tasks. We further conduct a classroom user study with college ESL learners. The results of the user study show that the proposed agent can find out example sentences that help students learn more easily and efficiently. Compared to other models, the proposed agent improves the score of more than 17% of students after learning.

pdf bib
Selection and Generation: Learning towards Multi-Product Advertisement Post Generation
Zhangming Chan | Yuchi Zhang | Xiuying Chen | Shen Gao | Zhiqiang Zhang | Dongyan Zhao | Rui Yan

As the E-commerce thrives, high-quality online advertising copywriting has attracted more and more attention. Different from the advertising copywriting for a single product, an advertisement (AD) post includes an attractive topic that meets the customer needs and description copywriting about several products under its topic. A good AD post can highlight the characteristics of each product, thus helps customers make a good choice among candidate products. Hence, multi-product AD post generation is meaningful and important. We propose a novel end-to-end model named S-MG Net to generate the AD post. Targeted at such a challenging real-world problem, we split the AD post generation task into two subprocesses: (1) select a set of products via the SelectNet (Selection Network). (2) generate a post including selected products via the MGenNet (Multi-Generator Network). Concretely, SelectNet first captures the post topic and the relationship among the products to output the representative products. Then, MGenNet generates the description copywriting of each product. Experiments conducted on a large-scale real-world AD post dataset demonstrate that our proposed model achieves impressive performance in terms of both automatic metrics as well as human evaluations.

pdf bib
Form2Seq : A Framework for Higher-Order Form Structure Extraction
Milan Aggarwal | Hiresh Gupta | Mausoom Sarkar | Balaji Krishnamurthy

Document structure extraction has been a widely researched area for decades with recent works performing it as a semantic segmentation task over document images using fully-convolution networks. Such methods are limited by image resolution due to which they fail to disambiguate structures in dense regions which appear commonly in forms. To mitigate this, we propose Form2Seq, a novel sequence-to-sequence (Seq2Seq) inspired framework for structure extraction using text, with a specific focus on forms, which leverages relative spatial arrangement of structures. We discuss two tasks; 1) Classification of low-level constituent elements (TextBlock and empty fillable Widget) into ten types such as field captions, list items, and others; 2) Grouping lower-level elements into higher-order constructs, such as Text Fields, ChoiceFields and ChoiceGroups, used as information collection mechanism in forms. To achieve this, we arrange the constituent elements linearly in natural reading order, feed their spatial and textual representations to Seq2Seq framework, which sequentially outputs prediction of each element depending on the final task. We modify Seq2Seq for grouping task and discuss improvements obtained through cascaded end-to-end training of two tasks versus training in isolation. Experimental results show the effectiveness of our text-based approach achieving an accuracy of 90% on classification task and an F1 of 75.82, 86.01, 61.63 on groups discussed above respectively, outperforming segmentation baselines. Further we show our framework achieves state of the results for table structure recognition on ICDAR 2013 dataset.

pdf bib
Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble
Peerat Limkonchotiwat | Wannaphong Phatthiyaphaibun | Raheem Sarwar | Ekapol Chuangsuwanich | Sarana Nutanong

Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as “black boxes”. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method.

pdf bib
DagoBERT: Generating Derivational Morphology with a Pretrained Language Model
Valentin Hofmann | Janet Pierrehumbert | Hinrich Schütze

Can pretrained language models (PLMs) generate derivationally complex words? We present the first study investigating this question, taking BERT as the example PLM. We examine BERT’s derivational capabilities in different settings, ranging from using the unmodified pretrained model to full finetuning. Our best model, DagoBERT (Derivationally and generatively optimized BERT), clearly outperforms the previous state of the art in derivation generation (DG). Furthermore, our experiments show that the input segmentation crucially impacts BERT’s derivational knowledge, suggesting that the performance of PLMs could be further improved if a morphologically informed vocabulary of units were used.

pdf bib
Attention Is All You Need for Chinese Word Segmentation
Sufeng Duan | Hai Zhao

Taking greedy decoding algorithm as it should be, this work focuses on further strengthening the model itself for Chinese word segmentation (CWS), which results in an even more fast and more accurate CWS model. Our model consists of an attention only stacked encoder and a light enough decoder for the greedy segmentation plus two highway connections for smoother training, in which the encoder is composed of a newly proposed Transformer variant, Gaussian-masked Directional (GD) Transformer, and a biaffine attention scorer. With the effective encoder design, our model only needs to take unigram features for scoring. Our model is evaluated on SIGHAN Bakeoff benchmark datasets. The experimental results show that with the highest segmentation speed, the proposed model achieves new state-of-the-art or comparable performance against strong baselines in terms of strict closed test setting.

pdf bib
A Joint Multiple Criteria Model in Transfer Learning for Cross-domain Chinese Word Segmentation
Kaiyu Huang | Degen Huang | Zhuang Liu | Fengran Mo

Word-level information is important in natural language processing (NLP), especially for the Chinese language due to its high linguistic complexity. Chinese word segmentation (CWS) is an essential task for Chinese downstream NLP tasks. Existing methods have already achieved a competitive performance for CWS on large-scale annotated corpora. However, the accuracy of the method will drop dramatically when it handles an unsegmented text with lots of out-of-vocabulary (OOV) words. In addition, there are many different segmentation criteria for addressing different requirements of downstream NLP tasks. Excessive amounts of models with saving different criteria will generate the explosive growth of the total parameters. To this end, we propose a joint multiple criteria model that shares all parameters to integrate different segmentation criteria into one model. Besides, we utilize a transfer learning method to improve the performance of OOV words. Our proposed method is evaluated by designing comprehensive experiments on multiple benchmark datasets (e.g., Bakeoff 2005, Bakeoff 2008 and SIGHAN 2010). Our method achieves the state-of-the-art performances on all datasets. Importantly, our method also shows a competitive practicability and generalization ability for the CWS task.

pdf bib
Alignment-free Cross-lingual Semantic Role Labeling
Rui Cai | Mirella Lapata

Cross-lingual semantic role labeling (SRL) aims at leveraging resources in a source language to minimize the effort required to construct annotations or models for a new target language. Recent approaches rely on word alignments, machine translation engines, or preprocessing tools such as parsers or taggers. We propose a cross-lingual SRL model which only requires annotations in a source language and access to raw text in the form of a parallel corpus. The backbone of our model is an LSTM-based semantic role labeler jointly trained with a semantic role compressor and multilingual word embeddings. The compressor collects useful information from the output of the semantic role labeler, filtering noisy and conflicting evidence. It lives in a multilingual embedding space and provides direct supervision for predicting semantic roles in the target language. Results on the Universal Proposition Bank and manually annotated datasets show that our method is highly effective, even against systems utilizing supervised features.

pdf bib
Leveraging Declarative Knowledge in Text and First-Order Logic for Fine-Grained Propaganda Detection
Ruize Wang | Duyu Tang | Nan Duan | Wanjun Zhong | Zhongyu Wei | Xuanjing Huang | Daxin Jiang | Ming Zhou

We study the detection of propagandistic text fragments in news articles. Instead of merely learning from input-output datapoints in training data, we introduce an approach to inject declarative knowledge of fine-grained propaganda techniques. Specifically, we leverage the declarative knowledge expressed in both first-order logic and natural language. The former refers to the logical consistency between coarse- and fine-grained predictions, which is used to regularize the training process with propositional Boolean expressions. The latter refers to the literal definition of each propaganda technique, which is utilized to get class representations for regularizing the model parameters. We conduct experiments on Propaganda Techniques Corpus, a large manually annotated dataset for fine-grained propaganda detection. Experiments show that our method achieves superior performance, demonstrating that leveraging declarative knowledge can help the model to make more accurate predictions.

pdf bib
X-SRL: A Parallel Cross-Lingual Semantic Role Labeling Dataset
Angel Daza | Anette Frank

Even though SRL is researched for many languages, major improvements have mostly been obtained for English, for which more resources are available. In fact, existing multilingual SRL datasets contain disparate annotation styles or come from different domains, hampering generalization in multilingual learning. In this work we propose a method to automatically construct an SRL corpus that is parallel in four languages: English, French, German, Spanish, with unified predicate and role annotations that are fully comparable across languages. We apply high-quality machine translation to the English CoNLL-09 dataset and use multilingual BERT to project its high-quality annotations to the target languages. We include human-validated test sets that we use to measure the projection quality, and show that projection is denser and more precise than a strong baseline. Finally, we train different SOTA models on our novel corpus for mono- and multilingual SRL, showing that the multilingual annotations improve performance especially for the weaker languages.

pdf bib
Graph Convolutions over Constituent Trees for Syntax-Aware Semantic Role Labeling
Diego Marcheggiani | Ivan Titov

Semantic role labeling (SRL) is the task of identifying predicates and labeling argument spans with semantic roles. Even though most semantic-role formalisms are built upon constituent syntax, and only syntactic constituents can be labeled as arguments (e.g., FrameNet and PropBank), all the recent work on syntax-aware SRL relies on dependency representations of syntax. In contrast, we show how graph convolutional networks (GCNs) can be used to encode constituent structures and inform an SRL system. Nodes in our SpanGCN correspond to constituents. The computation is done in 3 stages. First, initial node representations are produced by ‘composing’ word representations of the first and last words in the constituent. Second, graph convolutions relying on the constituent tree are performed, yielding syntactically-informed constituent representations. Finally, the constituent representations are ‘decomposed’ back into word representations, which are used as input to the SRL classifier. We evaluate SpanGCN against alternatives, including a model using GCNs over dependency trees, and show its effectiveness on standard English SRL benchmarks CoNLL-2005, CoNLL-2012, and FrameNet.

pdf bib
Fast semantic parsing with well-typedness guarantees
Matthias Lindemann | Jonas Groschwitz | Alexander Koller

AM dependency parsing is a linguistically principled method for neural semantic parsing with high accuracy across multiple graphbanks. It relies on a type system that models semantic valency but makes existing parsers slow. We describe an A* parser and a transition-based parser for AM dependency parsing which guarantee well-typedness and improve parsing speed by up to 3 orders of magnitude, while maintaining or improving accuracy.

pdf bib
Improving Out-of-Scope Detection in Intent Classification by Using Embeddings of the Word Graph Space of the Classes
Paulo Cavalin | Victor Henrique Alves Ribeiro | Ana Appel | Claudio Pinhanez

This paper explores how intent classification can be improved by representing the class labels not as a discrete set of symbols but as a space where the word graphs associated to each class are mapped using typical graph embedding techniques. The approach, inspired by a previous algorithm used for an inverse dictionary task, allows the classification algorithm to take in account inter-class similarities provided by the repeated occurrence of some words in the training examples of the different classes. The classification is carried out by mapping text embeddings to the word graph embeddings of the classes. Focusing solely on improving the representation of the class label set, we show in experiments conducted in both private and public intent classification datasets, that better detection of out-of-scope examples (OOS) is achieved and, as a consequence, that the overall accuracy of intent classification is also improved. In particular, using the recently-released Larson dataset, an error of about 9.9% has been achieved for OOS detection, beating the previous state-of-the-art result by more than 31 percentage points.

pdf bib
Supervised Seeded Iterated Learning for Interactive Language Learning
Yuchen Lu | Soumye Singhal | Florian Strub | Olivier Pietquin | Aaron Courville

Language drift has been one of the major obstacles to train language models through interaction. When word-based conversational agents are trained towards completing a task, they tend to invent their language rather than leveraging natural language. In recent literature, two general methods partially counter this phenomenon: Supervised Selfplay (S2P) and Seeded Iterated Learning (SIL). While S2P jointly trains interactive and supervised losses to counter the drift, SIL changes the training dynamics to prevent language drift from occurring. In this paper, we first highlight their respective weaknesses, i.e., late-stage training collapses and higher negative likelihood when evaluated on human corpus. Given these observations, we introduce Supervised Seeded Iterated Learning (SSIL) to combine both methods to minimize their respective weaknesses. We then show the effectiveness of in the language-drift translation game.

pdf bib
Spot The Bot: A Robust and Efficient Framework for the Evaluation of Conversational Dialogue Systems
Jan Deriu | Don Tuggener | Pius von Däniken | Jon Ander Campos | Alvaro Rodrigo | Thiziri Belkacem | Aitor Soroa | Eneko Agirre | Mark Cieliebak

The lack of time efficient and reliable evalu-ation methods is hampering the development of conversational dialogue systems (chat bots). Evaluations that require humans to converse with chat bots are time and cost intensive, put high cognitive demands on the human judges, and tend to yield low quality results. In this work, we introduce Spot The Bot, a cost-efficient and robust evaluation framework that replaces human-bot conversations with conversations between bots. Human judges then only annotate for each entity in a conversation whether they think it is human or not (assuming there are humans participants in these conversations). These annotations then allow us to rank chat bots regarding their ability to mimic conversational behaviour of humans. Since we expect that all bots are eventually recognized as such, we incorporate a metric that measures which chat bot is able to uphold human-like be-havior the longest, i.e.Survival Analysis. This metric has the ability to correlate a bot’s performance to certain of its characteristics (e.g.fluency or sensibleness), yielding interpretable results. The comparably low cost of our frame-work allows for frequent evaluations of chatbots during their evaluation cycle. We empirically validate our claims by applying Spot The Bot to three domains, evaluating several state-of-the-art chat bots, and drawing comparisonsto related work. The framework is released asa ready-to-use tool.

pdf bib
Human-centric dialog training via offline reinforcement learning
Natasha Jaques | Judy Hanwen Shen | Asma Ghandeharioun | Craig Ferguson | Agata Lapedriza | Noah Jones | Shixiang Gu | Rosalind Picard

How can we train a dialog model to produce better conversations by learning from human feedback, without the risk of humans teaching it harmful chat behaviors? We start by hosting models online, and gather human feedback from real-time, open-ended conversations, which we then use to train and improve the models using offline reinforcement learning (RL). We identify implicit conversational cues including language similarity, elicitation of laughter, sentiment, and more, which indicate positive human feedback, and embed these in multiple reward functions. A well-known challenge is that learning an RL policy in an offline setting usually fails due to the lack of ability to explore and the tendency to make over-optimistic estimates of future reward. These problems become even harder when using RL for language models, which can easily have a 20,000 action vocabulary and many possible reward functions. We solve the challenge by developing a novel class of offline RL algorithms. These algorithms use KL-control to penalize divergence from a pre-trained prior language model, and use a new strategy to make the algorithm pessimistic, instead of optimistic, in the face of uncertainty. We test the resulting dialog model with ratings from 80 users in an open-domain setting and find it achieves significant improvements over existing deep offline RL approaches. The novel offline RL method is viable for improving any existing generative dialog model using a static dataset of human feedback.

pdf bib
Speakers Fill Lexical Semantic Gaps with Context
Tiago Pimentel | Rowan Hall Maudslay | Damian Blasi | Ryan Cotterell

Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear—resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this—one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. 𝜌 = 0.40 in English). We then test our main hypothesis—that a word’s lexical ambiguity should negatively correlate with its contextual uncertainty—and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.

pdf bib
Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
Jun Yen Leung | Guy Emerson | Ryan Cotterell

Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.

pdf bib
Surprisal Predicts Code-Switching in Chinese-English Bilingual Text
Jesús Calvillo | Le Fang | Jeremy Cole | David Reitter

Why do bilinguals switch languages within a sentence? The present observational study asks whether word surprisal and word entropy predict code-switching in bilingual written conversation. We describe and model a new dataset of Chinese-English text with 1476 clean code-switched sentences, translated back into Chinese. The model includes known control variables together with word surprisal and word entropy. We found that word surprisal, but not entropy, is a significant predictor that explains code-switching above and beyond other well-known predictors. We also found sentence length to be a significant predictor, which has been related to sentence complexity. We propose high cognitive effort as a reason for code-switching, as it leaves fewer resources for inhibition of the alternative language. We also corroborate previous findings, but this time using a computational model of surprisal, a new language pair, and doing so for written language.

pdf bib
Word Frequency Does Not Predict Grammatical Knowledge in Language Models
Charles Yu | Ryan Sie | Nicolas Tedeschi | Leon Bergen

Neural language models learn, to varying degrees of accuracy, the grammatical properties of natural languages. In this work, we investigate whether there are systematic sources of variation in the language models’ accuracy. Focusing on subject-verb agreement and reflexive anaphora, we find that certain nouns are systematically understood better than others, an effect which is robust across grammatical tasks and different language models. Surprisingly, we find that across four orders of magnitude, corpus frequency is unrelated to a noun’s performance on grammatical tasks. Finally, we find that a novel noun’s grammatical properties can be few-shot learned from various types of training data. The results present a paradox: there should be less variation in grammatical performance than is actually observed.

pdf bib
Improving Word Sense Disambiguation with Translations
Yixing Luan | Bradley Hauer | Lili Mou | Grzegorz Kondrak

It has been conjectured that multilingual information can help monolingual word sense disambiguation (WSD). However, existing WSD systems rarely consider multilingual information, and no effective method has been proposed for improving WSD by generating translations. In this paper, we present a novel approach that improves the performance of a base WSD system using machine translation. Since our approach is language independent, we perform WSD experiments on several languages. The results demonstrate that our methods can consistently improve the performance of WSD systems, and obtain state-ofthe-art results in both English and multilingual WSD. To facilitate the use of lexical translation information, we also propose BABALIGN, an precise bitext alignment algorithm which is guided by multilingual lexical correspondences from BabelNet.

pdf bib
Towards Better Context-aware Lexical Semantics:Adjusting Contextualized Representations through Static Anchors
Qianchu Liu | Diana McCarthy | Anna Korhonen

One of the most powerful features of contextualized models is their dynamic embeddings for words in context, leading to state-of-the-art representations for context-aware lexical semantics. In this paper, we present a post-processing technique that enhances these representations by learning a transformation through static anchors. Our method requires only another pre-trained model and no labeled data is needed. We show consistent improvement in a range of benchmark tasks that test contextual variations of meaning both across different usages of a word and across different words as they are used in context. We demonstrate that while the original contextual representations can be improved by another embedding space from both contextualized and static models, the static embeddings, which have lower computational requirements, provide the most gains.

pdf bib
Compositional Demographic Word Embeddings
Charles Welch | Jonathan K. Kummerfeld | Verónica Pérez-Rosas | Rada Mihalcea

Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.

pdf bib
Are “Undocumented Workers” the Same as “Illegal Aliens”? Disentangling Denotation and Connotation in Vector Spaces
Albert Webson | Zhizhong Chen | Carsten Eickhoff | Ellie Pavlick

In politics, neologisms are frequently invented for partisan objectives. For example, “undocumented workers” and “illegal aliens” refer to the same group of people (i.e., they have the same denotation), but they carry clearly different connotations. Examples like these have traditionally posed a challenge to reference-based semantic theories and led to increasing acceptance of alternative theories (e.g., Two-Factor Semantics) among philosophers and cognitive scientists. In NLP, however, popular pretrained models encode both denotation and connotation as one entangled representation. In this study, we propose an adversarial nerual netowrk that decomposes a pretrained representation as independent denotation and connotation representations. For intrinsic interpretability, we show that words with the same denotation but different connotations (e.g., “immigrants” vs. “aliens”, “estate tax” vs. “death tax”) move closer to each other in denotation space while moving further apart in connotation space. For extrinsic application, we train an information retrieval system with our disentangled representations and show that the denotation vectors improve the viewpoint diversity of document rankings.

pdf bib
Multi-View Sequence-to-Sequence Models with Conversational Structure for Abstractive Dialogue Summarization
Jiaao Chen | Diyi Yang

Text summarization is one of the most challenging and interesting problems in NLP. Although much attention has been paid to summarizing structured text like news reports or encyclopedia articles, summarizing conversations—an essential part of human-human/machine interaction where most important pieces of information are scattered across various utterances of different speakers—remains relatively under-investigated. This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations and then utilizing a multi-view decoder to incorporate different views to generate dialogue summaries. Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment. We also discussed specific challenges that current approaches faced with this task. We have publicly released our code at https://github.com/GT-SALT/Multi-View-Seq2Seq.

pdf bib
Few-Shot Learning for Opinion Summarization
Arthur Bražinskas | Mirella Lapata | Ivan Titov

Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents, such as user reviews of a product. The task is practically important and has attracted a lot of attention. However, due to the high cost of summary production, datasets large enough for training supervised models are lacking. Instead, the task has been traditionally approached with extractive methods that learn to select text fragments in an unsupervised or weakly-supervised way. Recently, it has been shown that abstractive summaries, potentially more fluent and better at reflecting conflicting information, can also be produced in an unsupervised fashion. However, these models, not being exposed to actual summaries, fail to capture their essential properties. In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text with all expected properties, such as writing style, informativeness, fluency, and sentiment preservation. We start by training a conditional Transformer language model to generate a new product review given other available reviews of the product. The model is also conditioned on review properties that are directly related to summaries; the properties are derived from reviews with no manual effort. In the second stage, we fine-tune a plug-in module that learns to predict property values on a handful of summaries. This lets us switch the generator to the summarization mode. We show on Amazon and Yelp datasets that our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.

pdf bib
Learning to Fuse Sentences with Transformers for Summarization
Logan Lebanoff | Franck Dernoncourt | Doo Soon Kim | Lidan Wang | Walter Chang | Fei Liu

The ability to fuse sentences is highly attractive for summarization systems because it is an essential step to produce succinct abstracts. However, to date, summarizers can fail on fusing sentences. They tend to produce few summary sentences by fusion or generate incorrect fusions that lead the summary to fail to retain the original meaning. In this paper, we explore the ability of Transformers to fuse sentences and propose novel algorithms to enhance their ability to perform sentence fusion by leveraging the knowledge of points of correspondence between sentences. Through extensive experiments, we investigate the effects of different design choices on Transformer’s performance. Our findings highlight the importance of modeling points of correspondence between sentences for effective sentence fusion.

pdf bib
Stepwise Extractive Summarization and Planning with Structured Transformers
Shashi Narayan | Joshua Maynez | Jakub Adamek | Daniele Pighin | Blaz Bratanic | Ryan McDonald

We propose encoder-centric stepwise models for extractive summarization using structured transformers – HiBERT and Extended Transformers. We enable stepwise summarization by injecting the previously generated summary into the structured transformer as an auxiliary sub-structure. Our models are not only efficient in modeling the structure of long inputs, but they also do not rely on task-specific redundancy-aware modeling, making them a general purpose extractive content planner for different tasks. When evaluated on CNN/DailyMail extractive summarization, stepwise models achieve state-of-the-art performance in terms of Rouge without any redundancy aware modeling or sentence filtering. This also holds true for Rotowire table-to-text generation, where our models surpass previously reported metrics for content selection, planning and ordering, highlighting the strength of stepwise modeling. Amongst the two structured transformers we test, stepwise Extended Transformers provides the best performance across both datasets and sets a new standard for these challenges.

pdf bib
CLIRMatrix: A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval
Shuo Sun | Kevin Duh

We present CLIRMatrix, a massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval extracted automatically from Wikipedia. CLIRMatrix comprises (1) BI-139, a bilingual dataset of queries in one language matched with relevant documents in another language for 139x138=19,182 language pairs, and (2) MULTI-8, a multilingual dataset of queries and documents jointly aligned in 8 different languages. In total, we mined 49 million unique queries and 34 billion (query, document, label) triplets, making it the largest and most comprehensive CLIR dataset to date. This collection is intended to support research in end-to-end neural information retrieval and is publicly available at [url]. We provide baseline neural model results on BI-139, and evaluate MULTI-8 in both single-language retrieval and mix-language retrieval settings.

pdf bib
SLEDGE-Z: A Zero-Shot Baseline for COVID-19 Literature Search
Sean MacAvaney | Arman Cohan | Nazli Goharian

With worldwide concerns surrounding the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there is a rapidly growing body of scientific literature on the virus. Clinicians, researchers, and policy-makers need to be able to search these articles effectively. In this work, we present a zero-shot ranking algorithm that adapts to COVID-related scientific literature. Our approach filters training data from another collection down to medical-related queries, uses a neural re-ranking model pre-trained on scientific text (SciBERT), and filters the target document collection. This approach ranks top among zero-shot methods on the TREC COVID Round 1 leaderboard, and exhibits a P@5 of 0.80 and an nDCG@10 of 0.68 when evaluated on both Round 1 and 2 judgments. Despite not relying on TREC-COVID data, our method outperforms models that do. As one of the first search methods to thoroughly evaluate COVID-19 search, we hope that this serves as a strong baseline and helps in the global crisis.

pdf bib
Modularized Transfomer-based Ranking Framework
Luyu Gao | Zhuyun Dai | Jamie Callan

Recent innovations in Transformer-based ranking models have advanced the state-of-the-art in information retrieval. However, these Transformers are computationally expensive, and their opaque hidden states make it hard to understand the ranking process. In this work, we modularize the Transformer ranker into separate modules for text representation and interaction. We show how this design enables substantially faster ranking using offline pre-computed representations and light-weight online interactions. The modular design is also easier to interpret and sheds light on the ranking process in Transformer rankers.

pdf bib
Ad-hoc Document Retrieval using Weak-Supervision with BERT and GPT2
Yosi Mass | Haggai Roitman

We describe a weakly-supervised method for training deep learning models for the task of ad-hoc document retrieval. Our method is based on generative and discriminative models that are trained using weak-supervision just from the documents in the corpus. We present an end-to-end retrieval system that starts with traditional information retrieval methods, followed by two deep learning re-rankers. We evaluate our method on three different datasets: a COVID-19 related scientific literature dataset and two news datasets. We show that our method outperforms state-of-the-art methods; this without the need for the expensive process of manually labeling data.

pdf bib
Adversarial Semantic Collisions
Congzheng Song | Alexander Rush | Vitaly Shmatikov

We study semantic collisions: texts that are semantically unrelated but judged as similar by NLP models. We develop gradient-based approaches for generating semantic collisions and demonstrate that state-of-the-art models for many tasks which rely on analyzing the meaning and similarity of texts—including paraphrase identification, document retrieval, response suggestion, and extractive summarization—are vulnerable to semantic collisions. For example, given a target query, inserting a crafted collision into an irrelevant document can shift its retrieval rank from 1000 to top 3. We show how to generate semantic collisions that evade perplexity-based filtering and discuss other potential mitigations. Our code is available at https://github.com/csong27/collision-bert.

pdf bib
Learning Explainable Linguistic Expressions with Neural Inductive Logic Programming for Sentence Classification
Prithviraj Sen | Marina Danilevsky | Yunyao Li | Siddhartha Brahma | Matthias Boehm | Laura Chiticariu | Rajasekar Krishnamurthy

Interpretability of predictive models is becoming increasingly important with growing adoption in the real-world. We present RuleNN, a neural network architecture for learning transparent models for sentence classification. The models are in the form of rules expressed in first-order logic, a dialect with well-defined, human-understandable semantics. More precisely, RuleNN learns linguistic expressions (LE) built on top of predicates extracted using shallow natural language understanding. Our experimental results show that RuleNN outperforms statistical relational learning and other neuro-symbolic methods, and performs comparably with black-box recurrent neural networks. Our user studies confirm that the learned LEs are explainable and capture domain semantics. Moreover, allowing domain experts to modify LEs and instill more domain knowledge leads to human-machine co-creation of models with better performance.

pdf bib
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
Taylor Shin | Yasaman Razeghi | Robert L. Logan IV | Eric Wallace | Sameer Singh

The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.

pdf bib
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen | Yangfeng Ji

To build an interpretable neural text classifier, most of the prior work has focused on designing inherently interpretable models or finding faithful explanations. A new line of work on improving model interpretability has just started, and many existing methods require either prior information or human annotations as additional inputs in training. To address this limitation, we propose the variational word mask (VMASK) method to automatically learn task-specific important words and reduce irrelevant information on classification, which ultimately improves the interpretability of model predictions. The proposed method is evaluated with three neural text classifiers (CNN, LSTM, and BERT) on seven benchmark text classification datasets. Experiments show the effectiveness of VMASK in improving both model prediction accuracy and interpretability.

pdf bib
Sparse Text Generation
Pedro Henrique Martins | Zita Marinho | André F. T. Martins

Current state-of-the-art text generators build on powerful language models such as GPT-2, achieving impressive performance. However, to avoid degenerate text, they require sampling from a modified softmax, via temperature parameters or ad-hoc truncation techniques, as in top-k or nucleus sampling. This creates a mismatch between training and testing conditions. In this paper, we use the recently introduced entmax transformation to train and sample from a natively sparse language model, avoiding this mismatch. The result is a text generator with favorable performance in terms of fluency and consistency, fewer repetitions, and n-gram diversity closer to human text. In order to evaluate our model, we propose three new metrics for comparing sparse or truncated distributions: 𝜖-perplexity, sparsemax score, and Jensen-Shannon divergence. Human-evaluated experiments in story completion and dialogue generation show that entmax sampling leads to more engaging and coherent stories and conversations.

pdf bib
PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking
Hannah Rashkin | Asli Celikyilmaz | Yejin Choi | Jianfeng Gao

We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline. This task is challenging as the input only provides a rough sketch of the plot, and thus, models need to generate a story by interweaving the key points provided in the outline. This requires the model to keep track of the dynamic states of the latent plot, conditioning on the input outline while generating the full story. We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states. In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative. Comprehensive experiments over three fiction and non-fiction datasets demonstrate that large-scale language models, such as GPT-2 and Grover, despite their impressive generation performance, are not sufficient in generating coherent narratives for the given outline, and dynamic plot state tracking is important for composing narratives with tighter, more consistent plots.

pdf bib
Do sequence-to-sequence VAEs learn global features of sentences?
Tom Bosc | Pascal Vincent

Autoregressive language models are powerful and relatively easy to train. However, these models are usually trained without explicit conditioning labels and do not offer easy ways to control global aspects such as sentiment or topic during generation. Bowman & al. 2016 adapted the Variational Autoencoder (VAE) for natural language with the sequence-to-sequence architecture and claimed that the latent vector was able to capture such global features in an unsupervised manner. We question this claim. We measure which words benefit most from the latent information by decomposing the reconstruction loss per position in the sentence. Using this method, we find that VAEs are prone to memorizing the first words and the sentence length, producing local features of limited usefulness. To alleviate this, we investigate alternative architectures based on bag-of-words assumptions and language model pretraining. These variants learn latent variables that are more global, i.e., more predictive of topic or sentiment labels. Moreover, using reconstructions, we observe that they decrease memorization: the first word and the sentence length are not recovered as accurately than with the baselines, consequently yielding more diverse reconstructions.

pdf bib
Content Planning for Neural Story Generation with Aristotelian Rescoring
Seraphina Goldfarb-Tarrant | Tuhin Chakrabarty | Ralph Weischedel | Nanyun Peng

Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be addressed via high-quality content planning, and present a system that focuses on how to learn good plot structures to guide story generation. We utilize a plot-generation language model along with an ensemble of rescoring models that each implement an aspect of good story-writing as detailed in Aristotle’s Poetics. We find that stories written with our more principled plot-structure are both more relevant to a given prompt and higher quality than baselines that do not content plan, or that plan in an unprincipled way.

pdf bib
Generating Dialogue Responses from a Semantic Latent Space
Wei-Jen Ko | Avik Ray | Yilin Shen | Hongxia Jin

Existing open-domain dialogue generation models are usually trained to mimic the gold response in the training set using cross-entropy loss on the vocabulary. However, a good response does not need to resemble the gold response, since there are multiple possible responses to a given prompt. In this work, we hypothesize that the current models are unable to integrate information from multiple semantically similar valid responses of a prompt, resulting in the generation of generic and uninformative responses. To address this issue, we propose an alternative to the end-to-end classification on vocabulary. We learn the pair relationship between the prompts and responses as a regression task on a latent space instead. In our novel dialog generation model, the representations of semantically related sentences are close to each other on the latent space. Human evaluation showed that learning the task on a continuous space can generate responses that are both relevant and informative.

pdf bib
Refer, Reuse, Reduce: Generating Subsequent References in Visual and Conversational Contexts
Ece Takmaz | Mario Giulianelli | Sandro Pezzelle | Arabella Sinclair | Raquel Fernández

Dialogue participants often refer to entities or situations repeatedly within a conversation, which contributes to its cohesiveness. Subsequent references exploit the common ground accumulated by the interlocutors and hence have several interesting properties, namely, they tend to be shorter and reuse expressions that were effective in previous mentions. In this paper, we tackle the generation of first and subsequent references in visually grounded dialogue. We propose a generation model that produces referring utterances grounded in both the visual and the conversational context. To assess the referring effectiveness of its output, we also implement a reference resolution system. Our experiments and analyses show that the model produces better, more effective referring utterances than a model not grounded in the dialogue context, and generates subsequent references that exhibit linguistic patterns akin to humans.

pdf bib
Visually Grounded Compound PCFGs
Yanpeng Zhao | Ivan Titov

Exploiting visual groundings for language understanding has recently been drawing much attention. In this work, we study visually grounded grammar induction and learn a constituency parser from both unlabeled text and its visual groundings. Existing work on this task (Shi et al., 2019) optimizes a parser via Reinforce and derives the learning signal only from the alignment of images and sentences. While their model is relatively accurate overall, its error distribution is very uneven, with low performance on certain constituents types (e.g., 26.2% recall on verb phrases, VPs) and high on others (e.g., 79.6% recall on noun phrases, NPs). This is not surprising as the learning signal is likely insufficient for deriving all aspects of phrase-structure syntax and gradient estimates are noisy. We show that using an extension of probabilistic context-free grammar model we can do fully-differentiable end-to-end visually grounded learning. Additionally, this enables us to complement the image-text alignment loss with a language modeling objective. On the MSCOCO test captions, our model establishes a new state of the art, outperforming its non-grounded version and, thus, confirming the effectiveness of visual groundings in constituency grammar induction. It also substantially outperforms the previous grounded model, with largest improvements on more ‘abstract’ categories (e.g., +55.1% recall on VPs).

pdf bib
ALICE: Active Learning with Contrastive Natural Language Explanations
Weixin Liang | James Zou | Zhou Yu

Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth human-machine communication interface: classification labels, each of which only provides a few bits of information. We propose Active Learning with Contrastive Explanations (ALICE), an expert-in-the-loop training framework that utilizes contrastive natural language explanations to improve data efficiency in learning. AL-ICE learns to first use active learning to select the most informative pairs of label classes to elicit contrastive natural language explanations from experts. Then it extracts knowledge from these explanations using a semantic parser. Finally, it incorporates the extracted knowledge through dynamically changing the learning model’s structure. We applied ALICEin two visual recognition tasks, bird species classification and social relationship classification. We found by incorporating contrastive explanations, our models outperform baseline models that are trained with 40-100% more training data. We found that adding1expla-nation leads to similar performance gain as adding 13-30 labeled training data points.

pdf bib
Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding
Alexander Ku | Peter Anderson | Roma Patel | Eugene Ie | Jason Baldridge

We introduce Room-Across-Room (RxR), a new Vision-and-Language Navigation (VLN) dataset. RxR is multilingual (English, Hindi, and Telugu) and larger (more paths and instructions) than other VLN datasets. It emphasizes the role of language in VLN by addressing known biases in paths and eliciting more references to visible entities. Furthermore, each word in an instruction is time-aligned to the virtual poses of instruction creators and validators. We establish baseline scores for monolingual and multilingual settings and multitask learning when including Room-to-Room annotations (Anderson et al., 2018). We also provide results for a model that learns from synchronized pose traces by focusing only on portions of the panorama attended to in human demonstrations. The size, scope and detail of RxR dramatically expands the frontier for research on embodied language agents in photorealistic simulated environments.

pdf bib
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning
Tsu-Jui Fu | Xin Wang | Scott Grafton | Miguel Eckstein | William Yang Wang

Iterative Language-Based Image Editing (ILBIE) tasks follow iterative instructions to edit images step by step. Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes. Yet, humans still accomplish these editing tasks even when presented with an unfamiliar image-instruction pair. Such ability results from counterfactual thinking, the ability to think about possible alternatives to events that have happened already. In this paper, we introduce a Self-Supervised Counterfactual Reasoning (SSCR) framework that incorporates counterfactual thinking to overcome data scarcity. SSCR allows the model to consider out-of-distribution instructions paired with previous images. With the help of cross-task consistency (CTC), we train these counterfactual instructions in a self-supervised scenario. Extensive results show that SSCR improves the correctness of ILBIE in terms of both object identity and position, establishing a new state of the art (SOTA) on two IBLIE datasets (i-CLEVR and CoDraw). Even with only 50% of the training data, SSCR achieves a comparable result to using complete data.

pdf bib
Identifying Elements Essential for BERT’s Multilinguality
Philipp Dufter | Hinrich Schütze

It has been shown that multilingual BERT (mBERT) yields high quality multilingual representations and enables effective zero-shot transfer. This is surprising given that mBERT does not use any crosslingual signal during training. While recent literature has studied this phenomenon, the reasons for the multilinguality are still somewhat obscure. We aim to identify architectural properties of BERT and linguistic properties of languages that are necessary for BERT to become multilingual. To allow for fast experimentation we propose an efficient setup with small BERT models trained on a mix of synthetic and natural data. Overall, we identify four architectural and two linguistic elements that influence multilinguality. Based on our insights, we experiment with a multilingual pretraining setup that modifies the masking strategy using VecMap, i.e., unsupervised embedding alignment. Experiments on XNLI with three languages indicate that our findings transfer from our small setup to larger scale settings.

pdf bib
On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment
Zirui Wang | Zachary C. Lipton | Yulia Tsvetkov

Modern multilingual models are trained on concatenated text from multiple languages in hopes of conferring benefits to each (positive transfer), with the most pronounced benefits accruing to low-resource languages. However, recent work has shown that this approach can degrade performance on high-resource languages, a phenomenon known as negative interference. In this paper, we present the first systematic study of negative interference. We show that, contrary to previous belief, negative interference also impacts low-resource languages. While parameters are maximally shared to learn language-universal structures, we demonstrate that language-specific parameters do exist in multilingual models and they are a potential cause of negative interference. Motivated by these observations, we also present a meta-learning algorithm that obtains better cross-lingual transferability and alleviates negative interference, by adding language-specific layers as meta-parameters and training them in a manner that explicitly improves shared layers’ generalization on all languages. Overall, our results show that negative interference is more common than previously known, suggesting new directions for improving multilingual representations.

pdf bib
Pre-tokenization of Multi-word Expressions in Cross-lingual Word Embeddings
Naoki Otani | Satoru Ozaki | Xingyuan Zhao | Yucen Li | Micaelah St Johns | Lori Levin

Cross-lingual word embedding (CWE) algorithms represent words in multiple languages in a unified vector space. Multi-Word Expressions (MWE) are common in every language. When training word embeddings, each component word of an MWE gets its own separate embedding, and thus, MWEs are not translated by CWEs. We propose a simple method for word translation of MWEs to and from English in ten languages: we first compile lists of MWEs in each language and then tokenize the MWEs as single tokens before training word embeddings. CWEs are trained on a word-translation task using the dictionaries that only contain single words. In order to evaluate MWE translation, we created bilingual word lists from multilingual WordNet that include single-token words and MWEs, and most importantly, include MWEs that correspond to single words in another language. We release these dictionaries to the research community. We show that the pre-tokenization of MWEs as single tokens performs better than averaging the embeddings of the individual tokens of the MWE. We can translate MWEs at a top-10 precision of 30-60%. The tokenization of MWEs makes the occurrences of single words in a training corpus more sparse, but we show that it does not pose negative impacts on single-word translations.

pdf bib
Monolingual Adapters for Zero-Shot Neural Machine Translation
Jerin Philip | Alexandre Berard | Matthias Gallé | Laurent Besacier

We propose a novel adapter layer formalism for adapting multilingual models. They are more parameter-efficient than existing adapter layers while obtaining as good or better performance. The layers are specific to one language (as opposed to bilingual adapters) allowing to compose them and generalize to unseen language-pairs. In this zero-shot setting, they obtain a median improvement of +2.77 BLEU points over a strong 20-language multilingual Transformer baseline trained on TED talks.

pdf bib
Do Explicit Alignments Robustly Improve Multilingual Encoders?
Shijie Wu | Mark Dredze

Multilingual BERT (mBERT), XLM-RoBERTa (XLMR) and other unsupervised multilingual encoders can effectively learn cross-lingual representation. Explicit alignment objectives based on bitexts like Europarl or MultiUN have been shown to further improve these representations. However, word-level alignments are often suboptimal and such bitexts are unavailable for many languages. In this paper, we propose a new contrastive alignment objective that can better utilize such signal, and examine whether these previous alignment methods can be adapted to noisier sources of aligned data: a randomly sampled 1 million pair subset of the OPUS collection. Additionally, rather than report results on a single dataset with a single model run, we report the mean and standard derivation of multiple runs with different seeds, on four datasets and tasks. Our more extensive analysis finds that, while our new objective outperforms previous work, overall these methods do not improve performance with a more robust evaluation framework. Furthermore, the gains from using a better underlying model eclipse any benefits from alignment training. These negative results dictate more care in evaluating these methods and suggest limitations in applying explicit alignment objectives.

pdf bib
From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers
Anne Lauscher | Vinit Ravishankar | Ivan Vulić | Goran Glavaš

Massively multilingual transformers (MMTs) pretrained via language modeling (e.g., mBERT, XLM-R) have become a default paradigm for zero-shot language transfer in NLP, offering unmatched transfer performance. Current evaluations, however, verify their efficacy in transfers (a) to languages with sufficiently large pretraining corpora, and (b) between close languages. In this work, we analyze the limitations of downstream language transfer with MMTs, showing that, much like cross-lingual word embeddings, they are substantially less effective in resource-lean scenarios and for distant languages. Our experiments, encompassing three lower-level tasks (POS tagging, dependency parsing, NER) and two high-level tasks (NLI, QA), empirically correlate transfer performance with linguistic proximity between source and target languages, but also with the size of target language corpora used in MMT pretraining. Most importantly, we demonstrate that the inexpensive few-shot transfer (i.e., additional fine-tuning on a few target-language instances) is surprisingly effective across the board, warranting more research efforts reaching beyond the limiting zero-shot conditions.

pdf bib
Distilling Multiple Domains for Neural Machine Translation
Anna Currey | Prashant Mathur | Georgiana Dinu

Neural machine translation achieves impressive results in high-resource conditions, but performance often suffers when the input domain is low-resource. The standard practice of adapting a separate model for each domain of interest does not scale well in practice from both a quality perspective (brittleness under domain shift) as well as a cost perspective (added maintenance and inference complexity). In this paper, we propose a framework for training a single multi-domain neural machine translation model that is able to translate several domains without increasing inference time or memory usage. We show that this model can improve translation on both high- and low-resource domains over strong multi-domain baselines. In addition, our proposed model is effective when domain labels are unknown during training, as well as robust under noisy data conditions.

pdf bib
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation
Nils Reimers | Iryna Gurevych

We present an easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models. The training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. We use the original (monolingual) model to generate sentence embeddings for the source language and then train a new system on translated sentences to mimic the original model. Compared to other methods for training multilingual sentence embeddings, this approach has several advantages: It is easy to extend existing models with relatively few samples to new languages, it is easier to ensure desired properties for the vector space, and the hardware requirements for training are lower. We demonstrate the effectiveness of our approach for 50+ languages from various language families. Code to extend sentence embeddings models to more than 400 languages is publicly available.

pdf bib
A Streaming Approach For Efficient Batched Beam Search
Kevin Yang | Violet Yao | John DeNero | Dan Klein

We propose an efficient batching strategy for variable-length decoding on GPU architectures. During decoding, when candidates terminate or are pruned according to heuristics, our streaming approach periodically “refills” the batch before proceeding with a selected subset of candidates. We apply our method to variable-width beam search on a state-of-the-art machine translation model. Our method decreases runtime by up to 71% compared to a fixed-width beam search baseline and 17% compared to a variable-width baseline, while matching baselines’ BLEU. Finally, experiments show that our method can speed up decoding in other domains, such as semantic and syntactic parsing.

pdf bib
Improving Multilingual Models with Language-Clustered Vocabularies
Hyung Won Chung | Dan Garrette | Kiat Chuan Tan | Jason Riesa

State-of-the-art multilingual models depend on vocabularies that cover all of the languages the model will expect to see at inference time, but the standard methods for generating those vocabularies are not ideal for massively multilingual applications. In this work, we introduce a novel procedure for multilingual vocabulary generation that combines the separately trained vocabularies of several automatically derived language clusters, thus balancing the trade-off between cross-lingual subword sharing and language-specific vocabularies. Our experiments show improvements across languages on key multilingual benchmark tasks TyDi QA (+2.9 F1), XNLI (+2.1%), and WikiAnn NER (+2.8 F1) and factor of 8 reduction in out-of-vocabulary rate, all without increasing the size of the model or data.

pdf bib
Zero-Shot Cross-Lingual Transfer with Meta Learning
Farhad Nooralahzadeh | Giannis Bekoulis | Johannes Bjerva | Isabelle Augenstein

Learning what to share between tasks has become a topic of great importance, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning: in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.

pdf bib
The Multilingual Amazon Reviews Corpus
Phillip Keung | Yichao Lu | György Szarvas | Noah A. Smith

We present the Multilingual Amazon Reviews Corpus (MARC), a large-scale collection of Amazon reviews for multilingual text classification. The corpus contains reviews in English, Japanese, German, French, Spanish, and Chinese, which were collected between 2015 and 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID, and the coarse-grained product category (e.g., ‘books’, ‘appliances’, etc.) The corpus is balanced across the 5 possible star ratings, so each rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000, and 5,000 reviews in the training, development, and test sets, respectively. We report baseline results for supervised text classification and zero-shot cross-lingual transfer learning by fine-tuning a multilingual BERT model on reviews data. We propose the use of mean absolute error (MAE) instead of classification accuracy for this task, since MAE accounts for the ordinal nature of the ratings.

pdf bib
GLUCOSE: GeneraLized and COntextualized Story Explanations
Nasrin Mostafazadeh | Aditya Kalyanpur | Lori Moon | David Buchanan | Lauren Berkowitz | Or Biran | Jennifer Chu-Carroll

When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE’s rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans’ mental models.

pdf bib
Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT
Rik van Noord | Antonio Toral | Johan Bos

We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.

pdf bib
Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition
Yun He | Ziwei Zhu | Yin Zhang | Qin Chen | James Caverlee

Knowledge of a disease includes information of various aspects of the disease, such as signs and symptoms, diagnosis and treatment. This disease knowledge is critical for many health-related and biomedical tasks, including consumer health question answering, medical language inference and disease name recognition. While pre-trained language models like BERT have shown success in capturing syntactic, semantic, and world knowledge from text, we find they can be further complemented by specific information like knowledge of symptoms, diagnoses, treatments, and other disease aspects. Hence, we integrate BERT with disease knowledge for improving these important tasks. Specifically, we propose a new disease knowledge infusion training procedure and evaluate it on a suite of BERT models including BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and ALBERT. Experiments over the three tasks show that these models can be enhanced in nearly all cases, demonstrating the viability of disease knowledge infusion. For example, accuracy of BioBERT on consumer health question answering is improved from 68.29% to 72.09%, while new SOTA results are observed in two datasets. We make our data and code freely available.

pdf bib
Unsupervised Commonsense Question Answering with Self-Talk
Vered Shwartz | Peter West | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi

Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.

pdf bib
Reasoning about Goals, Steps, and Temporal Ordering with WikiHow
Li Zhang | Qing Lyu | Chris Callison-Burch

We propose a suite of reasoning tasks on two types of relations between procedural events: goal-step relations (“learn poses” is a step in the larger goal of “doing yoga”) and step-step temporal relations (“buy a yoga mat” typically precedes “learn poses”). We introduce a dataset targeting these two relations based on wikiHow, a website of instructional how-to articles. Our human-validated test set serves as a reliable benchmark for common-sense inference, with a gap of about 10% to 20% between the performance of state-of-the-art transformer models and human performance. Our automatically-generated training set allows models to effectively transfer to out-of-domain tasks requiring knowledge of procedural events, with greatly improved performances on SWAG, Snips, and Story Cloze Test in zero- and few-shot settings.

pdf bib
Structural Supervision Improves Few-Shot Learning and Syntactic Generalization in Neural Language Models
Ethan Wilcox | Peng Qian | Richard Futrell | Ryosuke Kohita | Roger Levy | Miguel Ballesteros

Humans can learn structural properties about a word from minimal experience, and deploy their learned syntactic representations uniformly in different grammatical contexts. We assess the ability of modern neural language models to reproduce this behavior in English and evaluate the effect of structural supervision on learning outcomes. First, we assess few-shot learning capabilities by developing controlled experiments that probe models’ syntactic nominal number and verbal argument structure generalizations for tokens seen as few as two times during training. Second, we assess invariance properties of learned representation: the ability of a model to transfer syntactic generalizations from a base context (e.g., a simple declarative active-voice sentence) to a transformed context (e.g., an interrogative sentence). We test four models trained on the same dataset: an n-gram baseline, an LSTM, and two LSTM-variants trained with explicit structural supervision. We find that in most cases, the neural models are able to induce the proper syntactic generalizations after minimal exposure, often from just two examples during training, and that the two structurally supervised models generalize more accurately than the LSTM model. All neural models are able to leverage information learned in base contexts to drive expectations in transformed contexts, indicating that they have learned some invariance properties of syntax.

pdf bib
Investigating representations of verb bias in neural language models
Robert Hawkins | Takateru Yamakoshi | Thomas Griffiths | Adele Goldberg

Languages typically provide more than one grammatical construction to express certain types of messages. A speaker’s choice of construction is known to depend on multiple factors, including the choice of main verb – a phenomenon known as verb bias. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.

pdf bib
Generating Image Descriptions via Sequential Cross-Modal Alignment Guided by Human Gaze
Ece Takmaz | Sandro Pezzelle | Lisa Beinborn | Raquel Fernández

When speakers describe an image, they tend to look at objects before mentioning them. In this paper, we investigate such sequential cross-modal alignment by modelling the image description generation process computationally. We take as our starting point a state-of-the-art image captioning system and develop several model variants that exploit information from human gaze patterns recorded during language production. In particular, we propose the first approach to image description generation where visual processing is modelled sequentially. Our experiments and analyses confirm that better descriptions can be obtained by exploiting gaze-driven attention and shed light on human cognitive processes by comparing different ways of aligning the gaze modality with language production. We find that processing gaze data sequentially leads to descriptions that are better aligned to those produced by speakers, more diverse, and more natural—particularly when gaze is encoded with a dedicated recurrent component.

pdf bib
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li | Xiang Gao | Yuan Li | Baolin Peng | Xiujun Li | Yizhe Zhang | Jianfeng Gao

When trained effectively, the Variational Autoencoder (VAE) can be both a powerful generative model and an effective representation learning framework for natural language. In this paper, we propose the first large-scale language VAE model Optimus (Organizing sentences via Pre-Trained Modeling of a Universal Space). A universal latent embedding space for sentences is first pre-trained on large text corpus, and then fine-tuned for various language generation and understanding tasks. Compared with GPT-2, Optimus enables guided language generation from an abstract level using the latent vectors. Compared with BERT, Optimus can generalize better on low-resource language understanding tasks due to the smooth latent space structure. Extensive experimental results on a wide range of language tasks demonstrate the effectiveness of Optimus. It achieves new state-of-the-art on VAE language modeling benchmarks.

pdf bib
BioMegatron: Larger Biomedical Domain Language Model
Hoo-Chang Shin | Yang Zhang | Evelina Bakhturina | Raul Puri | Mostofa Patwary | Mohammad Shoeybi | Raghav Mani

There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of question answering, named entity recognition, and relation extraction. Code and checkpoints to reproduce our experiments are available at [github.com/NVIDIA/NeMo].

pdf bib
Text Segmentation by Cross Segment Attention
Michal Lukasik | Boris Dadachev | Kishore Papineni | Gonçalo Simões

Document and discourse segmentation are two fundamental NLP tasks pertaining to breaking up text into constituents, which are commonly used to help downstream tasks such as information retrieval or text summarization. In this work, we propose three transformer-based architectures and provide comprehensive comparisons with previously proposed approaches on three standard datasets. We establish a new state-of-the-art, reducing in particular the error rates by a large margin in all cases. We further analyze model sizes and find that we can build models with many fewer parameters while keeping good performance, thus facilitating real-world applications.

pdf bib
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
Tatiana Shavrina | Alena Fenogenova | Emelyanov Anton | Denis Shevelev | Ekaterina Artemova | Valentin Malykh | Vladislav Mikhailov | Maria Tikhonova | Andrey Chertok | Andrey Evlampiev

In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.

pdf bib
An Empirical Study of Pre-trained Transformers for Arabic Information Extraction
Wuwei Lan | Yang Chen | Wei Xu | Alan Ritter

Multilingual pre-trained Transformers, such as mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020a), have been shown to enable effective cross-lingual zero-shot transfer. However, their performance on Arabic information extraction (IE) tasks is not very well studied. In this paper, we pre-train a customized bilingual BERT, dubbed GigaBERT, that is designed specifically for Arabic NLP and English-to-Arabic zero-shot transfer learning. We study GigaBERT’s effectiveness on zero-short transfer across four IE tasks: named entity recognition, part-of-speech tagging, argument role labeling, and relation extraction. Our best model significantly outperforms mBERT, XLM-RoBERTa, and AraBERT (Antoun et al., 2020) in both the supervised and zero-shot transfer settings. We have made our pre-trained models publicly available at: https://github.com/lanwuwei/GigaBERT.

pdf bib
TNT: Text Normalization based Pre-training of Transformers for Content Moderation
Fei Tan | Yifan Hu | Changwei Hu | Keqian Li | Kevin Yen

In this work, we present a new language pre-training model TNT (Text Normalization based pre-training of Transformers) for content moderation. Inspired by the masking strategy and text normalization, TNT is developed to learn language representation by training transformers to reconstruct text from four operation types typically seen in text manipulation: substitution, transposition, deletion, and insertion. Furthermore, the normalization involves the prediction of both operation types and token labels, enabling TNT to learn from more challenging tasks than the standard task of masked word recovery. As a result, the experiments demonstrate that TNT outperforms strong baselines on the hate speech classification task. Additional text normalization experiments and case studies show that TNT is a new potential approach to misspelling correction.

pdf bib
Methods for Numeracy-Preserving Word Embeddings
Dhanasekar Sundararaman | Shijing Si | Vivek Subramanian | Guoyin Wang | Devamanyu Hazarika | Lawrence Carin

Word embedding models are typically able to capture the semantics of words via the distributional hypothesis, but fail to capture the numerical properties of numbers that appear in the text. This leads to problems with numerical reasoning involving tasks such as question answering. We propose a new methodology to assign and learn embeddings for numbers. Our approach creates Deterministic, Independent-of-Corpus Embeddings (the model is referred to as DICE) for numbers, such that their cosine similarity reflects the actual distance on the number line. DICE outperforms a wide range of pre-trained word embedding models across multiple examples of two tasks: (i) evaluating the ability to capture numeration and magnitude; and (ii) to perform list maximum, decoding, and addition. We further explore the utility of these embeddings in downstream tasks, by initializing numbers with our approach for the task of magnitude prediction. We also introduce a regularization approach to learn model-based embeddings of numbers in a contextual setting.

pdf bib
An Empirical Investigation of Contextualized Number Prediction
Taylor Berg-Kirkpatrick | Daniel Spokoyny

We conduct a large scale empirical investigation of contextualized number prediction in running text. Specifically, we consider two tasks: (1)masked number prediction– predict-ing a missing numerical value within a sentence, and (2)numerical anomaly detection–detecting an errorful numeric value within a sentence. We experiment with novel combinations of contextual encoders and output distributions over the real number line. Specifically, we introduce a suite of output distribution parameterizations that incorporate latent variables to add expressivity and better fit the natural distribution of numeric values in running text, and combine them with both recur-rent and transformer-based encoder architectures. We evaluate these models on two numeric datasets in the financial and scientific domain. Our findings show that output distributions that incorporate discrete latent variables and allow for multiple modes outperform simple flow-based counterparts on all datasets, yielding more accurate numerical pre-diction and anomaly detection. We also show that our models effectively utilize textual con-text and benefit from general-purpose unsupervised pretraining.

pdf bib
Modeling the Music Genre Perception across Language-Bound Cultures
Elena V. Epure | Guillaume Salha | Manuel Moussallam | Romain Hennequin

The music genre perception expressed through human annotations of artists or albums varies significantly across language-bound cultures. These variations cannot be modeled as mere translations since we also need to account for cultural differences in the music genre perception. In this work, we study the feasibility of obtaining relevant cross-lingual, culture-specific music genre annotations based only on language-specific semantic representations, namely distributed concept embeddings and ontologies. Our study, focused on six languages, shows that unsupervised cross-lingual music genre annotation is feasible with high accuracy, especially when combining both types of representations. This approach of studying music genres is the most extensive to date and has many implications in musicology and music information retrieval. Besides, we introduce a new, domain-dependent cross-lingual corpus to benchmark state of the art multilingual pre-trained embedding models.

pdf bib
Joint Estimation and Analysis of Risk Behavior Ratings in Movie Scripts
Victor Martinez | Krishna Somandepalli | Yalda Tehranian-Uhls | Shrikanth Narayanan

Exposure to violent, sexual, or substance-abuse content in media increases the willingness of children and adolescents to imitate similar behaviors. Computational methods that identify portrayals of risk behaviors from audio-visual cues are limited in their applicability to films in post-production, where modifications might be prohibitively expensive. To address this limitation, we propose a model that estimates content ratings based on the language use in movie scripts, making our solution available at the earlier stages of creative production. Our model significantly improves the state-of-the-art by adapting novel techniques to learn better movie representations from the semantic and sentiment aspects of a character’s language use, and by leveraging the co-occurrence of risk behaviors, following a multi-task approach. Additionally, we show how this approach can be useful to learn novel insights on the joint portrayal of these behaviors, and on the subtleties that filmmakers may otherwise not pick up on.

pdf bib
Keep it Surprisingly Simple: A Simple First Order Graph Based Parsing Model for Joint Morphosyntactic Parsing in Sanskrit
Amrith Krishna | Ashim Gupta | Deepak Garasangi | Pavankumar Satuluri | Pawan Goyal

Morphologically rich languages seem to benefit from joint processing of morphology and syntax, as compared to pipeline architectures. We propose a graph-based model for joint morphological parsing and dependency parsing in Sanskrit. Here, we extend the Energy based model framework (Krishna et al., 2020), proposed for several structured prediction tasks in Sanskrit, in 2 simple yet significant ways. First, the framework’s default input graph generation method is modified to generate a multigraph, which enables the use of an exact search inference. Second, we prune the input search space using a linguistically motivated approach, rooted in the traditional grammatical analysis of Sanskrit. Our experiments show that the morphological parsing from our joint model outperforms standalone morphological parsers. We report state of the art results in morphological parsing, and in dependency parsing, both in standalone (with gold morphological tags) and joint morphosyntactic parsing setting.

pdf bib
Unsupervised Parsing via Constituency Tests
Steven Cao | Nikita Kitaev | Dan Klein

We propose a method for unsupervised parsing based on the linguistic notion of a constituency test. One type of constituency test involves modifying the sentence via some transformation (e.g. replacing the span with a pronoun) and then judging the result (e.g. checking if it is grammatical). Motivated by this idea, we design an unsupervised parser by specifying a set of transformations and using an unsupervised neural acceptability model to make grammaticality decisions. To produce a tree given a sentence, we score each span by aggregating its constituency test judgments, and we choose the binary tree with the highest total score. While this approach already achieves performance in the range of current methods, we further improve accuracy by fine-tuning the grammaticality model through a refinement procedure, where we alternate between improving the estimated trees and improving the grammaticality model. The refined model achieves 62.8 F1 on the Penn Treebank test set, an absolute improvement of 7.6 points over the previously best published result.

pdf bib
Please Mind the Root: Decoding Arborescences for Dependency Parsing
Ran Zmigrod | Tim Vieira | Ryan Cotterell

The connection between dependency trees and spanning trees is exploited by the NLP community to train and to decode graph-based dependency parsers. However, the NLP literature has missed an important difference between the two structures: only one edge may emanate from the root in a dependency tree. We analyzed the output of state-of-the-art parsers on many languages from the Universal Dependency Treebank: although these parsers are often able to learn that trees which violate the constraint should be assigned lower probabilities, their ability to do so unsurprisingly de-grades as the size of the training set decreases. In fact, the worst constraint-violation rate we observe is 24%. Prior work has proposed an inefficient algorithm to enforce the constraint, which adds a factor of n to the decoding runtime. We adapt an algorithm due to Gabow and Tarjan (1984) to dependency parsing, which satisfies the constraint without compromising the original runtime.

pdf bib
Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Scenarios
Ramy Eskander | Smaranda Muresan | Michael Collins

We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.

pdf bib
Unsupervised Parsing with S-DIORA: Single Tree Encoding for Deep Inside-Outside Recursive Autoencoders
Andrew Drozdov | Subendhu Rongali | Yi-Pei Chen | Tim O’Gorman | Mohit Iyyer | Andrew McCallum

The deep inside-outside recursive autoencoder (DIORA; Drozdov et al. 2019) is a self-supervised neural model that learns to induce syntactic tree structures for input sentences *without access to labeled training data*. In this paper, we discover that while DIORA exhaustively encodes all possible binary trees of a sentence with a soft dynamic program, its vector averaging approach is locally greedy and cannot recover from errors when computing the highest scoring parse tree in bottom-up chart parsing. To fix this issue, we introduce S-DIORA, an improved variant of DIORA that encodes a single tree rather than a softly-weighted mixture of trees by employing a hard argmax operation and a beam at each cell in the chart. Our experiments show that through *fine-tuning* a pre-trained DIORA with our new algorithm, we improve the state of the art in *unsupervised* constituency parsing on the English WSJ Penn Treebank by 2.2-6% F1, depending on the data used for fine-tuning.

pdf bib
Utility is in the Eye of the User: A Critique of NLP Leaderboards
Kawin Ethayarajh | Dan Jurafsky

Benchmarks such as GLUE have helped drive advances in NLP by incentivizing the creation of more accurate models. While this leaderboard paradigm has been remarkably successful, a historical focus on performance-based evaluation has been at the expense of other qualities that the NLP community values in models, such as compactness, fairness, and energy efficiency. In this opinion paper, we study the divergence between what is incentivized by leaderboards and what is useful in practice through the lens of microeconomic theory. We frame both the leaderboard and NLP practitioners as consumers and the benefit they get from a model as its utility to them. With this framing, we formalize how leaderboards – in their current form – can be poor proxies for the NLP community at large. For example, a highly inefficient model would provide less utility to practitioners but not to a leaderboard, since it is a cost that only the former must bear. To allow practitioners to better estimate a model’s utility to them, we advocate for more transparency on leaderboards, such as the reporting of statistics that are of practical concern (e.g., model size, energy efficiency, and inference latency).

pdf bib
An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training
Kristjan Arumae | Qing Sun | Parminder Bhatia

Pre-training large language models has become a standard in the natural language processing community. Such models are pre-trained on generic data (e.g. BookCorpus and English Wikipedia) and often fine-tuned on tasks in the same domain. However, in order to achieve state-of-the-art performance on out of domain tasks such as clinical named entity recognition and relation extraction, additional in domain pre-training is required. In practice, staged multi-domain pre-training presents performance deterioration in the form of catastrophic forgetting (CF) when evaluated on a generic benchmark such as GLUE. In this paper we conduct an empirical investigation into known methods to mitigate CF. We find that elastic weight consolidation provides best overall scores yielding only a 0.33% drop in performance across seven generic tasks while remaining competitive in bio-medical tasks. Furthermore, we explore gradient and latent clustering based data selection techniques to improve coverage when using elastic weight consolidation and experience replay methods.

pdf bib
Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani | Hassan Sajjad | Fahim Dalvi | Yonatan Belinkov

While a lot of analysis has been carried to demonstrate linguistic knowledge captured by the representations learned within deep NLP models, very little attention has been paid towards individual neurons. We carry outa neuron-level analysis using core linguistic tasks of predicting morphology, syntax and semantics, on pre-trained language models, with questions like: i) do individual neurons in pre-trained models capture linguistic information? ii) which parts of the network learn more about certain linguistic phenomena? iii) how distributed or focused is the information? and iv) how do various architectures differ in learning these properties? We found small subsets of neurons to predict linguistic tasks, with lower level tasks (such as morphology) localized in fewer neurons, compared to higher level task of predicting syntax. Our study also reveals interesting cross architectural comparisons. For example, we found neurons in XLNet to be more localized and disjoint when predicting properties compared to BERT and others, where they are more distributed and coupled.

pdf bib
Dissecting Span Identification Tasks with Performance Prediction
Sean Papay | Roman Klinger | Sebastian Padó

Span identification (in short, span ID) tasks such as chunking, NER, or code-switching detection, ask models to identify and classify relevant spans in a text. Despite being a staple of NLP, and sharing a common structure, there is little insight on how these tasks’ properties influence their difficulty, and thus little guidance on what model families work well on span ID tasks, and why. We analyze span ID tasks via performance prediction, estimating how well neural architectures do on different tasks. Our contributions are: (a) we identify key properties of span ID tasks that can inform performance prediction; (b) we carry out a large-scale experiment on English data, building a model to predict performance for unseen span ID tasks that can support architecture choices; (c), we investigate the parameters of the meta model, yielding new insights on how model and task properties interact to affect span ID performance. We find, e.g., that span frequency is especially important for LSTMs, and that CRFs help when spans are infrequent and boundaries non-distinctive.

pdf bib
Assessing Phrasal Representation and Composition in Transformers
Lang Yu | Allyson Ettinger

Deep transformer models have pushed performance on NLP tasks to new limits, suggesting sophisticated treatment of complex linguistic inputs, such as phrases. However, we have limited understanding of how these models handle representation of phrases, and whether this reflects sophisticated composition of phrase meaning like that done by humans. In this paper, we present systematic analysis of phrasal representations in state-of-the-art pre-trained transformers. We use tests leveraging human judgments of phrase similarity and meaning shift, and compare results before and after control of word overlap, to tease apart lexical effects versus composition effects. We find that phrase representation in these models relies heavily on word content, with little evidence of nuanced composition. We also identify variations in phrase representation quality across models, layers, and representation types, and make corresponding recommendations for usage of representations from these models.

pdf bib
Analyzing Redundancy in Pretrained Transformer Models
Fahim Dalvi | Hassan Sajjad | Nadir Durrani | Yonatan Belinkov

Transformer-based deep NLP models are trained using hundreds of millions of parameters, limiting their applicability in computationally constrained environments. In this paper, we study the cause of these limitations by defining a notion of Redundancy, which we categorize into two classes: General Redundancy and Task-specific Redundancy. We dissect two popular pretrained models, BERT and XLNet, studying how much redundancy they exhibit at a representation-level and at a more fine-grained neuron-level. Our analysis reveals interesting insights, such as i) 85% of the neurons across the network are redundant and ii) at least 92% of them can be removed when optimizing towards a downstream task. Based on our analysis, we present an efficient feature-based transfer learning procedure, which maintains 97% performance while using at-most 10% of the original neurons.

pdf bib
Be More with Less: Hypergraph Attention Networks for Inductive Text Classification
Kaize Ding | Jianling Wang | Jundong Li | Dingcheng Li | Huan Liu

Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model – hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.

pdf bib
Entities as Experts: Sparse Memory Access with Entity Supervision
Thibault Févry | Livio Baldini Soares | Nicholas FitzGerald | Eunsol Choi | Tom Kwiatkowski

We focus on the problem of capturing declarative knowledge about entities in the learned parameters of a language model. We introduce a new model—Entities as Experts (EaE)—that can access distinct memories of the entities mentioned in a piece of text. Unlike previous efforts to integrate entity knowledge into sequence models, EaE’s entity representations are learned directly from text. We show that EaE’s learned representations capture sufficient knowledge to answer TriviaQA questions such as “Which Dr. Who villain has been played by Roger Delgado, Anthony Ainley, Eric Roberts?”, outperforming an encoder-generator Transformer model with 10x the parameters on this task. According to the Lama knowledge probes, EaE contains more factual knowledge than a similar sized Bert, as well as previous approaches that integrate external sources of entity knowledge. Because EaE associates parameters with specific entities, it only needs to access a fraction of its parameters at inference time, and we show that the correct identification and representation of entities is essential to EaE’s performance.

pdf bib
Does the Objective Matter? Comparing Training Objectives for Pronoun Resolution
Yordan Yordanov | Oana-Maria Camburu | Vid Kocijan | Thomas Lukasiewicz

Hard cases of pronoun resolution have been used as a long-standing benchmark for commonsense reasoning. In the recent literature, pre-trained language models have been used to obtain state-of-the-art results on pronoun resolution. Overall, four categories of training and evaluation objectives have been introduced. The variety of training datasets and pre-trained language models used in these works makes it unclear whether the choice of training objective is critical. In this work, we make a fair comparison of the performance and seed-wise stability of four models that represent the four categories of objectives. Our experiments show that the objective of sequence ranking performs the best in-domain, while the objective of semantic similarity between candidates and pronoun performs the best out-of-domain. We also observe a seed-wise instability of the model using sequence ranking, which is not the case when the other objectives are used.

pdf bib
On Losses for Modern Language Models
Stéphane Aroca-Ouellette | Frank Rudzicz

BERT set many state-of-the-art results over varied NLU benchmarks by pre-training over two tasks: masked language modelling (MLM) and next sentence prediction (NSP), the latter of which has been highly criticized. In this paper, we 1) clarify NSP’s effect on BERT pre-training, 2) explore fourteen possible auxiliary pre-training tasks, of which seven are novel to modern language models, and 3) investigate different ways to include multiple tasks into pre-training. We show that NSP is detrimental to training due to its context splitting and shallow semantic signal. We also identify six auxiliary pre-training tasks – sentence ordering, adjacent sentence prediction, TF prediction, TF-IDF prediction, a FastSent variant, and a Quick Thoughts variant – that outperform a pure MLM baseline. Finally, we demonstrate that using multiple tasks in a multi-task pre-training framework provides better results than using any single auxiliary task. Using these methods, we outperform BERTBase on the GLUE benchmark using fewer than a quarter of the training tokens.

pdf bib
We Can Detect Your Bias: Predicting the Political Ideology of News Articles
Ramy Baly | Giovanni Da San Martino | James Glass | Preslav Nakov

We explore the task of predicting the leading political ideology or bias of news articles. First, we collect and release a large dataset of 34,737 articles that were manually annotated for political ideology –left, center, or right–, which is well-balanced across both topics and media. We further use a challenging experimental setup where the test examples come from media that were not seen during training, which prevents the model from learning to detect the source of the target news article instead of predicting its political ideology. From a modeling perspective, we propose an adversarial media adaptation, as well as a specially adapted triplet loss. We further add background information about the source, and we show that it is quite helpful for improving article-level prediction. Our experimental results show very sizable improvements over using state-of-the-art pre-trained Transformers in this challenging setup.

pdf bib
Semantic Label Smoothing for Sequence to Sequence Problems
Michal Lukasik | Himanshu Jain | Aditya Menon | Seungyeon Kim | Srinadh Bhojanapalli | Felix Yu | Sanjiv Kumar

Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over well formed relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also semantically similar. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.

pdf bib
Training for Gibbs Sampling on Conditional Random Fields with Neural Scoring Factors
Sida Gao | Matthew R. Gormley

Most recent improvements in NLP come from changes to the neural network architectures modeling the text input. Yet, state-of-the-art models often rely on simple approaches to model the label space, e.g. bigram Conditional Random Fields (CRFs) in sequence tagging. More expressive graphical models are rarely used due to their prohibitive computational cost. In this work, we present an approach for efficiently training and decoding hybrids of graphical models and neural networks based on Gibbs sampling. Our approach is the natural adaptation of SampleRank (Wick et al., 2011) to neural models, and is widely applicable to tasks beyond sequence tagging. We apply our approach to named entity recognition and present a neural skip-chain CRF model, for which exact inference is impractical. The skip-chain model improves over a strong baseline on three languages from CoNLL-02/03. We obtain new state-of-the-art results on Dutch.

pdf bib
Multilevel Text Alignment with Cross-Document Attention
Xuhui Zhou | Nikolaos Pappas | Noah A. Smith

Text alignment finds application in tasks such as citation recommendation and plagiarism detection. Existing alignment methods operate at a single, predefined level and cannot learn to align texts at, for example, sentence and document levels. We propose a new learning approach that equips previously established hierarchical attention encoders for representing documents with a cross-document attention component, enabling structural comparisons across different levels (document-to-document and sentence-to-document). Our component is weakly supervised from document pairs and can align at multiple levels. Our evaluation on predicting document-to-document relationships and sentence-to-document relationships on the tasks of citation recommendation and plagiarism detection shows that our approach outperforms previously established hierarchical, attention encoders based on recurrent and transformer contextualization that are unaware of structural correspondence between documents.

pdf bib
Conversational Semantic Parsing
Armen Aghajanyan | Jean Maillard | Akshat Shrivastava | Keith Diedrick | Michael Haeger | Haoran Li | Yashar Mehdad | Veselin Stoyanov | Anuj Kumar | Mike Lewis | Sonal Gupta

The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which also set state-of-the-art in ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.

pdf bib
Probing Task-Oriented Dialogue Representation from Language Models
Chien-Sheng Wu | Caiming Xiong

This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks. We approach the problem from two aspects: supervised classifier probe and unsupervised mutual information probe. We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way. Meanwhile, we propose an unsupervised mutual information probe to evaluate the mutual dependence between a real clustering and a representation clustering. The goals of this empirical paper are to 1) investigate probing techniques, especially from the unsupervised mutual information aspect, 2) provide guidelines of pre-trained language model selection for the dialogue research community, 3) find insights of pre-training factors for dialogue application that may be the key to success.

pdf bib
End-to-End Slot Alignment and Recognition for Cross-Lingual NLU
Weijia Xu | Batool Haider | Saab Mansour

Natural language understanding (NLU) in the context of goal-oriented dialog systems typically includes intent classification and slot labeling tasks. Existing methods to expand an NLU system to new languages use machine translation with slot label projection from source to the translated utterances, and thus are sensitive to projection errors. In this work, we propose a novel end-to-end model that learns to align and predict target slot labels jointly for cross-lingual transfer. We introduce MultiATIS++, a new multilingual NLU corpus that extends the Multilingual ATIS corpus to nine languages across four language families, and evaluate our method using the corpus. Results show that our method outperforms a simple label projection method using fast-align on most languages, and achieves competitive performance to the more complex, state-of-the-art projection method with only half of the training time. We release our MultiATIS++ corpus to the community to continue future research on cross-lingual NLU.

pdf bib
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference
Jianguo Zhang | Kazuma Hashimoto | Wenhao Liu | Chien-Sheng Wu | Yao Wan | Philip Yu | Richard Socher | Caiming Xiong

Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.

pdf bib
Simple Data Augmentation with the Mask Token Improves Domain Adaptation for Dialog Act Tagging
Semih Yavuz | Kazuma Hashimoto | Wenhao Liu | Nitish Shirish Keskar | Richard Socher | Caiming Xiong

The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of “request” carries the same speaker intention whether it is for restaurant reservation or flight booking. However, DA taggers trained on one domain do not generalize well to other domains, which leaves us with the expensive need for a large amount of annotated data in the target domain. In this work, we investigate how to better adapt DA taggers to desired target domains with only unlabeled data. We propose MaskAugment, a controllable mechanism that augments text input by leveraging the pre-trained Mask token from BERT model. Inspired by consistency regularization, we use MaskAugment to introduce an unsupervised teacher-student learning scheme to examine the domain adaptation of DA taggers. Our extensive experiments on the Simulated Dialogue (GSim) and Schema-Guided Dialogue (SGD) datasets show that MaskAugment is useful in improving the cross-domain generalization for DA tagging.

pdf bib
Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing
Xilun Chen | Asish Ghoshal | Yashar Mehdad | Luke Zettlemoyer | Sonal Gupta

Task-oriented semantic parsing is a critical component of virtual assistants, which is responsible for understanding the user’s intents (set reminder, play music, etc.). Recent advances in deep learning have enabled several approaches to successfully parse more complex queries (Gupta et al., 2018; Rongali et al.,2020), but these models require a large amount of annotated training data to parse queries on new domains (e.g. reminder, music). In this paper, we focus on adapting task-oriented semantic parsers to low-resource domains, and propose a novel method that outperforms a supervised neural model at a 10-fold data reduction. In particular, we identify two fundamental factors for low-resource domain adaptation: better representation learning and better training techniques. Our representation learning uses BART (Lewis et al., 2019) to initialize our model which outperforms encoder-only pre-trained representations used in previous work. Furthermore, we train with optimization-based meta-learning (Finn et al., 2017) to improve generalization to low-resource domains. This approach significantly outperforms all baseline methods in the experiments on a newly collected multi-domain task-oriented semantic parsing dataset (TOPv2), which we release to the public.

pdf bib
Sound Natural: Content Rephrasing in Dialog Systems
Arash Einolghozati | Anchit Gupta | Keith Diedrick | Sonal Gupta

We introduce a new task of rephrasing for a more natural virtual assistant. Currently, virtual assistants work in the paradigm of intent-slot tagging and the slot values are directly passed as-is to the execution engine. However, this setup fails in some scenarios such as messaging when the query given by the user needs to be changed before repeating it or sending it to another user. For example, for queries like ‘ask my wife if she can pick up the kids’ or ‘remind me to take my pills’, we need to rephrase the content to ‘can you pick up the kids’ and ‘take your pills’. In this paper, we study the problem of rephrasing with messaging as a use case and release a dataset of 3000 pairs of original query and rephrased query. We show that BART, a pre-trained transformers-based masked language model, is a strong baseline for the task, and show improvements by adding a copy-pointer and copy loss to it. We analyze different trade-offs of BART-based and LSTM-based seq2seq models, and propose a distilled LSTM-based seq2seq as the best practical model

pdf bib
Zero-Shot Crosslingual Sentence Simplification
Jonathan Mallinson | Rico Sennrich | Mirella Lapata

Sentence simplification aims to make sentences easier to read and understand. Recent approaches have shown promising results with encoder-decoder models trained on large amounts of parallel data which often only exists in English. We propose a zero-shot modeling framework which transfers simplification knowledge from English to another language (for which no parallel simplification corpus exists) while generalizing across languages and tasks. A shared transformer encoder constructs language-agnostic representations, with a combination of task-specific encoder layers added on top (e.g., for translation and simplification). Empirical results using both human and automatic metrics show that our approach produces better simplifications than unsupervised and pivot-based methods.

pdf bib
Facilitating the Communication of Politeness through Fine-Grained Paraphrasing
Liye Fu | Susan Fussell | Cristian Danescu-Niculescu-Mizil

Aided by technology, people are increasingly able to communicate across geographical, cultural, and language barriers. This ability also results in new challenges, as interlocutors need to adapt their communication approaches to increasingly diverse circumstances. In this work, we take the first steps towards automatically assisting people in adjusting their language to a specific communication circumstance. As a case study, we focus on facilitating the accurate transmission of pragmatic intentions and introduce a methodology for suggesting paraphrases that achieve the intended level of politeness under a given communication circumstance. We demonstrate the feasibility of this approach by evaluating our method in two realistic communication scenarios and show that it can reduce the potential for misalignment between the speaker’s intentions and the listener’s perceptions in both cases.

pdf bib
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
Tianlu Wang | Xuezhi Wang | Yao Qin | Ben Packer | Kang Li | Jilin Chen | Alex Beutel | Ed Chi

NLP models are shown to suffer from robustness issues, i.e., a model’s prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.

pdf bib
Seq2Edits: Sequence Transduction Using Span-level Edit Operations
Felix Stahlberg | Shankar Kumar

We propose Seq2Edits, an open-vocabulary approach to sequence editing for natural language processing (NLP) tasks with a high degree of overlap between input and output texts. In this approach, each sequence-to-sequence transduction is represented as a sequence of edit operations, where each operation either replaces an entire source span with target tokens or keeps it unchanged. We evaluate our method on five NLP tasks (text normalization, sentence fusion, sentence splitting & rephrasing, text simplification, and grammatical error correction) and report competitive results across the board. For grammatical error correction, our method speeds up inference by up to 5.2x compared to full sequence models because inference time depends on the number of edits rather than the number of target tokens. For text normalization, sentence fusion, and grammatical error correction, our approach improves explainability by associating each edit operation with a human-readable tag.

pdf bib
Controllable Meaning Representation to Text Generation: Linearization and Data Augmentation Strategies
Chris Kedzie | Kathleen McKeown

We study the degree to which neural sequence-to-sequence models exhibit fine-grained controllability when performing natural language generation from a meaning representation. Using two task-oriented dialogue generation benchmarks, we systematically compare the effect of four input linearization strategies on controllability and faithfulness. Additionally, we evaluate how a phrase-based data augmentation method can improve performance. We find that properly aligning input sequences during training leads to highly controllable generation, both when training from scratch or when fine-tuning a larger pre-trained model. Data augmentation further improves control on difficult, randomly generated utterance plans.

pdf bib
Blank Language Models
Tianxiao Shen | Victor Quach | Regina Barzilay | Tommi Jaakkola

We propose Blank Language Model (BLM), a model that generates sequences by dynamically creating and filling in blanks. The blanks control which part of the sequence to expand, making BLM ideal for a variety of text editing and rewriting tasks. The model can start from a single blank or partially completed text with blanks at specified locations. It iteratively determines which word to place in a blank and whether to insert new blanks, and stops generating when no blanks are left to fill. BLM can be efficiently trained using a lower bound of the marginal data likelihood. On the task of filling missing text snippets, BLM significantly outperforms all other baselines in terms of both accuracy and fluency. Experiments on style transfer and damaged ancient text restoration demonstrate the potential of this framework for a wide range of applications.

pdf bib
COD3S: Diverse Generation with Discrete Semantic Signatures
Nathaniel Weir | João Sedoc | Benjamin Van Durme

We present COD3S, a novel method for generating semantically diverse sentences using neural sequence-to-sequence (seq2seq) models. Conditioned on an input, seq2seqs typically produce semantically and syntactically homogeneous sets of sentences and thus perform poorly on one-to-many sequence generation tasks. Our two-stage approach improves output diversity by conditioning generation on locality-sensitive hash (LSH)-based semantic sentence codes whose Hamming distances highly correlate with human judgments of semantic textual similarity. Though it is generally applicable, we apply to causal generation, the task of predicting a proposition’s plausible causes or effects. We demonstrate through automatic and human evaluation that responses produced using our method exhibit improved diversity without degrading task performance.

pdf bib
Automatic Extraction of Rules Governing Morphological Agreement
Aditi Chaudhary | Antonios Anastasopoulos | Adithya Pratapa | David R. Mortensen | Zaid Sheikh | Yulia Tsvetkov | Graham Neubig

Creating a descriptive grammar of a language is an indispensable step for language documentation and preservation. However, at the same time it is a tedious, time-consuming task. In this paper, we take steps towards automating this process by devising an automated framework for extracting a first-pass grammatical specification from raw text in a concise, human- and machine-readable format. We focus on extracting rules describing agreement, a morphosyntactic phenomenon at the core of the grammars of many of the world’s languages. We apply our framework to all languages included in the Universal Dependencies project, with promising results. Using cross-lingual transfer, even with no expert annotations in the language of interest, our framework extracts a grammatical specification which is nearly equivalent to those created with large amounts of gold-standard annotated data. We confirm this finding with human expert evaluations of the rules that our framework produces, which have an average accuracy of 78%. We release an interface demonstrating the extracted rules at https://neulab.github.io/lase/

pdf bib
Tackling the Low-resource Challenge for Canonical Segmentation
Manuel Mager | Özlem Çetinoğlu | Katharina Kann

Canonical morphological segmentation consists of dividing words into their standardized morphemes. Here, we are interested in approaches for the task when training data is limited. We compare model performance in a simulated low-resource setting for the high-resource languages German, English, and Indonesian to experiments on new datasets for the truly low-resource languages Popoluca and Tepehua. We explore two new models for the task, borrowing from the closely related area of morphological generation: an LSTM pointer-generator and a sequence-to-sequence model with hard monotonic attention trained with imitation learning. We find that, in the low-resource setting, the novel approaches out-perform existing ones on all languages by up to 11.4% accuracy. However, while accuracy in emulated low-resource scenarios is over 50% for all languages, for the truly low-resource languages Popoluca and Tepehua, our best model only obtains 37.4% and 28.4% accuracy, respectively. Thus, we conclude that canonical segmentation is still a challenging task for low-resource languages.

pdf bib
IGT2P: From Interlinear Glossed Texts to Paradigms
Sarah Moeller | Ling Liu | Changbing Yang | Katharina Kann | Mans Hulden

An intermediate step in the linguistic analysis of an under-documented language is to find and organize inflected forms that are attested in natural speech. From this data, linguists generate unseen inflected word forms in order to test hypotheses about the language’s inflectional patterns and to complete inflectional paradigm tables. To get the data linguists spend many hours manually creating interlinear glossed texts (IGTs). We introduce a new task that speeds this process and automatically generates new morphological resources for natural language processing systems: IGT-to-paradigms (IGT2P). IGT2P generates entire morphological paradigms from IGT input. We show that existing morphological reinflection models can solve the task with 21% to 64% accuracy, depending on the language. We further find that (i) having a language expert spend only a few hours cleaning the noisy IGT data improves performance by as much as 21 percentage points, and (ii) POS tags, which are generally considered a necessary part of NLP morphological reinflection input, have no effect on the accuracy of the models considered here.

pdf bib
A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support
Ashish Sharma | Adam Miner | David Atkins | Tim Althoff

Empathy is critical to successful mental health support. Empathy measurement has predominantly occurred in synchronous, face-to-face settings, and may not translate to asynchronous, text-based contexts. Because millions of people use text-based platforms for mental health support, understanding empathy in these contexts is crucial. In this work, we present a computational approach to understanding how empathy is expressed in online mental health platforms. We develop a novel unifying theoretically-grounded framework for characterizing the communication of empathy in text-based conversations. We collect and share a corpus of 10k (post, response) pairs annotated using this empathy framework with supporting evidence for annotations (rationales). We develop a multi-task RoBERTa-based bi-encoder model for identifying empathy in conversations and extracting rationales underlying its predictions. Experiments demonstrate that our approach can effectively identify empathic conversations. We further apply this model to analyze 235k mental health interactions and show that users do not self-learn empathy over time, revealing opportunities for empathy training and feedback.

pdf bib
Modeling Protagonist Emotions for Emotion-Aware Storytelling
Faeze Brahman | Snigdha Chaturvedi

Emotions and their evolution play a central role in creating a captivating story. In this paper, we present the first study on modeling the emotional trajectory of the protagonist in neural storytelling. We design methods that generate stories that adhere to given story titles and desired emotion arcs for the protagonist. Our models include Emotion Supervision (EmoSup) and two Emotion-Reinforced (EmoRL) models. The EmoRL models use special rewards designed to regularize the story generation process through reinforcement learning. Our automatic and manual evaluations demonstrate that these models are significantly better at generating stories that follow the desired emotion arcs compared to baseline methods, without sacrificing story quality.

pdf bib
Help! Need Advice on Identifying Advice
Venkata Subrahmanyan Govindarajan | Benjamin Chen | Rebecca Warholic | Katrin Erk | Junyi Jessy Li

Humans use language to accomplish a wide variety of tasks - asking for and giving advice being one of them. In online advice forums, advice is mixed in with non-advice, like emotional support, and is sometimes stated explicitly, sometimes implicitly. Understanding the language of advice would equip systems with a better grasp of language pragmatics; practically, the ability to identify advice would drastically increase the efficiency of advice-seeking online, as well as advice-giving in natural language generation systems. We present a dataset in English from two Reddit advice forums - r/AskParents and r/needadvice - annotated for whether sentences in posts contain advice or not. Our analysis reveals rich linguistic phenomena in advice discourse. We present preliminary models showing that while pre-trained language models are able to capture advice better than rule-based systems, advice identification is challenging, and we identify directions for future research.

pdf bib
Quantifying Intimacy in Language
Jiaxin Pei | David Jurgens

Intimacy is a fundamental aspect of how we relate to others in social settings. Language encodes the social information of intimacy through both topics and other more subtle cues (such as linguistic hedging and swearing). Here, we introduce a new computational framework for studying expressions of the intimacy in language with an accompanying dataset and deep learning model for accurately predicting the intimacy level of questions (Pearson r = 0.87). Through analyzing a dataset of 80.5M questions across social media, books, and films, we show that individuals employ interpersonal pragmatic moves in their language to align their intimacy with social settings. Then, in three studies, we further demonstrate how individuals modulate their intimacy to match social norms around gender, social distance, and audience, each validating key findings from studies in social psychology. Our work demonstrates that intimacy is a pervasive and impactful social dimension of language.

pdf bib
Writing Strategies for Science Communication: Data and Computational Analysis
Tal August | Lauren Kim | Katharina Reinecke | Noah A. Smith

Communicating complex scientific ideas without misleading or overwhelming the public is challenging. While science communication guides exist, they rarely offer empirical evidence for how their strategies are used in practice. Writing strategies that can be automatically recognized could greatly support science communication efforts by enabling tools to detect and suggest strategies for writers. We compile a set of writing strategies drawn from a wide range of prescriptive sources and develop an annotation scheme allowing humans to recognize them. We collect a corpus of 128k science writing documents in English and annotate a subset of this corpus. We use the annotations to train transformer-based classifiers and measure the strategies’ use in the larger corpus. We find that the use of strategies, such as storytelling and emphasizing the most important findings, varies significantly across publications with different reader audiences.

pdf bib
Weakly Supervised Subevent Knowledge Acquisition
Wenlin Yao | Zeyu Dai | Maitreyi Ramaswamy | Bonan Min | Ruihong Huang

Subevents elaborate an event and widely exist in event descriptions. Subevent knowledge is useful for discourse analysis and event-centric applications. Acknowledging the scarcity of subevent knowledge, we propose a weakly supervised approach to extract subevent relation tuples from text and build the first large scale subevent knowledge base. We first obtain the initial set of event pairs that are likely to have the subevent relation, by exploiting two observations that 1) subevents are temporally contained by the parent event, and 2) the definitions of the parent event can be used to further guide the identification of subevents. Then, we collect rich weak supervision using the initial seed subevent pairs to train a contextual classifier using BERT and apply the classifier to identify new subevent pairs. The evaluation showed that the acquired subevent tuples (239K) are of high quality (90.1% accuracy) and cover a wide range of event types. The acquired subevent knowledge has been shown useful for discourse analysis and identifying a range of event-event relations.

pdf bib
Biomedical Event Extraction as Sequence Labeling
Alan Ramponi | Rob van der Goot | Rosario Lombardo | Barbara Plank

We introduce Biomedical Event Extraction as Sequence Labeling (BeeSL), a joint end-to-end neural information extraction model. BeeSL recasts the task as sequence labeling, taking advantage of a multi-label aware encoding strategy and jointly modeling the intermediate tasks via multi-task learning. BeeSL is fast, accurate, end-to-end, and unlike current methods does not require any external knowledge base or preprocessing tools. BeeSL outperforms the current best system (Li et al., 2019) on the Genia 2011 benchmark by 1.57% absolute F1 score reaching 60.22% F1, establishing a new state of the art for the task. Importantly, we also provide first results on biomedical event extraction without gold entity information. Empirical results show that BeeSL’s speed and accuracy makes it a viable approach for large-scale real-world scenarios.

pdf bib
Annotating Temporal Dependency Graphs via Crowdsourcing
Jiarui Yao | Haoling Qiu | Bonan Min | Nianwen Xue

We present the construction of a corpus of 500 Wikinews articles annotated with temporal dependency graphs (TDGs) that can be used to train systems to understand temporal relations in text. We argue that temporal dependency graphs, built on previous research on narrative times and temporal anaphora, provide a representation scheme that achieves a good trade-off between completeness and practicality in temporal annotation. We also provide a crowdsourcing strategy to annotate TDGs, and demonstrate the feasibility of this approach with an evaluation of the quality of the annotation, and the utility of the resulting data set by training a machine learning model on this data set. The data set is publicly available.

pdf bib
Introducing a New Dataset for Event Detection in Cybersecurity Texts
Hieu Man Duc Trong | Duc Trong Le | Amir Pouran Ben Veyseh | Thuat Nguyen | Thien Huu Nguyen

Detecting cybersecurity events is necessary to keep us informed about the fast growing number of such events reported in text. In this work, we focus on the task of event detection (ED) to identify event trigger words for the cybersecurity domain. In particular, to facilitate the future research, we introduce a new dataset for this problem, characterizing the manual annotation for 30 important cybersecurity event types and a large dataset size to develop deep learning models. Comparing to the prior datasets for this task, our dataset involves more event types and supports the modeling of document-level information to improve the performance. We perform extensive evaluation with the current state-of-the-art methods for ED on the proposed dataset. Our experiments reveal the challenges of cybersecurity ED and present many research opportunities in this area for the future work.

pdf bib
CHARM: Inferring Personal Attributes from Conversations
Anna Tigunova | Andrew Yates | Paramita Mirza | Gerhard Weikum

Personal knowledge about users’ professions, hobbies, favorite food, and travel preferences, among others, is a valuable asset for individualized AI, such as recommenders or chatbots. Conversations in social media, such as Reddit, are a rich source of data for inferring personal facts. Prior work developed supervised methods to extract this knowledge, but these approaches can not generalize beyond attribute values with ample labeled training samples. This paper overcomes this limitation by devising CHARM: a zero-shot learning method that creatively leverages keyword extraction and document retrieval in order to predict attribute values that were never seen during training. Experiments with large datasets from Reddit show the viability of CHARM for open-ended attributes, such as professions and hobbies.

pdf bib
Event Detection: Gate Diversity and Syntactic Importance Scores for Graph Convolution Neural Networks
Viet Dac Lai | Tuan Ngo Nguyen | Thien Huu Nguyen

Recent studies on event detection (ED) have shown that the syntactic dependency graph can be employed in graph convolution neural networks (GCN) to achieve state-of-the-art performance. However, the computation of the hidden vectors in such graph-based models is agnostic to the trigger candidate words, potentially leaving irrelevant information for the trigger candidate for event prediction. In addition, the current models for ED fail to exploit the overall contextual importance scores of the words, which can be obtained via the dependency tree, to boost the performance. In this study, we propose a novel gating mechanism to filter noisy information in the hidden vectors of the GCN models for ED based on the information from the trigger candidate. We also introduce novel mechanisms to achieve the contextual diversity for the gates and the importance score consistency for the graphs and models in ED. The experiments show that the proposed model achieves state-of-the-art performance on two ED datasets.

pdf bib
Severing the Edge Between Before and After: Neural Architectures for Temporal Ordering of Events
Miguel Ballesteros | Rishita Anubhai | Shuai Wang | Nima Pourdamghani | Yogarshi Vyas | Jie Ma | Parminder Bhatia | Kathleen McKeown | Yaser Al-Onaizan

In this paper, we propose a neural architecture and a set of training methods for ordering events by predicting temporal relations. Our proposed models receive a pair of events within a span of text as input and they identify temporal relations (Before, After, Equal, Vague) between them. Given that a key challenge with this task is the scarcity of annotated data, our models rely on either pretrained representations (i.e. RoBERTa, BERT or ELMo), transfer and multi-task learning (by leveraging complementary datasets), and self-training techniques. Experiments on the MATRES dataset of English documents establish a new state-of-the-art on this task.

pdf bib
How Much Knowledge Can You Pack Into the Parameters of a Language Model?
Adam Roberts | Colin Raffel | Noam Shazeer

It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models.

pdf bib
EXAMS: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering
Momchil Hardalov | Todor Mihaylov | Dimitrina Zlatkova | Yoan Dinkov | Ivan Koychev | Preslav Nakov

We propose EXAMS – a new benchmark dataset for cross-lingual and multilingual question answering for high school examinations. We collected more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others.EXAMS offers unique fine-grained evaluation framework across multiple languages and subjects, which allows precise analysis and comparison of the proposed models. We perform various experiments with existing top-performing multilingual pre-trained models and show that EXAMS offers multiple challenges that require multilingual knowledge and reasoning in multiple domains. We hope that EXAMS will enable researchers to explore challenging reasoning and knowledge transfer methods and pre-trained models for school question answering in various languages which was not possible by now. The data, code, pre-trained models, and evaluation are available at http://github.com/mhardalov/exams-qa.

pdf bib
End-to-End Synthetic Data Generation for Domain Adaptation of Question Answering Systems
Siamak Shakeri | Cicero Nogueira dos Santos | Henghui Zhu | Patrick Ng | Feng Nan | Zhiguo Wang | Ramesh Nallapati | Bing Xiang

We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the encoder and ask the decoder to generate a question and an answer token-by-token. The likelihood produced in the generation process is used as a filtering score, which avoids the need for a separate filtering model. Our generator is trained by fine-tuning a pretrained LM using maximum likelihood estimation. The experimental results indicate significant improvements in the domain adaptation of QA models outperforming current state-of-the-art methods.

pdf bib
Multi-Stage Pre-training for Low-Resource Domain Adaptation
Rong Zhang | Revanth Gangi Reddy | Md Arafat Sultan | Vittorio Castelli | Anthony Ferritto | Radu Florian | Efsun Sarioglu Kayi | Salim Roukos | Avi Sil | Todd Ward

Transfer learning techniques are particularly useful for NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pretrained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pretrained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.

pdf bib
ISAAQ - Mastering Textbook Questions with Pre-trained Transformers and Bottom-Up and Top-Down Attention
Jose Manuel Gomez-Perez | Raúl Ortega

Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets.

pdf bib
SubjQA: A Dataset for Subjectivity and Review Comprehension
Johannes Bjerva | Nikita Bhutani | Behzad Golshan | Wang-Chiew Tan | Isabelle Augenstein

Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.

pdf bib
Widget Captioning: Generating Natural Language Description for Mobile User Interface Elements
Yang Li | Gang Li | Luheng He | Jingjie Zheng | Hong Li | Zhiwei Guan

Natural language descriptions of user interface (UI) elements such as alternative text are crucial for accessibility and language-based interaction in general. Yet, these descriptions are constantly missing in mobile UIs. We propose widget captioning, a novel task for automatically generating language descriptions for UI elements from multimodal input including both the image and the structural representations of user interfaces. We collected a large-scale dataset for widget captioning with crowdsourcing. Our dataset contains 162,860 language phrases created by human workers for annotating 61,285 UI elements across 21,750 unique UI screens. We thoroughly analyze the dataset, and train and evaluate a set of deep model configurations to investigate how each feature modality as well as the choice of learning strategies impact the quality of predicted captions. The task formulation and the dataset as well as our benchmark models contribute a solid basis for this novel multimodal captioning task that connects language and user interfaces.

pdf bib
Unsupervised Natural Language Inference via Decoupled Multimodal Contrastive Learning
Wanyun Cui | Guangyu Zheng | Wei Wang

We propose to solve the natural language inference problem without any supervision from the inference labels via task-agnostic multimodal pretraining. Although recent studies of multimodal self-supervised learning also represent the linguistic and visual context, their encoders for different modalities are coupled. Thus they cannot incorporate visual information when encoding plain text alone. In this paper, we propose Multimodal Aligned Contrastive Decoupled learning (MACD) network. MACD forces the decoupled text encoder to represent the visual information via contrastive learning. Therefore, it embeds visual knowledge even for plain text inference. We conducted comprehensive experiments over plain text inference datasets (i.e. SNLI and STS-B). The unsupervised MACD even outperforms the fully-supervised BiLSTM and BiLSTM+ELMO on STS-B.

pdf bib
Digital Voicing of Silent Speech
David Gaddy | Dan Klein

In this paper, we consider the task of digitally voicing silent speech, where silently mouthed words are converted to audible speech based on electromyography (EMG) sensor measurements that capture muscle impulses. While prior work has focused on training speech synthesis models from EMG collected during vocalized speech, we are the first to train from EMG collected during silently articulated speech. We introduce a method of training on silent EMG by transferring audio targets from vocalized to silent signals. Our method greatly improves intelligibility of audio generated from silent EMG compared to a baseline that only trains with vocalized data, decreasing transcription word error rate from 64% to 4% in one data condition and 88% to 68% in another. To spur further development on this task, we share our new dataset of silent and vocalized facial EMG measurements.

pdf bib
Imitation Attacks and Defenses for Black-box Machine Translation Systems
Eric Wallace | Mitchell Stern | Dawn Song

Adversaries may look to steal or attack black-box NLP systems, either for financial gain or to exploit model errors. One setting of particular interest is machine translation (MT), where models have high commercial value and errors can be costly. We investigate possible exploitations of black-box MT systems and explore a preliminary defense against such threats. We first show that MT systems can be stolen by querying them with monolingual sentences and training models to imitate their outputs. Using simulated experiments, we demonstrate that MT model stealing is possible even when imitation models have different input data or architectures than their target models. Applying these ideas, we train imitation models that reach within 0.6 BLEU of three production MT systems on both high-resource and low-resource language pairs. We then leverage the similarity of our imitation models to transfer adversarial examples to the production systems. We use gradient-based attacks that expose inputs which lead to semantically-incorrect translations, dropped content, and vulgar model outputs. To mitigate these vulnerabilities, we propose a defense that modifies translation outputs in order to misdirect the optimization of imitation models. This defense degrades the adversary’s BLEU score and attack success rate at some cost in the defender’s BLEU and inference speed.

pdf bib
Sequence-Level Mixed Sample Data Augmentation
Demi Guo | Yoon Kim | Alexander Rush

Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-sequence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all essentially approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.

pdf bib
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding
Sean Welleck | Ilia Kulikov | Jaedeok Kim | Richard Yuanzhe Pang | Kyunghyun Cho

Despite strong performance on a variety of tasks, neural sequence models trained with maximum likelihood have been shown to exhibit issues such as length bias and degenerate repetition. We study the related issue of receiving infinite-length sequences from a recurrent language model when using common decoding algorithms. To analyze this issue, we first define inconsistency of a decoding algorithm, meaning that the algorithm can yield an infinite-length sequence that has zero probability under the model. We prove that commonly used incomplete decoding algorithms – greedy search, beam search, top-k sampling, and nucleus sampling – are inconsistent, despite the fact that recurrent language models are trained to produce sequences of finite length. Based on these insights, we propose two remedies which address inconsistency: consistent variants of top-k and nucleus sampling, and a self-terminating recurrent language model. Empirical results show that inconsistency occurs in practice, and that the proposed methods prevent inconsistency.

pdf bib
An Exploration of Arbitrary-Order Sequence Labeling via Energy-Based Inference Networks
Lifu Tu | Tianyu Liu | Kevin Gimpel

Many tasks in natural language processing involve predicting structured outputs, e.g., sequence labeling, semantic role labeling, parsing, and machine translation. Researchers are increasingly applying deep representation learning to these problems, but the structured component of these approaches is usually quite simplistic. In this work, we propose several high-order energy terms to capture complex dependencies among labels in sequence labeling, including several that consider the entire label sequence. We use neural parameterizations for these energy terms, drawing from convolutional, recurrent, and self-attention networks. We use the framework of learning energy-based inference networks (Tu and Gimpel, 2018) for dealing with the difficulties of training and inference with such models. We empirically demonstrate that this approach achieves substantial improvement using a variety of high-order energy terms on four sequence labeling tasks, while having the same decoding speed as simple, local classifiers. We also find high-order energies to help in noisy data conditions.

pdf bib
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast—Choose Three
Steven Reich | David Mueller | Nicholas Andrews

Modern neural networks do not always produce well-calibrated predictions, even when trained with a proper scoring function such as cross-entropy. In classification settings, simple methods such as isotonic regression or temperature scaling may be used in conjunction with a held-out dataset to calibrate model outputs. However, extending these methods to structured prediction is not always straightforward or effective; furthermore, a held-out calibration set may not always be available. In this paper, we study ensemble distillation as a general framework for producing well-calibrated structured prediction models while avoiding the prohibitive inference-time cost of ensembles. We validate this framework on two tasks: named-entity recognition and machine translation. We find that, across both tasks, ensemble distillation produces models which retain much of, and occasionally improve upon, the performance and calibration benefits of ensembles, while only requiring a single model during test-time.

pdf bib
Inducing Target-Specific Latent Structures for Aspect Sentiment Classification
Chenhua Chen | Zhiyang Teng | Yue Zhang

Aspect-level sentiment analysis aims to recognize the sentiment polarity of an aspect or a target in a comment. Recently, graph convolutional networks based on linguistic dependency trees have been studied for this task. However, the dependency parsing accuracy of commercial product comments or tweets might be unsatisfactory. To tackle this problem, we associate linguistic dependency trees with automatically induced aspectspecific graphs. We propose gating mechanisms to dynamically combine information from word dependency graphs and latent graphs which are learned by self-attention networks. Our model can complement supervised syntactic features with latent semantic dependencies. Experimental results on five benchmarks show the effectiveness of our proposed latent models, giving significantly better results than models without using latent graphs.

pdf bib
Affective Event Classification with Discourse-enhanced Self-training
Yuan Zhuang | Tianyu Jiang | Ellen Riloff

Prior research has recognized the need to associate affective polarities with events and has produced several techniques and lexical resources for identifying affective events. Our research introduces new classification models to assign affective polarity to event phrases. First, we present a BERT-based model for affective event classification and show that the classifier achieves substantially better performance than a large affective event knowledge base. Second, we present a discourse-enhanced self-training method that iteratively improves the classifier with unlabeled data. The key idea is to exploit event phrases that occur with a coreferent sentiment expression. The discourse-enhanced self-training algorithm iteratively labels new event phrases based on both the classifier’s predictions and the polarities of the event’s coreferent sentiment expressions. Our results show that discourse-enhanced self-training further improves both recall and precision for affective event classification.

pdf bib
Deep Weighted MaxSAT for Aspect-based Opinion Extraction
Meixi Wu | Wenya Wang | Sinno Jialin Pan

Though deep learning has achieved significant success in various NLP tasks, most deep learning models lack the capability of encoding explicit domain knowledge to model complex causal relationships among different types of variables. On the other hand, logic rules offer a compact expression to represent the causal relationships to guide the training process. Logic programs can be cast as a satisfiability problem which aims to find truth assignments to logic variables by maximizing the number of satisfiable clauses (MaxSAT). We adopt the MaxSAT semantics to model logic inference process and smoothly incorporate a weighted version of MaxSAT that connects deep neural networks and a graphical model in a joint framework. The joint model feeds deep learning outputs to a weighted MaxSAT layer to rectify the erroneous predictions and can be trained via end-to-end gradient descent. Our proposed model associates the benefits of high-level feature learning, knowledge reasoning, and structured learning with observable performance gain for the task of aspect-based opinion extraction.

pdf bib
Multi-view Story Characterization from Movie Plot Synopses and Reviews
Sudipta Kar | Gustavo Aguilar | Mirella Lapata | Thamar Solorio

This paper considers the problem of characterizing stories by inferring properties such as theme and style using written synopses and reviews of movies. We experiment with a multi-label dataset of movie synopses and a tagset representing various attributes of stories (e.g., genre, type of events). Our proposed multi-view model encodes the synopses and reviews using hierarchical attention and shows improvement over methods that only use synopses. Finally, we demonstrate how we can take advantage of such a model to extract a complementary set of story-attributes from reviews without direct supervision. We have made our dataset and source code publicly available at https://ritual.uh.edu/multiview-tag-2020.

pdf bib
Mind Your Inflections! Improving NLP for Non-Standard Englishes with Base-Inflection Encoding
Samson Tan | Shafiq Joty | Lav Varshney | Min-Yen Kan

Inflectional variation is a common feature of World Englishes such as Colloquial Singapore English and African American Vernacular English. Although comprehension by human readers is usually unimpaired by non-standard inflections, current NLP systems are not yet robust. We propose Base-Inflection Encoding (BITE), a method to tokenize English text by reducing inflected words to their base forms before reinjecting the grammatical information as special symbols. Fine-tuning pretrained NLP models for downstream tasks using our encoding defends against inflectional adversaries while maintaining performance on clean data. Models using BITE generalize better to dialects with non-standard inflections without explicit training and translation models converge faster when trained with BITE. Finally, we show that our encoding improves the vocabulary efficiency of popular data-driven subword tokenizers. Since there has been no prior work on quantitatively evaluating vocabulary efficiency, we propose metrics to do so.

pdf bib
Measuring the Similarity of Grammatical Gender Systems by Comparing Partitions
Arya D. McCarthy | Adina Williams | Shijia Liu | David Yarowsky | Ryan Cotterell

A grammatical gender system divides a lexicon into a small number of relatively fixed grammatical categories. How similar are these gender systems across languages? To quantify the similarity, we define gender systems extensionally, thereby reducing the problem of comparisons between languages’ gender systems to cluster evaluation. We borrow a rich inventory of statistical tools for cluster evaluation from the field of community detection (Driver and Kroeber, 1932; Cattell, 1945), that enable us to craft novel information theoretic metrics for measuring similarity between gender systems. We first validate our metrics, then use them to measure gender system similarity in 20 languages. We then ask whether our gender system similarities alone are sufficient to reconstruct historical relationships between languages. Towards this end, we make phylogenetic predictions on the popular, but thorny, problem from historical linguistics of inducing a phylogenetic tree over extant Indo-European languages. Of particular interest, languages on the same branch of our phylogenetic tree are notably similar, whereas languages from separate branches are no more similar than chance.

pdf bib
RethinkCWS: Is Chinese Word Segmentation a Solved Task?
Jinlan Fu | Pengfei Liu | Qi Zhang | Xuanjing Huang

The performance of the Chinese Word Segmentation (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks, especially the successful use of large pre-trained models. In this paper, we take stock of what we have achieved and rethink what’s left in the CWS task. Methodologically, we propose a fine-grained evaluation for existing CWS systems, which not only allows us to diagnose the strengths and weaknesses of existing models (under the in-dataset setting), but enables us to quantify the discrepancy between different criterion and alleviate the negative transfer problem when doing multi-criteria learning. Strategically, despite not aiming to propose a novel model in this paper, our comprehensive experiments on eight models and seven datasets, as well as thorough analysis, could search for some promising direction for future research. We make all codes publicly available and release an interface that can quickly evaluate and diagnose user’s models: https://github.com/neulab/InterpretEval

pdf bib
Learning to Pronounce Chinese Without a Pronunciation Dictionary
Christopher Chu | Scot Fang | Kevin Knight

We demonstrate a program that learns to pronounce Chinese text in Mandarin, without a pronunciation dictionary. From non-parallel streams of Chinese characters and Chinese pinyin syllables, it establishes a many-to-many mapping between characters and pronunciations. Using unsupervised methods, the program effectively deciphers writing into speech. Its token-level character-to-syllable accuracy is 89%, which significantly exceeds the 22% accuracy of prior work.

pdf bib
Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph
Xin Lv | Xu Han | Lei Hou | Juanzi Li | Zhiyuan Liu | Wei Zhang | Yichi Zhang | Hao Kong | Suhui Wu

Multi-hop reasoning has been widely studied in recent years to seek an effective and interpretable method for knowledge graph (KG) completion. Most previous reasoning methods are designed for dense KGs with enough paths between entities, but cannot work well on those sparse KGs that only contain sparse paths for reasoning. On the one hand, sparse KGs contain less information, which makes it difficult for the model to choose correct paths. On the other hand, the lack of evidential paths to target entities also makes the reasoning process difficult. To solve these problems, we propose a multi-hop reasoning model over sparse KGs, by applying novel dynamic anticipation and completion strategies: (1) The anticipation strategy utilizes the latent prediction of embedding-based models to make our model perform more potential path search over sparse KGs. (2) Based on the anticipation information, the completion strategy dynamically adds edges as additional actions during the path search, which further alleviates the sparseness problem of KGs. The experimental results on five datasets sampled from Freebase, NELL and Wikidata show that our method outperforms state-of-the-art baselines. Our codes and datasets can be obtained from https://github.com/THU-KEG/DacKGR.

pdf bib
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Zequn Sun | Muhao Chen | Wei Hu | Chengming Wang | Jian Dai | Wei Zhang

Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.

pdf bib
Domain Knowledge Empowered Structured Neural Net for End-to-End Event Temporal Relation Extraction
Rujun Han | Yichao Zhou | Nanyun Peng

Extracting event temporal relations is a critical task for information extraction and plays an important role in natural language understanding. Prior systems leverage deep learning and pre-trained language models to improve the performance of the task. However, these systems often suffer from two shortcomings: 1) when performing maximum a posteriori (MAP) inference based on neural models, previous systems only used structured knowledge that is assumed to be absolutely correct, i.e., hard constraints; 2) biased predictions on dominant temporal relations when training with a limited amount of data. To address these issues, we propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge. We solve the constrained inference problem via Lagrangian Relaxation and apply it to end-to-end event temporal relation extraction tasks. Experimental results show our framework is able to improve the baseline neural network models with strong statistical significance on two widely used datasets in news and clinical domains.

pdf bib
TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
Jiapeng Wu | Meng Cao | Jackie Chi Kit Cheung | William L. Hamilton

Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this problem by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, these methods do not explicitly leverage multi-hop structural information and temporal facts from recent time steps to enhance their predictions. Additionally, prior work does not explicitly address the temporal sparsity and variability of entity distributions in TKGs. We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques. Experiments on standard TKG tasks show that our approach provides substantial gains compared to the previous state of the art, achieving a 10.7% average relative improvement in Hits@10 across three standard benchmarks. Our analysis also reveals important sources of variability both within and across TKG datasets, and we introduce several simple but strong baselines that outperform the prior state of the art in certain settings.

pdf bib
Understanding the Difficulty of Training Transformers
Liyuan Liu | Xiaodong Liu | Jianfeng Gao | Weizhu Chen | Jiawei Han

Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding carefully designing cutting-edge optimizers and learning rate schedulers (e.g., conventional SGD fails to train Transformers effectively). Our objective here is to understand __what complicates Transformer training__ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially—for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin (Adaptive model initialization) to stabilize the early stage’s training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance

pdf bib
An Empirical Study of Generation Order for Machine Translation
William Chan | Mitchell Stern | Jamie Kiros | Jakob Uszkoreit

In this work, we present an empirical study of generation order for machine translation. Building on recent advances in insertion-based modeling, we first introduce a soft order-reward framework that enables us to train models to follow arbitrary oracle generation policies. We then make use of this framework to explore a large variety of generation orders, including uninformed orders, location-based orders, frequency-based orders, content-based orders, and model-based orders. Curiously, we find that for the WMT’14 English German and WMT’18 English Chinese translation tasks, order does not have a substantial impact on output quality. Moreover, for English German, we even discover that unintuitive orderings such as alphabetical and shortest-first can match the performance of a standard Transformer, suggesting that traditional left-to-right generation may not be necessary to achieve high performance.

pdf bib
Inference Strategies for Machine Translation with Conditional Masking
Julia Kreutzer | George Foster | Colin Cherry

Conditional masked language model (CMLM) training has proven successful for non-autoregressive and semi-autoregressive sequence generation tasks, such as machine translation. Given a trained CMLM, however, it is not clear what the best inference strategy is. We formulate masked inference as a factorization of conditional probabilities of partial sequences, show that this does not harm performance, and investigate a number of simple heuristics motivated by this perspective. We identify a thresholding strategy that has advantages over the standard “mask-predict” algorithm, and provide analyses of its behavior on machine translation tasks.

pdf bib
AmbigQA: Answering Ambiguous Open-domain Questions
Sewon Min | Julian Michael | Hannaneh Hajishirzi | Luke Zettlemoyer

Ambiguity is inherent to open-domain question answering; especially when exploring new topics, it can be difficult to ask questions that have a single, unambiguous answer. In this paper, we introduce AmbigQA, a new open-domain question answering task which involves finding every plausible answer, and then rewriting the question for each one to resolve the ambiguity. To study this task, we construct AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous, with diverse sources of ambiguity such as event and entity references. We also present strong baseline models for AmbigQA which we show benefit from weakly supervised learning that incorporates NQ-open, strongly suggesting our new task and data will support significant future research effort. Our data and baselines are available at https://nlp.cs.washington.edu/ambigqa.

pdf bib
Tell Me How to Ask Again: Question Data Augmentation with Controllable Rewriting in Continuous Space
Dayiheng Liu | Yeyun Gong | Jie Fu | Yu Yan | Jiusheng Chen | Jiancheng Lv | Nan Duan | Ming Zhou

In this paper, we propose a novel data augmentation method, referred to as Controllable Rewriting based Question Data Augmentation (CRQDA), for machine reading comprehension (MRC), question generation, and question-answering natural language inference tasks. We treat the question data augmentation task as a constrained question rewriting problem to generate context-relevant, high-quality, and diverse question data samples. CRQDA utilizes a Transformer Autoencoder to map the original discrete question into a continuous embedding space. It then uses a pre-trained MRC model to revise the question representation iteratively with gradient-based optimization. Finally, the revised question representations are mapped back into the discrete space, which serve as additional question data. Comprehensive experiments on SQuAD 2.0, SQuAD 1.1 question generation, and QNLI tasks demonstrate the effectiveness of CRQDA.

pdf bib
Training Question Answering Models From Synthetic Data
Raul Puri | Ryan Spring | Mohammad Shoeybi | Mostofa Patwary | Bryan Catanzaro

Question and answer generation is a data augmentation method that aims to improve question answering (QA) models given the limited amount of human labeled data. However, a considerable gap remains between synthetic and human-generated question-answer pairs. This work aims to narrow this gap by taking advantage of large language models and explores several factors such as model size, quality of pretrained models, scale of data synthesized, and algorithmic choices. On the SQuAD1.1 question answering task, we achieve higher accuracy using solely synthetic questions and answers than when using the SQuAD1.1 training set questions alone. Removing access to real Wikipedia data, we synthesize questions and answers from a synthetic text corpus generated by an 8.3 billion parameter GPT-2 model and achieve 88.4 Exact Match (EM) and 93.9 F1 score on the SQuAD1.1 dev set. We further apply our methodology to SQuAD2.0 and show a 2.8 absolute gain on EM score compared to prior work using synthetic data.

pdf bib
Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement Learning
Yuncheng Hua | Yuan-Fang Li | Gholamreza Haffari | Guilin Qi | Tongtong Wu

Complex question-answering (CQA) involves answering complex natural-language questions on a knowledge base (KB). However, the conventional neural program induction (NPI) approach exhibits uneven performance when the questions have different types, harboring inherently different characteristics, e.g., difficulty level. This paper proposes a meta-reinforcement learning approach to program induction in CQA to tackle the potential distributional bias in questions. Our method quickly and effectively adapts the meta-learned programmer to new questions based on the most similar questions retrieved from the training data. The meta-learned policy is then used to learn a good programming policy, utilizing the trial trajectories and their rewards for similar questions in the support set. Our method achieves state-of-the-art performance on the CQA dataset (Saha et al., 2018) while using only five trial trajectories for the top-5 retrieved questions in each support set, and meta-training on tasks constructed from only 1% of the training set. We have released our code at https://github.com/DevinJake/MRL-CQA.

pdf bib
Multilingual Offensive Language Identification with Cross-lingual Embeddings
Tharindu Ranasinghe | Marcos Zampieri

Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g. hate speech, cyberbulling, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this paper, we take advantage of English data available by applying cross-lingual contextual word embeddings and transfer learning to make predictions in languages with less resources. We project predictions on comparable data in Bengali, Hindi, and Spanish and we report results of 0.8415 F1 macro for Bengali, 0.8568 F1 macro for Hindi, and 0.7513 F1 macro for Spanish. Finally, we show that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages, confirming the robustness of cross-lingual contextual embeddings and transfer learning for this task.

pdf bib
Solving Historical Dictionary Codes with a Neural Language Model
Christopher Chu | Raphael Valenti | Kevin Knight

We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1% of the cipher-word tokens correctly.

pdf bib
Toward Micro-Dialect Identification in Diaglossic and Code-Switched Environments
Muhammad Abdul-Mageed | Chiyu Zhang | AbdelRahim Elmadany | Lyle Ungar

Although prediction of dialects is an important language processing task, with a wide range of applications, existing work is largely limited to coarse-grained varieties. Inspired by geolocation research, we propose the novel task of Micro-Dialect Identification (MDI) and introduce MARBERT, a new language model with striking abilities to predict a fine-grained variety (as small as that of a city) given a single, short message. For modeling, we offer a range of novel spatially and linguistically-motivated multi-task learning models. To showcase the utility of our models, we introduce a new, large-scale dataset of Arabic micro-varieties (low-resource) suited to our tasks. MARBERT predicts micro-dialects with 9.9% F1, 76 better than a majority class baseline. Our new language model also establishes new state-of-the-art on several external tasks.

pdf bib
Investigating African-American Vernacular English in Transformer-Based Text Generation
Sophie Groenwold | Lily Ou | Aesha Parekh | Samhita Honnavalli | Sharon Levy | Diba Mirza | William Yang Wang

The growth of social media has encouraged the written use of African American Vernacular English (AAVE), which has traditionally been used only in oral contexts. However, NLP models have historically been developed using dominant English varieties, such as Standard American English (SAE), due to text corpora availability. We investigate the performance of GPT-2 on AAVE text by creating a dataset of intent-equivalent parallel AAVE/SAE tweet pairs, thereby isolating syntactic structure and AAVE- or SAE-specific language for each pair. We evaluate each sample and its GPT-2 generated text with pretrained sentiment classifiers and find that while AAVE text results in more classifications of negative sentiment than SAE, the use of GPT-2 generally increases occurrences of positive sentiment for both. Additionally, we conduct human evaluation of AAVE and SAE text generated with GPT-2 to compare contextual rigor and overall quality.

pdf bib
Iterative Domain-Repaired Back-Translation
Hao-Ran Wei | Zhirui Zhang | Boxing Chen | Weihua Luo

In this paper, we focus on the domain-specific translation with low resources, where in-domain parallel corpora are scarce or nonexistent. One common and effective strategy for this case is exploiting in-domain monolingual data with the back-translation method. However, the synthetic parallel data is very noisy because they are generated by imperfect out-of-domain systems, resulting in the poor performance of domain adaptation. To address this issue, we propose a novel iterative domain-repaired back-translation framework, which introduces the Domain-Repair (DR) model to refine translations in synthetic bilingual data. To this end, we construct corresponding data for the DR model training by round-trip translating the monolingual sentences, and then design the unified training framework to optimize paired DR and NMT models jointly. Experiments on adapting NMT models between specific domains and from the general domain to specific domains demonstrate the effectiveness of our proposed approach, achieving 15.79 and 4.47 BLEU improvements on average over unadapted models and back-translation.

pdf bib
Dynamic Data Selection and Weighting for Iterative Back-Translation
Zi-Yi Dou | Antonios Anastasopoulos | Graham Neubig

Back-translation has proven to be an effective method to utilize monolingual data in neural machine translation (NMT), and iteratively conducting back-translation can further improve the model performance. Selecting which monolingual data to back-translate is crucial, as we require that the resulting synthetic data are of high quality and reflect the target domain. To achieve these two goals, data selection and weighting strategies have been proposed, with a common practice being to select samples close to the target domain but also dissimilar to the average general-domain text. In this paper, we provide insights into this commonly used approach and generalize it to a dynamic curriculum learning strategy, which is applied to iterative back-translation models. In addition, we propose weighting strategies based on both the current quality of the sentence and its improvement over the previous iteration. We evaluate our models on domain adaptation, low-resource, and high-resource MT settings and on two language pairs. Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.

pdf bib
Revisiting Modularized Multilingual NMT to Meet Industrial Demands
Sungwon Lyu | Bokyung Son | Kichang Yang | Jaekyoung Bae

The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.

pdf bib
LAReQA: Language-Agnostic Answer Retrieval from a Multilingual Pool
Uma Roy | Noah Constant | Rami Al-Rfou | Aditya Barua | Aaron Phillips | Yinfei Yang

We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for “strong” cross-lingual alignment, requiring semantically related cross-language pairs to be closer in representation space than unrelated same-language pairs. This level of alignment is important for the practical task of cross-lingual information retrieval. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, model performance on zero-shot variants of our task that only target “weak” alignment is not predictive of performance on LAReQA. This finding underscores our claim that language-agnostic retrieval is a substantively new kind of cross-lingual evaluation, and suggests that measuring both weak and strong alignment will be important for improving cross-lingual systems going forward. We release our dataset and evaluation code at https://github.com/google-research-datasets/lareqa.

pdf bib
OCR Post Correction for Endangered Language Texts
Shruti Rijhwani | Antonios Anastasopoulos | Graham Neubig

There is little to no data available to build natural language processing models for most endangered languages. However, textual data in these languages often exists in formats that are not machine-readable, such as paper books and scanned images. In this work, we address the task of extracting text from these resources. We create a benchmark dataset of transcriptions for scanned books in three critically endangered languages and present a systematic analysis of how general-purpose OCR tools are not robust to the data-scarce setting of endangered languages. We develop an OCR post-correction method tailored to ease training in this data-scarce setting, reducing the recognition error rate by 34% on average across the three languages.

pdf bib
X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models
Zhengbao Jiang | Antonios Anastasopoulos | Jun Araki | Haibo Ding | Graham Neubig

Language models (LMs) have proven surprisingly successful at capturing factual knowledge by completing cloze-style fill-in-the-blank questions such as “Punta Cana is located in _.” However, while knowledge is both written and queried in many languages, studies on LMs’ factual representation ability have almost invariably been performed on English. To assess factual knowledge retrieval in LMs in different languages, we create a multilingual benchmark of cloze-style probes for typologically diverse languages. To properly handle language variations, we expand probing methods from single- to multi-word entities, and develop several decoding algorithms to generate multi-token predictions. Extensive experimental results provide insights about how well (or poorly) current state-of-the-art LMs perform at this task in languages with more or fewer available resources. We further propose a code-switching-based method to improve the ability of multilingual LMs to access knowledge, and verify its effectiveness on several benchmark languages. Benchmark data and code have be released at https://x-factr.github.io.

pdf bib
CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs
Ahmed El-Kishky | Vishrav Chaudhary | Francisco Guzmán | Philipp Koehn

Cross-lingual document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. In this paper, we exploit the signals embedded in URLs to label web documents at scale with an average precision of 94.5% across different language pairs. We mine sixty-eight snapshots of the Common Crawl corpus and identify web document pairs that are translations of each other. We release a new web dataset consisting of over 392 million URL pairs from Common Crawl covering documents in 8144 language pairs of which 137 pairs include English. In addition to curating this massive dataset, we introduce baseline methods that leverage cross-lingual representations to identify aligned documents based on their textual content. Finally, we demonstrate the value of this parallel documents dataset through a downstream task of mining parallel sentences and measuring the quality of machine translations from models trained on this mined data. Our objective in releasing this dataset is to foster new research in cross-lingual NLP across a variety of low, medium, and high-resource languages.

pdf bib
Localizing Open-Ontology QA Semantic Parsers in a Day Using Machine Translation
Mehrad Moradshahi | Giovanni Campagna | Sina Semnani | Silei Xu | Monica Lam

We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language. Our methodology is to (1) generate training data automatically in the target language by augmenting machine-translated datasets with local entities scraped from public websites, (2) add a few-shot boost of human-translated sentences and train a novel XLMR-LSTM semantic parser, and (3) test the model on natural utterances curated using human translators. We assess the effectiveness of our approach by extending the current capabilities of Schema2QA, a system for English Question Answering (QA) on the open web, to 10 new languages for the restaurants and hotels domains. Our model achieves an overall test accuracy ranging between 61% and 69% for the hotels domain and between 64% and 78% for restaurants domain, which compares favorably to 69% and 80% obtained for English parser trained on gold English data and a few examples from validation set. We show our approach outperforms the previous state-of-the-art methodology by more than 30% for hotels and 40% for restaurants with localized ontologies for the subset of languages tested. Our methodology enables any software developer to add a new language capability to a QA system for a new domain, leveraging machine translation, in less than 24 hours. Our code is released open-source.

pdf bib
Interactive Refinement of Cross-Lingual Word Embeddings
Michelle Yuan | Mozhi Zhang | Benjamin Van Durme | Leah Findlater | Jordan Boyd-Graber

Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results.

pdf bib
Exploiting Sentence Order in Document Alignment
Brian Thompson | Philipp Koehn

We present a simple document alignment method that incorporates sentence order information in both candidate generation and candidate re-scoring. Our method results in 61% relative reduction in error compared to the best previously published result on the WMT16 document alignment shared task. Our method improves downstream MT performance on web-scraped Sinhala–English documents from ParaCrawl, outperforming the document alignment method used in the most recent ParaCrawl release. It also outperforms a comparable corpora method which uses the same multilingual embeddings, demonstrating that exploiting sentence order is beneficial even if the end goal is sentence-level bitext.

pdf bib
XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation
Yaobo Liang | Nan Duan | Yeyun Gong | Ning Wu | Fenfei Guo | Weizhen Qi | Ming Gong | Linjun Shou | Daxin Jiang | Guihong Cao | Xiaodong Fan | Ruofei Zhang | Rahul Agrawal | Edward Cui | Sining Wei | Taroon Bharti | Ying Qiao | Jiun-Hung Chen | Winnie Wu | Shuguang Liu | Fan Yang | Daniel Campos | Rangan Majumder | Ming Zhou

In this paper, we introduce XGLUE, a new benchmark dataset to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora, and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE (Wang et al.,2019), which is labeled in English and includes natural language understanding tasks only, XGLUE has three main advantages: (1) it provides two corpora with different sizes for cross-lingual pre-training; (2) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (3) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder (Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison.

pdf bib
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu

The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.

pdf bib
HIT: Nested Named Entity Recognition via Head-Tail Pair and Token Interaction
Yu Wang | Yun Li | Hanghang Tong | Ziye Zhu

Named Entity Recognition (NER) is a fundamental task in natural language processing. In order to identify entities with nested structure, many sophisticated methods have been recently developed based on either the traditional sequence labeling approaches or directed hypergraph structures. Despite being successful, these methods often fall short in striking a good balance between the expression power for nested structure and the model complexity. To address this issue, we present a novel nested NER model named HIT. Our proposed HIT model leverages two key properties pertaining to the (nested) named entity, including (1) explicit boundary tokens and (2) tight internal connection between tokens within the boundary. Specifically, we design (1) Head-Tail Detector based on the multi-head self-attention mechanism and bi-affine classifier to detect boundary tokens, and (2) Token Interaction Tagger based on traditional sequence labeling approaches to characterize the internal token connection within the boundary. Experiments on three public NER datasets demonstrate that the proposed HIT achieves state-of-the-art performance.

pdf bib
Supertagging Combinatory Categorial Grammar with Attentive Graph Convolutional Networks
Yuanhe Tian | Yan Song | Fei Xia

Supertagging is conventionally regarded as an important task for combinatory categorial grammar (CCG) parsing, where effective modeling of contextual information is highly important to this task. However, existing studies have made limited efforts to leverage contextual features except for applying powerful encoders (e.g., bi-LSTM). In this paper, we propose attentive graph convolutional networks to enhance neural CCG supertagging through a novel solution of leveraging contextual information. Specifically, we build the graph from chunks (n-grams) extracted from a lexicon and apply attention over the graph, so that different word pairs from the contexts within and across chunks are weighted in the model and facilitate the supertagging accordingly. The experiments performed on the CCGbank demonstrate that our approach outperforms all previous studies in terms of both supertagging and parsing. Further analyses illustrate the effectiveness of each component in our approach to discriminatively learn from word pairs to enhance CCG supertagging.

pdf bib
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks
Bosheng Ding | Linlin Liu | Lidong Bing | Canasai Kruengkrai | Thien Hai Nguyen | Shafiq Joty | Luo Si | Chunyan Miao

Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.

pdf bib
Interpretable Multi-dataset Evaluation for Named Entity Recognition
Jinlan Fu | Pengfei Liu | Graham Neubig

With the proliferation of models for natural language processing tasks, it is even harder to understand the differences between models and their relative merits. Simply looking at differences between holistic metrics such as accuracy, BLEU, or F1 does not tell us why or how particular methods perform differently and how diverse datasets influence the model design choices. In this paper, we present a general methodology for interpretable evaluation for the named entity recognition (NER) task. The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them, identifying the strengths and weaknesses of current systems. By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area: https://github.com/neulab/InterpretEval

pdf bib
Adversarial Semantic Decoupling for Recognizing Open-Vocabulary Slots
Yuanmeng Yan | Keqing He | Hong Xu | Sihong Liu | Fanyu Meng | Min Hu | Weiran Xu

Open-vocabulary slots, such as file name, album name, or schedule title, significantly degrade the performance of neural-based slot filling models since these slots can take on values from a virtually unlimited set and have no semantic restriction nor a length limit. In this paper, we propose a robust adversarial model-agnostic slot filling method that explicitly decouples local semantics inherent in open-vocabulary slot words from the global context. We aim to depart entangled contextual semantics and focus more on the holistic context at the level of the whole sentence. Experiments on two public datasets show that our method consistently outperforms other methods with a statistically significant margin on all the open-vocabulary slots without deteriorating the performance of normal slots.

pdf bib
Plug and Play Autoencoders for Conditional Text Generation
Florian Mai | Nikolaos Pappas | Ivan Montero | Noah A. Smith | James Henderson

Text autoencoders are commonly used for conditional generation tasks such as style transfer. We propose methods which are plug and play, where any pretrained autoencoder can be used, and only require learning a mapping within the autoencoder’s embedding space, training embedding-to-embedding (Emb2Emb). This reduces the need for labeled training data for the task and makes the training procedure more efficient. Crucial to the success of this method is a loss term for keeping the mapped embedding on the manifold of the autoencoder and a mapping which is trained to navigate the manifold by learning offset vectors. Evaluations on style transfer tasks both with and without sequence-to-sequence supervision show that our method performs better than or comparable to strong baselines while being up to four times faster.

pdf bib
Structure Aware Negative Sampling in Knowledge Graphs
Kian Ahrabian | Aarash Feizi | Yasmin Salehi | William L. Hamilton | Avishek Joey Bose

Learning low-dimensional representations for entities and relations in knowledge graphs using contrastive estimation represents a scalable and effective method for inferring connectivity patterns. A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples, which force the embedding model to learn discriminative representations and find critical characteristics of observed data. While earlier methods either employ too simple corruption distributions, i.e. uniform, yielding easy uninformative negatives or sophisticated adversarial distributions with challenging optimization schemes, they do not explicitly incorporate known graph structure resulting in suboptimal negatives. In this paper, we propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node’s k-hop neighborhood. Empirically, we demonstrate that SANS finds semantically meaningful negatives and is competitive with SOTA approaches while requires no additional parameters nor difficult adversarial optimization.

pdf bib
Neural Mask Generator: Learning to Generate Adaptive Word Maskings for Language Model Adaptation
Minki Kang | Moonsu Han | Sung Ju Hwang

We propose a method to automatically generate a domain- and task-adaptive maskings of the given text for self-supervised pre-training, such that we can effectively adapt the language model to a particular target task (e.g. question answering). Specifically, we present a novel reinforcement learning-based framework which learns the masking policy, such that using the generated masks for further pre-training of the target language model helps improve task performance on unseen texts. We use off-policy actor-critic with entropy regularization and experience replay for reinforcement learning, and propose a Transformer-based policy network that can consider the relative importance of words in a given text. We validate our Neural Mask Generator (NMG) on several question answering and text classification datasets using BERT and DistilBERT as the language models, on which it outperforms rule-based masking strategies, by automatically learning optimal adaptive maskings.

pdf bib
Autoregressive Knowledge Distillation through Imitation Learning
Alexander Lin | Jeremy Wohlwend | Howard Chen | Tao Lei

The performance of autoregressive models on natural language generation tasks has dramatically improved due to the adoption of deep, self-attentive architectures. However, these gains have come at the cost of hindering inference speed, making state-of-the-art models cumbersome to deploy in real-world, time-sensitive settings. We develop a compression technique for autoregressive models that is driven by an imitation learning perspective on knowledge distillation. The algorithm is designed to address the exposure bias problem. On prototypical language generation tasks such as translation and summarization, our method consistently outperforms other distillation algorithms, such as sequence-level knowledge distillation. Student models trained with our method attain 1.4 to 4.8 BLEU/ROUGE points higher than those trained from scratch, while increasing inference speed by up to 14 times in comparison to the teacher model.

pdf bib
T3: Tree-Autoencoder Constrained Adversarial Text Generation for Targeted Attack
Boxin Wang | Hengzhi Pei | Boyuan Pan | Qian Chen | Shuohang Wang | Bo Li

Adversarial attacks against natural language processing systems, which perform seemingly innocuous modifications to inputs, can induce arbitrary mistakes to the target models. Though raised great concerns, such adversarial attacks can be leveraged to estimate the robustness of NLP models. Compared with the adversarial example generation in continuous data domain (e.g., image), generating adversarial text that preserves the original meaning is challenging since the text space is discrete and non-differentiable. To handle these challenges, we propose a target-controllable adversarial attack framework T3, which is applicable to a range of NLP tasks. In particular, we propose a tree-based autoencoder to embed the discrete text data into a continuous representation space, upon which we optimize the adversarial perturbation. A novel tree-based decoder is then applied to regularize the syntactic correctness of the generated text and manipulate it on either sentence (T3(Sent)) or word (T3(Word)) level. We consider two most representative NLP tasks: sentiment analysis and question answering (QA). Extensive experimental results and human studies show that T3 generated adversarial texts can successfully manipulate the NLP models to output the targeted incorrect answer without misleading the human. Moreover, we show that the generated adversarial texts have high transferability which enables the black-box attacks in practice. Our work sheds light on an effective and general way to examine the robustness of NLP models. Our code is publicly available at https://github.com/AI-secure/T3/.

pdf bib
Structured Pruning of Large Language Models
Ziheng Wang | Jeremy Wohlwend | Tao Lei

Large language models have recently achieved state of the art performance across a wide variety of natural language tasks. Meanwhile, the size of these models and their latency have significantly increased, which makes their usage costly, and raises an interesting question: do language models need to be large? We study this question through the lens of model compression. We present a generic, structured pruning approach by parameterizing each weight matrix using its low-rank factorization, and adaptively removing rank-1 components during training. On language modeling tasks, our structured approach outperforms other unstructured and block-structured pruning baselines at various compression levels, while achieving significant speedups during both training and inference. We also demonstrate that our method can be applied to pruning adaptive word embeddings in large language models, and to pruning the BERT model on several downstream fine-tuning classification benchmarks.

pdf bib
Effective Unsupervised Domain Adaptation with Adversarially Trained Language Models
Thuy-Trang Vu | Dinh Phung | Gholamreza Haffari

Recent work has shown the importance of adaptation of broad-coverage contextualised embedding models on the domain of the target task of interest. Current self-supervised adaptation methods are simplistic, as the training signal comes from a small percentage of randomly masked-out tokens. In this paper, we show that careful masking strategies can bridge the knowledge gap of masked language models (MLMs) about the domains more effectively by allocating self-supervision where it is needed. Furthermore, we propose an effective training strategy by adversarially masking out those tokens which are harder to reconstruct by the underlying MLM. The adversarial objective leads to a challenging combinatorial optimisation problem over subsets of tokens, which we tackle efficiently through relaxation to a variational lowerbound and dynamic programming. On six unsupervised domain adaptation tasks involving named entity recognition, our method strongly outperforms the random masking strategy and achieves up to +1.64 F1 score improvements.

pdf bib
BAE: BERT-based Adversarial Examples for Text Classification
Siddhant Garg | Goutham Ramakrishnan

Modern text classification models are susceptible to adversarial examples, perturbed versions of the original text indiscernible by humans which get misclassified by the model. Recent works in NLP use rule-based synonym replacement strategies to generate adversarial examples. These strategies can lead to out-of-context and unnaturally complex token replacements, which are easily identifiable by humans. We present BAE, a black box attack for generating adversarial examples using contextual perturbations from a BERT masked language model. BAE replaces and inserts tokens in the original text by masking a portion of the text and leveraging the BERT-MLM to generate alternatives for the masked tokens. Through automatic and human evaluations, we show that BAE performs a stronger attack, in addition to generating adversarial examples with improved grammaticality and semantic coherence as compared to prior work.

pdf bib
Adversarial Self-Supervised Data-Free Distillation for Text Classification
Xinyin Ma | Yongliang Shen | Gongfan Fang | Chen Chen | Chenghao Jia | Weiming Lu

Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a resource-efficient lightweight model. However, most KD algorithms, especially in NLP, rely on the accessibility of the original training dataset, which may be unavailable due to privacy issues. To tackle this problem, we propose a novel two-stage data-free distillation method, named Adversarial self-Supervised Data-Free Distillation (AS-DFD), which is designed for compressing large-scale transformer-based models (e.g., BERT). To avoid text generation in discrete space, we introduce a Plug & Play Embedding Guessing method to craft pseudo embeddings from the teacher’s hidden knowledge. Meanwhile, with a self-supervised module to quantify the student’s ability, we adapt the difficulty of pseudo embeddings in an adversarial training manner. To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks. We verify the effectiveness of our method on several text classification datasets.

pdf bib
BERT-ATTACK: Adversarial Attack Against BERT Using BERT
Linyang Li | Ruotian Ma | Qipeng Guo | Xiangyang Xue | Xipeng Qiu

Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack methods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose BERT-Attack, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/LinyangLee/BERT-Attack.

pdf bib
The Thieves on Sesame Street are Polyglots - Extracting Multilingual Models from Monolingual APIs
Nitish Shirish Keskar | Bryan McCann | Caiming Xiong | Richard Socher

Pre-training in natural language processing makes it easier for an adversary with only query access to a victim model to reconstruct a local copy of the victim by training with gibberish input data paired with the victim’s labels for that data. We discover that this extraction process extends to local copies initialized from a pre-trained, multilingual model while the victim remains monolingual. The extracted model learns the task from the monolingual victim, but it generalizes far better than the victim to several other languages. This is done without ever showing the multilingual, extracted model a well-formed input in any of the languages for the target task. We also demonstrate that a few real examples can greatly improve performance, and we analyze how these results shed light on how such extraction methods succeed.

pdf bib
When Hearst Is not Enough: Improving Hypernymy Detection from Corpus with Distributional Models
Changlong Yu | Jialong Han | Peifeng Wang | Yangqiu Song | Hongming Zhang | Wilfred Ng | Shuming Shi

We address hypernymy detection, i.e., whether an is-a relationship exists between words (x ,y), with the help of large textual corpora. Most conventional approaches to this task have been categorized to be either pattern-based or distributional. Recent studies suggest that pattern-based ones are superior, if large-scale Hearst pairs are extracted and fed, with the sparsity of unseen (x ,y) pairs relieved. However, they become invalid in some specific sparsity cases, where x or y is not involved in any pattern. For the first time, this paper quantifies the non-negligible existence of those specific cases. We also demonstrate that distributional methods are ideal to make up for pattern-based ones in such cases. We devise a complementary framework, under which a pattern-based and a distributional model collaborate seamlessly in cases which they each prefer. On several benchmark datasets, our framework demonstrates improvements that are both competitive and explainable.

pdf bib
Interpreting Open-Domain Modifiers: Decomposition of Wikipedia Categories into Disambiguated Property-Value Pairs
Marius Pasca

This paper proposes an open-domain method for automatically annotating modifier constituents (20th-century’) within Wikipedia categories (20th-century male writers) with properties (date of birth). The annotations offer a semantically-anchored understanding of the role of the constituents in defining the underlying meaning of the categories. In experiments over an evaluation set of Wikipedia categories, the proposed method annotates constituent modifiers as semantically-anchored properties, rather than as mere strings in a previous method. It does so at a better trade-off between precision and recall.

pdf bib
A Synset Relation-enhanced Framework with a Try-again Mechanism for Word Sense Disambiguation
Ming Wang | Yinglin Wang

Contextual embeddings are proved to be overwhelmingly effective to the task of Word Sense Disambiguation (WSD) compared with other sense representation techniques. However, these embeddings fail to embed sense knowledge in semantic networks. In this paper, we propose a Synset Relation-Enhanced Framework (SREF) that leverages sense relations for both sense embedding enhancement and a try-again mechanism that implements WSD again, after obtaining basic sense embeddings from augmented WordNet glosses. Experiments on all-words and lexical sample datasets show that the proposed system achieves new state-of-the-art results, defeating previous knowledge-based systems by at least 5.5 F1 measure. When the system utilizes sense embeddings learned from SemCor, it outperforms all previous supervised systems with only 20% SemCor data.

pdf bib
Diverse, Controllable, and Keyphrase-Aware: A Corpus and Method for News Multi-Headline Generation
Dayiheng Liu | Yeyun Gong | Yu Yan | Jie Fu | Bo Shao | Daxin Jiang | Jiancheng Lv | Nan Duan

News headline generation aims to produce a short sentence to attract readers to read the news. One news article often contains multiple keyphrases that are of interest to different users, which can naturally have multiple reasonable headlines. However, most existing methods focus on the single headline generation. In this paper, we propose generating multiple headlines with keyphrases of user interests, whose main idea is to generate multiple keyphrases of interest to users for the news first, and then generate multiple keyphrase-relevant headlines. We propose a multi-source Transformer decoder, which takes three sources as inputs: (a) keyphrase, (b) keyphrase-filtered article, and (c) original article to generate keyphrase-relevant, high-quality, and diverse headlines. Furthermore, we propose a simple and effective method to mine the keyphrases of interest in the news article and build a first large-scale keyphrase-aware news headline corpus, which contains over 180K aligned triples of <news article, headline, keyphrase>. Extensive experimental comparisons on the real-world dataset show that the proposed method achieves state-of-the-art results in terms of quality and diversity.

pdf bib
Factual Error Correction for Abstractive Summarization Models
Meng Cao | Yue Dong | Jiapeng Wu | Jackie Chi Kit Cheung

Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries for abstractive summarization systems is a challenge. We propose a post-editing corrector module to address this issue by identifying and correcting factual errors in generated summaries. The neural corrector model is pre-trained on artificial examples that are created by applying a series of heuristic transformations on reference summaries. These transformations are inspired by the error analysis of state-of-the-art summarization model outputs. Experimental results show that our model is able to correct factual errors in summaries generated by other neural summarization models and outperforms previous models on factual consistency evaluation on the CNN/DailyMail dataset. We also find that transferring from artificial error correction to downstream settings is still very challenging.

pdf bib
Compressive Summarization with Plausibility and Salience Modeling
Shrey Desai | Jiacheng Xu | Greg Durrett

Compressive summarization systems typically rely on a seed set of syntactic rules to determine under what circumstances deleting a span is permissible, then learn which compressions to actually apply by optimizing for ROUGE. In this work, we propose to relax these explicit syntactic constraints on candidate spans, and instead leave the decision about what to delete to two data-driven criteria: plausibility and salience. Deleting a span is plausible if removing it maintains the grammaticality and factuality of a sentence, and it is salient if it removes important information from the summary. Each of these is judged by a pre-trained Transformer model, and only deletions that are both plausible and not salient can be applied. When integrated into a simple extraction-compression pipeline, our method achieves strong in-domain results on benchmark datasets, and human evaluation shows that the plausibility model generally selects for grammatical and factual deletions. Furthermore, the flexibility of our approach allows it to generalize cross-domain, and we show that our system fine-tuned on only 500 samples from a new domain can match or exceed a strong in-domain extractive model.

pdf bib
Understanding Neural Abstractive Summarization Models via Uncertainty
Jiacheng Xu | Shrey Desai | Greg Durrett

An advantage of seq2seq abstractive summarization models is that they generate text in a free-form manner, but this flexibility makes it difficult to interpret model behavior. In this work, we analyze summarization decoders in both blackbox and whitebox ways by studying on the entropy, or uncertainty, of the model’s token-level predictions. For two strong pre-trained models, PEGASUS and BART on two summarization datasets, we find a strong correlation between low prediction entropy and where the model copies tokens rather than generating novel text. The decoder’s uncertainty also connects to factors like sentence position and syntactic distance between adjacent pairs of tokens, giving a sense of what factors make a context particularly selective for the model’s next output token. Finally, we study the relationship of decoder uncertainty and attention behavior to understand how attention gives rise to these observed effects in the model. We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.

pdf bib
Better Highlighting: Creating Sub-Sentence Summary Highlights
Sangwoo Cho | Kaiqiang Song | Chen Li | Dong Yu | Hassan Foroosh | Fei Liu

Amongst the best means to summarize is highlighting. In this paper, we aim to generate summary highlights to be overlaid on the original documents to make it easier for readers to sift through a large amount of text. The method allows summaries to be understood in context to prevent a summarizer from distorting the original meaning, of which abstractive summarizers usually fall short. In particular, we present a new method to produce self-contained highlights that are understandable on their own to avoid confusion. Our method combines determinantal point processes and deep contextualized representations to identify an optimal set of sub-sentence segments that are both important and non-redundant to form summary highlights. To demonstrate the flexibility and modeling power of our method, we conduct extensive experiments on summarization datasets. Our analysis provides evidence that highlighting is a promising avenue of research towards future summarization.

pdf bib
Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach
Bowen Tan | Lianhui Qin | Eric Xing | Zhiting Hu

Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect. Previous studies usually assume a small pre-defined set of aspects and fall short of summarizing on other diverse topics. In this work, we study summarizing on arbitrary aspects relevant to the document, which significantly expands the application of the task in practice. Due to the lack of supervision data, we develop a new weak supervision construction method and an aspect modeling scheme, both of which integrate rich external knowledge sources such as ConceptNet and Wikipedia. Experiments show our approach achieves performance boosts on summarizing both real and synthetic documents given pre-defined or arbitrary aspects.

pdf bib
BERT-enhanced Relational Sentence Ordering Network
Baiyun Cui | Yingming Li | Zhongfei Zhang

In this paper, we introduce a novel BERT-enhanced Relational Sentence Ordering Network (referred to as BRSON) by leveraging BERT for capturing better dependency relationship among sentences to enhance the coherence modeling for the entire paragraph. In particular, we develop a new Relational Pointer Decoder (referred as RPD) by incorporating the relative ordering information into the pointer network with a Deep Relational Module (referred as DRM), which utilizes BERT to exploit the deep semantic connection and relative ordering between sentences. This enables us to strengthen both local and global dependencies among sentences. Extensive evaluations are conducted on six public datasets. The experimental results demonstrate the effectiveness and promise of our BRSON, showing a significant improvement over the state-of-the-art by a wide margin.

pdf bib
Online Conversation Disentanglement with Pointer Networks
Tao Yu | Shafiq Joty

Huge amounts of textual conversations occur online every day, where multiple conversations take place concurrently. Interleaved conversations lead to difficulties in not only following the ongoing discussions but also extracting relevant information from simultaneous messages. Conversation disentanglement aims to separate intermingled messages into detached conversations. However, existing disentanglement methods rely mostly on handcrafted features that are dataset specific, which hinders generalization and adaptability. In this work, we propose an end-to-end online framework for conversation disentanglement that avoids time-consuming domain-specific feature engineering. We design a novel way to embed the whole utterance that comprises timestamp, speaker, and message text, and propose a custom attention mechanism that models disentanglement as a pointing problem while effectively capturing inter-utterance interactions in an end-to-end fashion. We also introduce a joint-learning objective to better capture contextual information. Our experiments on the Ubuntu IRC dataset show that our method achieves state-of-the-art performance in both link and conversation prediction tasks.

pdf bib
VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word Representations for Improved Definition Modeling
Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo

In this paper, we tackle the task of definition modeling, where the goal is to learn to generate definitions of words and phrases. Existing approaches for this task are discriminative, combining distributional and lexical semantics in an implicit rather than direct way. To tackle this issue we propose a generative model for the task, introducing a continuous latent variable to explicitly model the underlying relationship between a phrase used within a context and its definition. We rely on variational inference for estimation and leverage contextualized word embeddings for improved performance. Our approach is evaluated on four existing challenging benchmarks with the addition of two new datasets, “Cambridge” and the first non-English corpus “Robert”, which we release to complement our empirical study. Our Variational Contextual Definition Modeler (VCDM) achieves state-of-the-art performance in terms of automatic and human evaluation metrics, demonstrating the effectiveness of our approach.

pdf bib
Coarse-to-Fine Pre-training for Named Entity Recognition
Xue Mengge | Bowen Yu | Zhenyu Zhang | Tingwen Liu | Yue Zhang | Bin Wang

More recently, Named Entity Recognition hasachieved great advances aided by pre-trainingapproaches such as BERT. However, currentpre-training techniques focus on building lan-guage modeling objectives to learn a gen-eral representation, ignoring the named entity-related knowledge. To this end, we proposea NER-specific pre-training framework to in-ject coarse-to-fine automatically mined entityknowledge into pre-trained models. Specifi-cally, we first warm-up the model via an en-tity span identification task by training it withWikipedia anchors, which can be deemed asgeneral-typed entities. Then we leverage thegazetteer-based distant supervision strategy totrain the model extract coarse-grained typedentities. Finally, we devise a self-supervisedauxiliary task to mine the fine-grained namedentity knowledge via clustering.Empiricalstudies on three public NER datasets demon-strate that our framework achieves significantimprovements against several pre-trained base-lines, establishing the new state-of-the-art per-formance on three benchmarks. Besides, weshow that our framework gains promising re-sults without using human-labeled trainingdata, demonstrating its effectiveness in label-few and low-resource scenarios.

pdf bib
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment
Zhiyuan Liu | Yixin Cao | Liangming Pan | Juanzi Li | Zhiyuan Liu | Tat-Seng Chua

Entity alignment (EA) aims at building a unified Knowledge Graph (KG) of rich content by linking the equivalent entities from various KGs. GNN-based EA methods present promising performance by modeling the KG structure defined by relation triples. However, attribute triples can also provide crucial alignment signal but have not been well explored yet. In this paper, we propose to utilize an attributed value encoder and partition the KG into subgraphs to model the various types of attribute triples efficiently. Besides, the performances of current EA methods are overestimated because of the name-bias of existing EA datasets. To make an objective evaluation, we propose a hard experimental setting where we select equivalent entity pairs with very different names as the test set. Under both the regular and hard settings, our method achieves significant improvements (5.10% on average Hits@1 in DBP15k) over 12 baselines in cross-lingual and monolingual datasets. Ablation studies on different subgraphs and a case study about attribute types further demonstrate the effectiveness of our method. Source code and data can be found at https://github.com/thunlp/explore-and-evaluate.

pdf bib
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning
Yi Yang | Arzoo Katiyar

We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems.

pdf bib
Learning Structured Representations of Entity Names using Active Learning and Weak Supervision
Kun Qian | Poornima Chozhiyath Raman | Yunyao Li | Lucian Popa

Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.

pdf bib
Entity Enhanced BERT Pre-training for Chinese NER
Chen Jia | Yuefeng Shi | Qinrong Yang | Yue Zhang

Character-level BERT pre-trained in Chinese suffers a limitation of lacking lexicon information, which shows effectiveness for Chinese NER. To integrate the lexicon into pre-trained LMs for Chinese NER, we investigate a semi-supervised entity enhanced BERT pre-training method. In particular, we first extract an entity lexicon from the relevant raw text using a new-word discovery method. We then integrate the entity information into BERT using Char-Entity-Transformer, which augments the self-attention using a combination of character and entity representations. In addition, an entity classification task helps inject the entity information into model parameters in pre-training. The pre-trained models are used for NER fine-tuning. Experiments on a news dataset and two datasets annotated by ourselves for NER in long-text show that our method is highly effective and achieves the best results.

pdf bib
Scalable Zero-shot Entity Linking with Dense Entity Retrieval
Ledell Wu | Fabio Petroni | Martin Josifoski | Sebastian Riedel | Luke Zettlemoyer

This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbor search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github.com/facebookresearch/BLINK.

pdf bib
A Dataset for Tracking Entities in Open Domain Procedural Text
Niket Tandon | Keisuke Sakaguchi | Bhavana Dalvi | Dheeraj Rajagopal | Peter Clark | Michal Guerquin | Kyle Richardson | Eduard Hovy

We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky, opaque, and clear. Previous formulations of this task provide the text and entities involved, and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples (entity, attribute, before-state, after-state) for each step, where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.

pdf bib
Design Challenges in Low-resource Cross-lingual Entity Linking
Xingyu Fu | Weijia Shi | Xiaodong Yu | Zian Zhao | Dan Roth

Cross-lingual Entity Linking (XEL), the problem of grounding mentions of entities in a foreign language text into an English knowledge base such as Wikipedia, has seen a lot of research in recent years, with a range of promising techniques. However, current techniques do not rise to the challenges introduced by text in low-resource languages (LRL) and, surprisingly, fail to generalize to text not taken from Wikipedia, on which they are usually trained. This paper provides a thorough analysis of low-resource XEL techniques, focusing on the key step of identifying candidate English Wikipedia titles that correspond to a given foreign language mention. Our analysis indicates that current methods are limited by their reliance on Wikipedia’s interlanguage links and thus suffer when the foreign language’s Wikipedia is small. We conclude that the LRL setting requires the use of outside-Wikipedia cross-lingual resources and present a simple yet effective zero-shot XEL system, QuEL, that utilizes search engines query logs. With experiments on 25 languages, QuEL shows an average increase of 25% in gold candidate recall and of 13% in end-to-end linking accuracy over state-of-the-art baselines.

pdf bib
Efficient One-Pass End-to-End Entity Linking for Questions
Belinda Z. Li | Sewon Min | Srinivasan Iyer | Yashar Mehdad | Wen-tau Yih

We present ELQ, a fast end-to-end entity linking model for questions, which uses a biencoder to jointly perform mention detection and linking in one pass. Evaluated on WebQSP and GraphQuestions with extended annotations that cover multiple entities per question, ELQ outperforms the previous state of the art by a large margin of +12.7% and +19.6% F1, respectively. With a very fast inference time (1.57 examples/s on a single CPU), ELQ can be useful for downstream question answering systems. In a proof-of-concept experiment, we demonstrate that using ELQ significantly improves the downstream QA performance of GraphRetriever.

pdf bib
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
Ikuya Yamada | Akari Asai | Hiroyuki Shindo | Hideaki Takeda | Yuji Matsumoto

Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.

pdf bib
Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation
Tuhin Chakrabarty | Smaranda Muresan | Nanyun Peng

Literary tropes, from poetry to stories, are at the crux of human imagination and communication. Figurative language such as a simile go beyond plain expressions to give readers new insights and inspirations. In this paper, we tackle the problem of simile generation. Generating a simile requires proper understanding for effective mapping of properties between two concepts. To this end, we first propose a method to automatically construct a parallel corpus by transforming a large number of similes collected from Reddit to their literal counterpart using structured common sense knowledge. We then propose to fine-tune a pre-trained sequence to sequence model, BART (Lewis et al 2019), on the literal-simile pairs to gain generalizability, so that we can generate novel similes given a literal sentence. Experiments show that our approach generates 88% novel similes that do not share properties with the training data. Human evaluation on an independent set of literal statements shows that our model generates similes better than two literary experts 37% of the time when compared pairwise. We also show how replacing literal sentences with similes from our best model in machine-generated stories improves evocativeness and leads to better acceptance by human judges.

pdf bib
STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation
Nader Akoury | Shufan Wang | Josh Whiting | Stephen Hood | Nanyun Peng | Mohit Iyyer

Systems for story generation are asked to produce plausible and enjoyable stories given an input context. This task is underspecified, as a vast number of diverse stories can originate from a single input. The large output space makes it difficult to build and evaluate story generation models, as (1) existing datasets lack rich enough contexts to meaningfully guide models, and (2) existing evaluations (both crowdsourced and automatic) are unreliable for assessing long-form creative text. To address these issues, we introduce a dataset and evaluation platform built from STORIUM, an online collaborative storytelling community. Our author-generated dataset contains 6K lengthy stories (125M tokens) with fine-grained natural language annotations (e.g., character goals and attributes) interspersed throughout each narrative, forming a robust source for guiding models. We evaluate language models fine-tuned on our dataset by integrating them onto STORIUM, where real authors can query a model for suggested story continuations and then edit them. Automatic metrics computed over these edits correlate well with both user ratings of generated stories and qualitative feedback from semi-structured user interviews. We release both the STORIUM dataset and evaluation platform to spur more principled research into story generation.

pdf bib
Substance over Style: Document-Level Targeted Content Transfer
Allison Hegel | Sudha Rao | Asli Celikyilmaz | Bill Dolan

Existing language models excel at writing from scratch, but many real-world scenarios require rewriting an existing document to fit a set of constraints. Although sentence-level rewriting has been fairly well-studied, little work has addressed the challenge of rewriting an entire document coherently. In this work, we introduce the task of document-level targeted content transfer and address it in the recipe domain, with a recipe as the document and a dietary restriction (such as vegan or dairy-free) as the targeted constraint. We propose a novel model for this task based on the generative pre-trained language model (GPT-2) and train on a large number of roughly-aligned recipe pairs. Both automatic and human evaluations show that our model out-performs existing methods by generating coherent and diverse rewrites that obey the constraint while remaining close to the original document. Finally, we analyze our model’s rewrites to assess progress toward the goal of making language generation more attuned to constraints that are substantive rather than stylistic.

pdf bib
Template Guided Text Generation for Task-Oriented Dialogue
Mihir Kale | Abhinav Rastogi

Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.

pdf bib
MOCHA: A Dataset for Training and Evaluating Generative Reading Comprehension Metrics
Anthony Chen | Gabriel Stanovsky | Sameer Singh | Matt Gardner

Posing reading comprehension as a generation problem provides a great deal of flexibility, allowing for open-ended questions with few restrictions on possible answers. However, progress is impeded by existing generation metrics, which rely on token overlap and are agnostic to the nuances of reading comprehension. To address this, we introduce a benchmark for training and evaluating generative reading comprehension metrics: MOdeling Correctness with Human Annotations. MOCHA contains 40K human judgement scores on model outputs from 6 diverse question answering datasets and an additional set of minimal pairs for evaluation. Using MOCHA, we train a Learned Evaluation metric for Reading Comprehension, LERC, to mimic human judgement scores. LERC outperforms baseline metrics by 10 to 36 absolute Pearson points on held-out annotations. When we evaluate robustness on minimal pairs, LERC achieves 80% accuracy, outperforming baselines by 14 to 26 absolute percentage points while leaving significant room for improvement. MOCHA presents a challenging problem for developing accurate and robust generative reading comprehension metrics.

pdf bib
Plan ahead: Self-Supervised Text Planning for Paragraph Completion Task
Dongyeop Kang | Eduard Hovy

Despite the recent success of contextualized language models on various NLP tasks, language model itself cannot capture textual coherence of a long, multi-sentence document (e.g., a paragraph). Humans often make structural decisions on what and how to say about before making utterances. Guiding surface realization with such high-level decisions and structuring text in a coherent way is essentially called a planning process. Where can the model learn such high-level coherence? A paragraph itself contains various forms of inductive coherence signals called self-supervision in this work, such as sentence orders, topical keywords, rhetorical structures, and so on. Motivated by that, this work proposes a new paragraph completion task PARCOM; predicting masked sentences in a paragraph. However, the task suffers from predicting and selecting appropriate topical content with respect to the given context. To address that, we propose a self-supervised text planner SSPlanner that predicts what to say first (content prediction), then guides the pretrained language model (surface realization) using the predicted content. SSPlanner outperforms the baseline generation models on the paragraph completion task in both automatic and human evaluation. We also find that a combination of noun and verb types of keywords is the most effective for content selection. As more number of content keywords are provided, overall generation quality also increases.

pdf bib
Inquisitive Question Generation for High Level Text Comprehension
Wei-Jen Ko | Te-yuan Chen | Yiyan Huang | Greg Durrett | Junyi Jessy Li

Inquisitive probing questions come naturally to humans in a variety of settings, but is a challenging task for automatic systems. One natural type of question to ask tries to fill a gap in knowledge during text comprehension, like reading a news article: we might ask about background information, deeper reasons behind things occurring, or more. Despite recent progress with data-driven approaches, generating such questions is beyond the range of models trained on existing datasets. We introduce INQUISITIVE, a dataset of ~19K questions that are elicited while a person is reading through a document. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. We show that readers engage in a series of pragmatic strategies to seek information. Finally, we evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions although the task is challenging, and highlight the importance of context to generate INQUISITIVE questions.

pdf bib
Towards Persona-Based Empathetic Conversational Models
Peixiang Zhong | Chen Zhang | Hao Wang | Yong Liu | Chunyan Miao

Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.

pdf bib
Personal Information Leakage Detection in Conversations
Qiongkai Xu | Lizhen Qu | Zeyu Gao | Gholamreza Haffari

The global market size of conversational assistants (chatbots) is expected to grow to USD 9.4 billion by 2024, according to MarketsandMarkets. Despite the wide use of chatbots, leakage of personal information through chatbots poses serious privacy concerns for their users. In this work, we propose to protect personal information by warning users of detected suspicious sentences generated by conversational assistants. The detection task is formulated as an alignment optimization problem and a new dataset PERSONA-LEAKAGE is collected for evaluation. In this paper, we propose two novel constrained alignment models, which consistently outperform baseline methods on Moreover, we conduct analysis on the behavior of recently proposed personalized chit-chat dialogue systems. The empirical results show that those systems suffer more from personal information disclosure than the widely used Seq2Seq model and the language model. In those cases, a significant number of information leaking utterances can be detected by our models with high precision.

pdf bib
Response Selection for Multi-Party Conversations with Dynamic Topic Tracking
Weishi Wang | Steven C.H. Hoi | Shafiq Joty

While participants in a multi-party multi-turn conversation simultaneously engage in multiple conversation topics, existing response selection methods are developed mainly focusing on a two-party single-conversation scenario. Hence, the prolongation and transition of conversation topics are ignored by current methods. In this work, we frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context. With this new formulation, we propose a novel multi-task learning framework that supports efficient encoding through large pretrained models with only two utterances at once to perform dynamic topic disentanglement and response selection. We also propose Topic-BERT an essential pretraining step to embed topic information into BERT with self-supervised learning. Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks outperforming existing methods by a good margin.

pdf bib
Regularizing Dialogue Generation by Imitating Implicit Scenarios
Shaoxiong Feng | Xuancheng Ren | Hongshen Chen | Bin Sun | Kan Li | Xu Sun

Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.

pdf bib
MovieChats: Chat like Humans in a Closed Domain
Hui Su | Xiaoyu Shen | Zhou Xiao | Zheng Zhang | Ernie Chang | Cheng Zhang | Cheng Niu | Jie Zhou

Being able to perform in-depth chat with humans in a closed domain is a precondition before an open-domain chatbot can be ever claimed. In this work, we take a close look at the movie domain and present a large-scale high-quality corpus with fine-grained annotations in hope of pushing the limit of movie-domain chatbots. We propose a unified, readily scalable neural approach which reconciles all subtasks like intent prediction and knowledge retrieval. The model is first pretrained on the huge general-domain data, then finetuned on our corpus. We show this simple neural approach trained on high-quality data is able to outperform commercial systems replying on complex rules. On both the static and interactive tests, we find responses generated by our system exhibits remarkably good engagement and sensibleness close to human-written ones. We further analyze the limits of our work and point out potential directions for future work

pdf bib
Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art
Jing Lu | Vincent Ng

Despite the significant progress on entity coreference resolution observed in recent years, there is a general lack of understanding of what has been improved. We present an empirical analysis of state-of-the-art resolvers with the goal of providing the general NLP audience with a better understanding of the state of the art and coreference researchers with directions for future research.

pdf bib
Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Kun Xu | Haochen Tan | Linfeng Song | Han Wu | Haisong Zhang | Linqi Song | Dong Yu

For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting ride of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focus, which results in inaccurate concentration on some dispensable words. In this paper, we propose to use semantic role labeling (SRL), which highlights the core semantic information of who did what to whom, to provide additional guidance for the rewriter model. Experiments show that this information significantly improves a RoBERTa-based model that already outperforms previous state-of-the-art systems.

pdf bib
Continuity of Topic, Interaction, and Query: Learning to Quote in Online Conversations
Lingzhi Wang | Jing Li | Xingshan Zeng | Haisong Zhang | Kam-Fai Wong

Quotations are crucial for successful explanations and persuasions in interpersonal communications. However, finding what to quote in a conversation is challenging for both humans and machines. This work studies automatic quotation generation in an online conversation and explores how language consistency affects whether a quotation fits the given context. Here, we capture the contextual consistency of a quotation in terms of latent topics, interactions with the dialogue history, and coherence to the query turn’s existing contents. Further, an encoder-decoder neural framework is employed to continue the context with a quotation via language generation. Experiment results on two large-scale datasets in English and Chinese demonstrate that our quotation generation model outperforms the state-of-the-art models. Further analysis shows that topic, interaction, and query consistency are all helpful to learn how to quote in online conversations.

pdf bib
Profile Consistency Identification for Open-domain Dialogue Agents
Haoyu Song | Yan Wang | Wei-Nan Zhang | Zhengyu Zhao | Ting Liu | Xiaojiang Liu

Maintaining a consistent attribute profile is crucial for dialogue agents to naturally converse with humans. Existing studies on improving attribute consistency mainly explored how to incorporate attribute information in the responses, but few efforts have been made to identify the consistency relations between response and attribute profile. To facilitate the study of profile consistency identification, we create a large-scale human-annotated dataset with over 110K single-turn conversations and their key-value attribute profiles. Explicit relation between response and profile is manually labeled. We also propose a key-value structure information enriched BERT model to identify the profile consistency, and it gained improvements over strong baselines. Further evaluations on downstream tasks demonstrate that the profile consistency identification model is conducive for improving dialogue consistency.

pdf bib
An Element-aware Multi-representation Model for Law Article Prediction
Huilin Zhong | Junsheng Zhou | Weiguang Qu | Yunfei Long | Yanhui Gu

Existing works have proved that using law articles as external knowledge can improve the performance of the Legal Judgment Prediction. However, they do not fully use law article information and most of the current work is only for single label samples. In this paper, we propose a Law Article Element-aware Multi-representation Model (LEMM), which can make full use of law article information and can be used for multi-label samples. The model uses the labeled elements of law articles to extract fact description features from multiple angles. It generates multiple representations of a fact for classification. Every label has a law-aware fact representation to encode more information. To capture the dependencies between law articles, the model also introduces a self-attention mechanism between multiple representations. Compared with baseline models like TopJudge, this model improves the accuracy of 5.84%, the macro F1 of 6.42%, and the micro F1 of 4.28%.

pdf bib
Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs
Woojeong Jin | Meng Qu | Xisen Jin | Xiang Ren

Knowledge graph reasoning is a critical task in natural language processing. The task becomes more challenging on temporal knowledge graphs, where each fact is associated with a timestamp. Most existing methods focus on reasoning at past timestamps and they are not able to predict facts happening in the future. This paper proposes Recurrent Event Network (RE-Net), a novel autoregressive architecture for predicting future interactions. The occurrence of a fact (event) is modeled as a probability distribution conditioned on temporal sequences of past knowledge graphs. Specifically, our RE-Net employs a recurrent event encoder to encode past facts, and uses a neighborhood aggregator to model the connection of facts at the same timestamp. Future facts can then be inferred in a sequential manner based on the two modules. We evaluate our proposed method via link prediction at future times on five public datasets. Through extensive experiments, we demonstrate the strength of RE-Net, especially on multi-step inference over future timestamps, and achieve state-of-the-art performance on all five datasets.

pdf bib
Multi-resolution Annotations for Emoji Prediction
Weicheng Ma | Ruibo Liu | Lili Wang | Soroush Vosoughi

Emojis are able to express various linguistic components, including emotions, sentiments, events, etc. Predicting the proper emojis associated with text provides a way to summarize the text accurately, and it has been proven to be a good auxiliary task to many Natural Language Understanding (NLU) tasks. Labels in existing emoji prediction datasets are all passage-based and are usually under the multi-class classification setting. However, in many cases, one single emoji cannot fully cover the theme of a piece of text. It is thus useful to infer the part of text related to each emoji. The lack of multi-label and aspect-level emoji prediction datasets is one of the bottlenecks for this task. This paper annotates an emoji prediction dataset with passage-level multi-class/multi-label, and aspect-level multi-class annotations. We also present a novel annotation method with which we generate the aspect-level annotations. The annotations are generated heuristically, taking advantage of the self-attention mechanism in Transformer networks. We validate the annotations both automatically and manually to ensure their quality. We also benchmark the dataset with a pre-trained BERT model.

pdf bib
Less is More: Attention Supervision with Counterfactuals for Text Classification
Seungtaek Choi | Haeju Park | Jinyoung Yeo | Seung-won Hwang

We aim to leverage human and machine intelligence together for attention supervision. Specifically, we show that human annotation cost can be kept reasonably low, while its quality can be enhanced by machine self-supervision. Specifically, for this goal, we explore the advantage of counterfactual reasoning, over associative reasoning typically used in attention supervision. Our empirical results show that this machine-augmented human attention supervision is more effective than existing methods requiring a higher annotation cost, in text classification tasks, including sentiment analysis and news categorization.

pdf bib
MODE-LSTM: A Parameter-efficient Recurrent Network with Multi-Scale for Sentence Classification
Qianli Ma | Zhenxi Lin | Jiangyue Yan | Zipeng Chen | Liuhong Yu

The central problem of sentence classification is to extract multi-scale n-gram features for understanding the semantic meaning of sentences. Most existing models tackle this problem by stacking CNN and RNN models, which easily leads to feature redundancy and overfitting because of relatively limited datasets. In this paper, we propose a simple yet effective model called Multi-scale Orthogonal inDependEnt LSTM (MODE-LSTM), which not only has effective parameters and good generalization ability, but also considers multiscale n-gram features. We disentangle the hidden state of the LSTM into several independently updated small hidden states and apply an orthogonal constraint on their recurrent matrices. We then equip this structure with sliding windows of different sizes for extracting multi-scale n-gram features. Extensive experiments demonstrate that our model achieves better or competitive performance against state-of-the-art baselines on eight benchmark datasets. We also combine our model with BERT to further boost the generalization performance.

pdf bib
HSCNN: A Hybrid-Siamese Convolutional Neural Network for Extremely Imbalanced Multi-label Text Classification
Wenshuo Yang | Jiyi Li | Fumiyo Fukumoto | Yanming Ye

The data imbalance problem is a crucial issue for the multi-label text classification. Some existing works tackle it by proposing imbalanced loss objectives instead of the vanilla cross-entropy loss, but their performances remain limited in the cases of extremely imbalanced data. We propose a hybrid solution which adapts general networks for the head categories, and few-shot techniques for the tail categories. We propose a Hybrid-Siamese Convolutional Neural Network (HSCNN) with additional technical attributes, i.e., a multi-task architecture based on Single and Siamese networks; a category-specific similarity in the Siamese structure; a specific sampling method for training HSCNN. The results using two benchmark datasets and three loss objectives show that our method can improve the performance of Single networks with diverse loss objectives on the tail or entire categories.

pdf bib
Multi-Stage Pre-training for Automated Chinese Essay Scoring
Wei Song | Kai Zhang | Ruiji Fu | Lizhen Liu | Ting Liu | Miaomiao Cheng

This paper proposes a pre-training based automated Chinese essay scoring method. The method involves three components: weakly supervised pre-training, supervised cross- prompt fine-tuning and supervised target- prompt fine-tuning. An essay scorer is first pre- trained on a large essay dataset covering diverse topics and with coarse ratings, i.e., good and poor, which are used as a kind of weak supervision. The pre-trained essay scorer would be further fine-tuned on previously rated es- says from existing prompts, which have the same score range with the target prompt and provide extra supervision. At last, the scorer is fine-tuned on the target-prompt training data. The evaluation on four prompts shows that this method can improve a state-of-the-art neural essay scorer in terms of effectiveness and domain adaptation ability, while in-depth analysis also reveals its limitations..

pdf bib
Multi-hop Inference for Question-driven Summarization
Yang Deng | Wenxuan Zhang | Wai Lam

Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG), to incorporate multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries. Specifically, we jointly model the relevance to the question and the interrelation among different sentences via a human-like multi-hop inference module, which captures important sentences for justifying the summarized answer. A gated selective pointer generator network with a multi-view coverage mechanism is designed to integrate diverse information from different perspectives. Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets, namely WikiHow and PubMedQA.

pdf bib
Towards Interpretable Reasoning over Paragraph Effects in Situation
Mucheng Ren | Xiubo Geng | Tao Qin | Heyan Huang | Daxin Jiang

We focus on the task of reasoning over paragraph effects in situation, which requires a model to understand the cause and effect described in a background paragraph, and apply the knowledge to a novel situation. Existing works ignore the complicated reasoning process and solve it with a one-step “black box” model. Inspired by human cognitive processes, in this paper we propose a sequential approach for this task which explicitly models each step of the reasoning process with neural network modules. In particular, five reasoning modules are designed and learned in an end-to-end manner, which leads to a more interpretable model. Experimental results on the ROPES dataset demonstrate the effectiveness and explainability of our proposed approach.

pdf bib
Question Directed Graph Attention Network for Numerical Reasoning over Text
Kunlong Chen | Weidi Xu | Xingyi Cheng | Zou Xiaochuan | Yuyu Zhang | Le Song | Taifeng Wang | Yuan Qi | Wei Chu

Numerical reasoning over texts, such as addition, subtraction, sorting and counting, is a challenging machine reading comprehension task, since it requires both natural language understanding and arithmetic computation. To address this challenge, we propose a heterogeneous graph representation for the context of the passage and question needed for such reasoning, and design a question directed graph attention network to drive multi-step numerical reasoning over this context graph. Our model, which combines deep learning and graph reasoning, achieves remarkable results in benchmark datasets such as DROP.

pdf bib
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin | Barlas Oguz | Sewon Min | Patrick Lewis | Ledell Wu | Sergey Edunov | Danqi Chen | Wen-tau Yih

Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.

pdf bib
Distilling Structured Knowledge for Text-Based Relational Reasoning
Jin Dong | Marc-Antoine Rondeau | William L. Hamilton

There is an increasing interest in developing text-based relational reasoning systems, which are capable of systematically reasoning about the relationships between entities mentioned in a text. However, there remains a substantial performance gap between NLP models for relational reasoning and models based on graph neural networks (GNNs), which have access to an underlying symbolic representation of the text. In this work, we investigate how the structured knowledge of a GNN can be distilled into various NLP models in order to improve their performance. We first pre-train a GNN on a reasoning task using structured inputs and then incorporate its knowledge into an NLP model (e.g., an LSTM) via knowledge distillation. To overcome the difficulty of cross-modal knowledge transfer, we also employ a contrastive learning based module to align the latent representations of NLP models and the GNN. We test our approach with two state-of-the-art NLP models on 13 different inductive reasoning datasets from the CLUTRR benchmark and obtain significant improvements.

pdf bib
Asking without Telling: Exploring Latent Ontologies in Contextual Representations
Julian Michael | Jan A. Botha | Ian Tenney

The success of pretrained contextual encoders, such as ELMo and BERT, has brought a great deal of interest in what these models learn: do they, without explicit supervision, learn to encode meaningful notions of linguistic structure? If so, how is this structure encoded? To investigate this, we introduce latent subclass learning (LSL): a modification to classifier-based probing that induces a latent categorization (or ontology) of the probe’s inputs. Without access to fine-grained gold labels, LSL extracts emergent structure from input representations in an interpretable and quantifiable form. In experiments, we find strong evidence of familiar categories, such as a notion of personhood in ELMo, as well as novel ontological distinctions, such as a preference for fine-grained semantic roles on core arguments. Our results provide unique new evidence of emergent structure in pretrained encoders, including departures from existing annotations which are inaccessible to earlier methods.

pdf bib
Pretrained Language Model Embryology: The Birth of ALBERT
Cheng-Han Chiang | Sung-Feng Huang | Hung-yi Lee

While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks’ performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We provide source codes and pretrained models to reproduce our results at https://github.com/d223302/albert-embryology.

pdf bib
Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in Language Models
Isabel Papadimitriou | Dan Jurafsky

We propose transfer learning as a method for analyzing the encoding of grammatical structure in neural language models. We train LSTMs on non-linguistic data and evaluate their performance on natural language to assess which kinds of data induce generalizable structural features that LSTMs can use for natural language. We find that training on non-linguistic data with latent structure (MIDI music or Java code) improves test performance on natural language, despite no overlap in surface form or vocabulary. To pinpoint the kinds of abstract structure that models may be encoding to lead to this improvement, we run similar experiments with two artificial parentheses languages: one which has a hierarchical recursive structure, and a control which has paired tokens but no recursion. Surprisingly, training a model on either of these artificial languages leads the same substantial gains when testing on natural language. Further experiments on transfer between natural languages controlling for vocabulary overlap show that zero-shot performance on a test language is highly correlated with typological syntactic similarity to the training language, suggesting that representations induced by pre-training correspond to the cross-linguistic syntactic properties. Our results provide insights into the ways that neural models represent abstract syntactic structure, and also about the kind of structural inductive biases which allow for natural language acquisition.

pdf bib
What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding
Yu-An Wang | Yun-Nung Chen

In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attention. Embedding the position information in the self-attention mechanism is also an indispensable factor in Transformers however is often discussed at will. Hence, we carry out an empirical study on position embedding of mainstream pre-trained Transformers mainly focusing on two questions: 1) Do position embeddings really learn the meaning of positions? 2) How do these different learned position embeddings affect Transformers for NLP tasks? This paper focuses on providing a new insight of pre-trained position embeddings by feature-level analysis and empirical experiments on most of iconic NLP tasks. It is believed that our experimental results can guide the future works to choose the suitable positional encoding function for specific tasks given the application property.

pdf bib
“You are grounded!”: Latent Name Artifacts in Pre-trained Language Models
Vered Shwartz | Rachel Rudinger | Oyvind Tafjord

Pre-trained language models (LMs) may perpetuate biases originating in their training corpus to downstream models. We focus on artifacts associated with the representation of given names (e.g., Donald), which, depending on the corpus, may be associated with specific entities, as indicated by next token prediction (e.g., Trump). While helpful in some contexts, grounding happens also in under-specified or inappropriate contexts. For example, endings generated for ‘Donald is a’ substantially differ from those of other names, and often have more-than-average negative sentiment. We demonstrate the potential effect on downstream tasks with reading comprehension probes where name perturbation changes the model answers. As a silver lining, our experiments suggest that additional pre-training on different corpora may mitigate this bias.

pdf bib
Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-Trained Language Models
Bill Yuchen Lin | Seyeon Lee | Rahul Khanna | Xiang Ren

Recent works show that pre-trained language models (PTLMs), such as BERT, possess certain commonsense and factual knowledge. They suggest that it is promising to use PTLMs as “neural knowledge bases” via predicting masked words. Surprisingly, we find that this may not work for numerical commonsense knowledge (e.g., a bird usually has two legs). In this paper, we investigate whether and to what extent we can induce numerical commonsense knowledge from PTLMs as well as the robustness of this process. In this paper, we investigate whether and to what extent we can induce numerical commonsense knowledge from PTLMs as well as the robustness of this process. To study this, we introduce a novel probing task with a diagnostic dataset, NumerSense, containing 13.6k masked-word-prediction probes (10.5k for fine-tuning and 3.1k for testing). Our analysis reveals that: (1) BERT and its stronger variant RoBERTa perform poorly on the diagnostic dataset prior to any fine-tuning; (2) fine-tuning with distant supervision brings some improvement; (3) the best supervised model still performs poorly as compared to human performance (54.06% vs. 96.3% in accuracy).

pdf bib
Grounded Adaptation for Zero-shot Executable Semantic Parsing
Victor Zhong | Mike Lewis | Sida I. Wang | Luke Zettlemoyer

We propose Grounded Adaptation for Zeroshot Executable Semantic Parsing (GAZP) to adapt an existing semantic parser to new environments (e.g. new database schemas). GAZP combines a forward semantic parser with a backward utterance generator to synthesize data (e.g. utterances and SQL queries) in the new environment, then selects cycle-consistent examples to adapt the parser. Unlike data-augmentation, which typically synthesizes unverified examples in the training environment, GAZP synthesizes examples in the new environment whose input-output consistency are verified through execution. On the Spider, Sparc, and CoSQL zero-shot semantic parsing tasks, GAZP improves logical form and execution accuracy of the baseline parser. Our analyses show that GAZP outperforms data-augmentation in the training environment, performance increases with the amount of GAZP-synthesized data, and cycle-consistency is central to successful adaptation.

pdf bib
An Imitation Game for Learning Semantic Parsers from User Interaction
Ziyu Yao | Yiqi Tang | Wen-tau Yih | Huan Sun | Yu Su

Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstrations when uncertain. In doing so it also gets to imitate the user behavior and continue improving itself autonomously with the hope that eventually it may become as good as the user in interpreting their questions. To combat the sparsity of demonstrations, we propose a novel annotation-efficient imitation learning algorithm, which iteratively collects new datasets by mixing demonstrated states and confident predictions and retrains the semantic parser in a Dataset Aggregation fashion (Ross et al., 2011). We provide a theoretical analysis of its cost bound and also empirically demonstrate its promising performance on the text-to-SQL problem. Code will be available at https://github.com/sunlab-osu/MISP.

pdf bib
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
Yitao Cai | Xiaojun Wan

Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historic user inputs. In this work, in addition to using encoders to capture historic information of user inputs, we propose a database schema interaction graph encoder to utilize historic information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.

pdf bib
“What Do You Mean by That?” A Parser-Independent Interactive Approach for Enhancing Text-to-SQL
Yuntao Li | Bei Chen | Qian Liu | Yan Gao | Jian-Guang Lou | Yan Zhang | Dongmei Zhang

In Natural Language Interfaces to Databases systems, the text-to-SQL technique allows users to query databases by using natural language questions. Though significant progress in this area has been made recently, most parsers may fall short when they are deployed in real systems. One main reason stems from the difficulty of fully understanding the users’ natural language questions. In this paper, we include human in the loop and present a novel parser-independent interactive approach (PIIA) that interacts with users using multi-choice questions and can easily work with arbitrary parsers. Experiments were conducted on two cross-domain datasets, the WikiSQL and the more complex Spider, with five state-of-the-art parsers. These demonstrated that PIIA is capable of enhancing the text-to-SQL performance with limited interaction turns by using both simulation and human evaluation.

pdf bib
DuSQL: A Large-Scale and Pragmatic Chinese Text-to-SQL Dataset
Lijie Wang | Ao Zhang | Kun Wu | Ke Sun | Zhenghua Li | Hua Wu | Min Zhang | Haifeng Wang

Due to the lack of labeled data, previous research on text-to-SQL parsing mainly focuses on English. Representative English datasets include ATIS, WikiSQL, Spider, etc. This paper presents DuSQL, a larges-scale and pragmatic Chinese dataset for the cross-domain text-to-SQL task, containing 200 databases, 813 tables, and 23,797 question/SQL pairs. Our new dataset has three major characteristics. First, by manually analyzing questions from several representative applications, we try to figure out the true distribution of SQL queries in real-life needs. Second, DuSQL contains a considerable proportion of SQL queries involving row or column calculations, motivated by our analysis on the SQL query distributions. Finally, we adopt an effective data construction framework via human-computer collaboration. The basic idea is automatically generating SQL queries based on the SQL grammar and constrained by the given database. This paper describes in detail the construction process and data statistics of DuSQL. Moreover, we present and compare performance of several open-source text-to-SQL parsers with minor modification to accommodate Chinese, including a simple yet effective extension to IRNet for handling calculation SQL queries.

pdf bib
Mention Extraction and Linking for SQL Query Generation
Jianqiang Ma | Zeyu Yan | Shuai Pang | Yang Zhang | Jianping Shen

On the WikiSQL benchmark, state-of-the-art text-to-SQL systems typically take a slot- filling approach by building several dedicated models for each type of slots. Such modularized systems are not only complex but also of limited capacity for capturing inter-dependencies among SQL clauses. To solve these problems, this paper proposes a novel extraction-linking approach, where a unified extractor recognizes all types of slot mentions appearing in the question sentence before a linker maps the recognized columns to the table schema to generate executable SQL queries. Trained with automatically generated annotations, the proposed method achieves the first place on the WikiSQL benchmark.

pdf bib
Re-examining the Role of Schema Linking in Text-to-SQL
Wenqiang Lei | Weixin Wang | Zhixin Ma | Tian Gan | Wei Lu | Min-Yen Kan | Tat-Seng Chua

In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.

pdf bib
A Multi-Task Incremental Learning Framework with Category Name Embedding for Aspect-Category Sentiment Analysis
Zehui Dai | Cheng Peng | Huajie Chen | Yadong Ding

(T)ACSA tasks, including aspect-category sentiment analysis (ACSA) and targeted aspect-category sentiment analysis (TACSA), aims at identifying sentiment polarity on predefined categories. Incremental learning on new categories is necessary for (T)ACSA real applications. Though current multi-task learning models achieve good performance in (T)ACSA tasks, they suffer from catastrophic forgetting problems in (T)ACSA incremental learning tasks. In this paper, to make multi-task learning feasible for incremental learning, we proposed Category Name Embedding network (CNE-net). We set both encoder and decoder shared among all categories to weaken the catastrophic forgetting problem. Besides the origin input sentence, we applied another input feature, i.e., category name, for task discrimination. Our model achieved state-of-the-art on two (T)ACSA benchmark datasets. Furthermore, we proposed a dataset for (T)ACSA incremental learning and achieved the best performance compared with other strong baselines.

pdf bib
Train No Evil: Selective Masking for Task-Guided Pre-Training
Yuxian Gu | Zhengyan Zhang | Xiaozhi Wang | Zhiyuan Liu | Maosong Sun

Recently, pre-trained language models mostly follow the pre-train-then-fine-tuning paradigm and have achieved great performance on various downstream tasks. However, since the pre-training stage is typically task-agnostic and the fine-tuning stage usually suffers from insufficient supervised data, the models cannot always well capture the domain-specific and task-specific patterns. In this paper, we propose a three-stage framework by adding a task-guided pre-training stage with selective masking between general pre-training and fine-tuning. In this stage, the model is trained by masked language modeling on in-domain unsupervised data to learn domain-specific patterns and we propose a novel selective masking strategy to learn task-specific patterns. Specifically, we design a method to measure the importance of each token in sequences and selectively mask the important tokens. Experimental results on two sentiment analysis tasks show that our method can achieve comparable or even better performance with less than 50% of computation cost, which indicates our method is both effective and efficient. The source code of this paper can be obtained from https://github.com/thunlp/SelectiveMasking.

pdf bib
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge
Pei Ke | Haozhe Ji | Siyang Liu | Xiaoyan Zhu | Minlie Huang

Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.

pdf bib
Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding
Jiaxin Huang | Yu Meng | Fang Guo | Heng Ji | Jiawei Han

Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets.

pdf bib
APE: Argument Pair Extraction from Peer Review and Rebuttal via Multi-task Learning
Liying Cheng | Lidong Bing | Qian Yu | Wei Lu | Luo Si

Peer review and rebuttal, with rich interactions and argumentative discussions in between, are naturally a good resource to mine arguments. However, few works study both of them simultaneously. In this paper, we introduce a new argument pair extraction (APE) task on peer review and rebuttal in order to study the contents, the structure and the connections between them. We prepare a challenging dataset that contains 4,764 fully annotated review-rebuttal passage pairs from an open review platform to facilitate the study of this task. To automatically detect argumentative propositions and extract argument pairs from this corpus, we cast it as the combination of a sequence labeling task and a text relation classification task. Thus, we propose a multitask learning framework based on hierarchical LSTM networks. Extensive experiments and analysis demonstrate the effectiveness of our multi-task framework, and also show the challenges of the new task as well as motivate future research directions.

pdf bib
Diversified Multiple Instance Learning for Document-Level Multi-Aspect Sentiment Classification
Yunjie Ji | Hao Liu | Bolei He | Xinyan Xiao | Hua Wu | Yanhua Yu

Neural Document-level Multi-aspect Sentiment Classification (DMSC) usually requires a lot of manual aspect-level sentiment annotations, which is time-consuming and laborious. As document-level sentiment labeled data are widely available from online service, it is valuable to perform DMSC with such free document-level annotations. To this end, we propose a novel Diversified Multiple Instance Learning Network (D-MILN), which is able to achieve aspect-level sentiment classification with only document-level weak supervision. Specifically, we connect aspect-level and document-level sentiment by formulating this problem as multiple instance learning, providing a way to learn aspect-level classifier from the back propagation of document-level supervision. Two diversified regularizations are further introduced in order to avoid the overfitting on document-level signals during training. Diversified textual regularization encourages the classifier to select aspect-relevant snippets, and diversified sentimental regularization prevents the aspect-level sentiments from being overly consistent with document-level sentiment. Experimental results on TripAdvisor and BeerAdvocate datasets show that D-MILN remarkably outperforms recent weakly-supervised baselines, and is also comparable to the supervised method.

pdf bib
Identifying Exaggerated Language
Li Kong | Chuanyi Li | Jidong Ge | Bin Luo | Vincent Ng

While hyperbole is one of the most prevalent rhetorical devices, it is arguably one of the least studied devices in the figurative language processing community. We contribute to the study of hyperbole by (1) creating a corpus focusing on sentence-level hyperbole detection, (2) performing a statistical and manual analysis of our corpus, and (3) addressing the automatic hyperbole detection task.

pdf bib
Unified Feature and Instance Based Domain Adaptation for Aspect-Based Sentiment Analysis
Chenggong Gong | Jianfei Yu | Rui Xia

The supervised models for aspect-based sentiment analysis (ABSA) rely heavily on labeled data. However, fine-grained labeled data are scarce for the ABSA task. To alleviate the dependence on labeled data, prior works mainly focused on feature-based adaptation, which used the domain-shared knowledge to construct auxiliary tasks or domain adversarial learning to bridge the gap between domains, while ignored the attribute of instance-based adaptation. To resolve this limitation, we propose an end-to-end framework to jointly perform feature and instance based adaptation for the ABSA task in this paper. Based on BERT, we learn domain-invariant feature representations by using part-of-speech features and syntactic dependency relations to construct auxiliary tasks, and jointly perform word-level instance weighting in the framework of sequence labeling. Experiment results on four benchmarks show that the proposed method can achieve significant improvements in comparison with the state-of-the-arts in both tasks of cross-domain End2End ABSA and cross-domain aspect extraction.

pdf bib
Compositional and Lexical Semantics in RoBERTa, BERT and DistilBERT: A Case Study on CoQA
Ieva Staliūnaitė | Ignacio Iacobacci

Many NLP tasks have benefited from transferring knowledge from contextualized word embeddings, however the picture of what type of knowledge is transferred is incomplete. This paper studies the types of linguistic phenomena accounted for by language models in the context of a Conversational Question Answering (CoQA) task. We identify the problematic areas for the finetuned RoBERTa, BERT and DistilBERT models through systematic error analysis - basic arithmetic (counting phrases), compositional semantics (negation and Semantic Role Labeling), and lexical semantics (surprisal and antonymy). When enhanced with the relevant linguistic knowledge through multitask learning, the models improve in performance. Ensembles of the enhanced models yield a boost between 2.2 and 2.7 points in F1 score overall, and up to 42.1 points in F1 on the hardest question classes. The results show differences in ability to represent compositional and lexical information between RoBERTa, BERT and DistilBERT.

pdf bib
Attention is Not Only a Weight: Analyzing Transformers with Vector Norms
Goro Kobayashi | Tatsuki Kuribayashi | Sho Yokoi | Kentaro Inui

Attention is a key component of Transformers, which have recently achieved considerable success in natural language processing. Hence, attention is being extensively studied to investigate various linguistic capabilities of Transformers, focusing on analyzing the parallels between attention weights and specific linguistic phenomena. This paper shows that attention weights alone are only one of the two factors that determine the output of attention and proposes a norm-based analysis that incorporates the second factor, the norm of the transformed input vectors. The findings of our norm-based analyses of BERT and a Transformer-based neural machine translation system include the following: (i) contrary to previous studies, BERT pays poor attention to special tokens, and (ii) reasonable word alignment can be extracted from attention mechanisms of Transformer. These findings provide insights into the inner workings of Transformers.

pdf bib
F1 is Not Enough! Models and Evaluation Towards User-Centered Explainable Question Answering
Hendrik Schuff | Heike Adel | Ngoc Thang Vu

Explainable question answering systems predict an answer together with an explanation showing why the answer has been selected. The goal is to enable users to assess the correctness of the system and understand its reasoning process. However, we show that current models and evaluation settings have shortcomings regarding the coupling of answer and explanation which might cause serious issues in user experience. As a remedy, we propose a hierarchical model and a new regularization term to strengthen the answer-explanation coupling as well as two evaluation scores to quantify the coupling. We conduct experiments on the HOTPOTQA benchmark data set and perform a user study. The user study shows that our models increase the ability of the users to judge the correctness of the system and that scores like F1 are not enough to estimate the usefulness of a model in a practical setting with human users. Our scores are better aligned with user experience, making them promising candidates for model selection.

pdf bib
On the Ability and Limitations of Transformers to Recognize Formal Languages
Satwik Bhattamishra | Kabir Ahuja | Navin Goyal

Transformers have supplanted recurrent models in a large number of NLP tasks. However, the differences in their abilities to model different syntactic properties remain largely unknown. Past works suggest that LSTMs generalize very well on regular languages and have close connections with counter languages. In this work, we systematically study the ability of Transformers to model such languages as well as the role of its individual components in doing so. We first provide a construction of Transformers for a subclass of counter languages, including well-studied languages such as n-ary Boolean Expressions, Dyck-1, and its generalizations. In experiments, we find that Transformers do well on this subclass, and their learned mechanism strongly correlates with our construction. Perhaps surprisingly, in contrast to LSTMs, Transformers do well only on a subset of regular languages with degrading performance as we make languages more complex according to a well-known measure of complexity. Our analysis also provides insights on the role of self-attention mechanism in modeling certain behaviors and the influence of positional encoding schemes on the learning and generalization abilities of the model.

pdf bib
An Unsupervised Joint System for Text Generation from Knowledge Graphs and Semantic Parsing
Martin Schmitt | Sahand Sharifzadeh | Volker Tresp | Hinrich Schütze

Knowledge graphs (KGs) can vary greatly from one domain to another. Therefore supervised approaches to both graph-to-text generation and text-to-graph knowledge extraction (semantic parsing) will always suffer from a shortage of domain-specific parallel graph-text data; at the same time, adapting a model trained on a different domain is often impossible due to little or no overlap in entities and relations. This situation calls for an approach that (1) does not need large amounts of annotated data and thus (2) does not need to rely on domain adaptation techniques to work well on different domains. To this end, we present the first approach to unsupervised text generation from KGs and show simultaneously how it can be used for unsupervised semantic parsing. We evaluate our approach on WebNLG v2.1 and a new benchmark leveraging scene graphs from Visual Genome. Our system outperforms strong baselines for both text<->graph conversion tasks without any manual adaptation from one dataset to the other. In additional experiments, we investigate the impact of using different unsupervised objectives.

pdf bib
DGST: a Dual-Generator Network for Text Style Transfer
Xiao Li | Guanyi Chen | Chenghua Lin | Ruizhe Li

We propose DGST, a novel and simple Dual-Generator network architecture for text Style Transfer. Our model employs two generators only, and does not rely on any discriminators or parallel corpus for training. Both quantitative and qualitative experiments on the Yelp and IMDb datasets show that our model gives competitive performance compared to several strong baselines with more complicated architecture designs.

pdf bib
A Knowledge-Aware Sequence-to-Tree Network for Math Word Problem Solving
Qinzhuo Wu | Qi Zhang | Jinlan Fu | Xuanjing Huang

With the advancements in natural language processing tasks, math word problem solving has received increasing attention. Previous methods have achieved promising results but ignore background common-sense knowledge not directly provided by the problem. In addition, during generation, they focus on local features while neglecting global information. To incorporate external knowledge and global expression information, we propose a novel knowledge-aware sequence-to-tree (KA-S2T) network in which the entities in the problem sequences and their categories are modeled as an entity graph. Based on this entity graph, a graph attention network is used to capture knowledge-aware problem representations. Further, we use a tree-structured decoder with a state aggregation mechanism to capture the long-distance dependency and global expression information. Experimental results on the Math23K dataset revealed that the KA-S2T model can achieve better performance than previously reported best results.

pdf bib
Generating Fact Checking Briefs
Angela Fan | Aleksandra Piktus | Fabio Petroni | Guillaume Wenzek | Marzieh Saeidi | Andreas Vlachos | Antoine Bordes | Sebastian Riedel

Fact checking at scale is difficult—while the number of active fact checking websites is growing, it remains too small for the needs of the contemporary media ecosystem. However, despite good intentions, contributions from volunteers are often error-prone, and thus in practice restricted to claim detection. We investigate how to increase the accuracy and efficiency of fact checking by providing information about the claim before performing the check, in the form of natural language briefs. We investigate passage-based briefs, containing a relevant passage from Wikipedia, entity-centric ones consisting of Wikipedia pages of mentioned entities, and Question-Answering Briefs, with questions decomposing the claim, and their answers. To produce QABriefs, we develop QABriefer, a model that generates a set of questions conditioned on the claim, searches the web for evidence, and generates answers. To train its components, we introduce QABriefDataset We show that fact checking with briefs — in particular QABriefs — increases the accuracy of crowdworkers by 10% while slightly decreasing the time taken. For volunteer (unpaid) fact checkers, QABriefs slightly increase accuracy and reduce the time required by around 20%.

pdf bib
Improving the Efficiency of Grammatical Error Correction with Erroneous Span Detection and Correction
Mengyun Chen | Tao Ge | Xingxing Zhang | Furu Wei | Ming Zhou

We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection (ESD) and Erroneous Span Correction (ESC). ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. Then, ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans. Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.

pdf bib
Coreferential Reasoning Learning for Language Representation
Deming Ye | Yankai Lin | Jiaju Du | Zhenghao Liu | Peng Li | Maosong Sun | Zhiyuan Liu

Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT.

pdf bib
Is Graph Structure Necessary for Multi-hop Question Answering?
Nan Shao | Yiming Cui | Ting Liu | Shijin Wang | Guoping Hu

Recently, attempting to model texts as graph structure and introducing graph neural networks to deal with it has become a trend in many NLP research areas. In this paper, we investigate whether the graph structure is necessary for textual multi-hop reasoning. Our analysis is centered on HotpotQA. We construct a strong baseline model to establish that, with the proper use of pre-trained models, graph structure may not be necessary for textual multi-hop reasoning. We point out that both graph structure and adjacency matrix are task-related prior knowledge, and graph-attention can be considered as a special case of self-attention. Experiments demonstrate that graph-attention or the entire graph structure can be replaced by self-attention or Transformers.

pdf bib
XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization
Alessandro Raganato | Tommaso Pasini | Jose Camacho-Collados | Mohammad Taher Pilehvar

The ability to correctly model distinct meanings of a word is crucial for the effectiveness of semantic representation techniques. However, most existing evaluation benchmarks for assessing this criterion are tied to sense inventories (usually WordNet), restricting their usage to a small subset of knowledge-based representation techniques. The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating the standard disambiguation task as a binary classification problem; but, it is limited to the English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards in 12 new languages from varied language families and with different degrees of resource availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. We perform a series of experiments to determine the reliability of the datasets and to set performance baselines for several recent contextualized multilingual models. Experimental results show that even when no tagged instances are available for a target language, models trained solely on the English data can attain competitive performance in the task of distinguishing different meanings of a word, even for distant languages. XL-WiC is available at https://pilehvar.github.io/xlwic/.

pdf bib
Generationary or “How We Went beyond Word Sense Inventories and Learned to Gloss”
Michele Bevilacqua | Marco Maru | Roberto Navigli

Mainstream computational lexical semantics embraces the assumption that word senses can be represented as discrete items of a predefined inventory. In this paper we show this needs not be the case, and propose a unified model that is able to produce contextually appropriate definitions. In our model, Generationary, we employ a novel span-based encoding scheme which we use to fine-tune an English pre-trained Encoder-Decoder system to generate glosses. We show that, even though we drop the need of choosing from a predefined sense inventory, our model can be employed effectively: not only does Generationary outperform previous approaches in the generative task of Definition Modeling in many settings, but it also matches or surpasses the state of the art in discriminative tasks such as Word Sense Disambiguation and Word-in-Context. Finally, we show that Generationary benefits from training on data from multiple inventories, with strong gains on various zero-shot benchmarks, including a novel dataset of definitions for free adjective-noun phrases. The software and reproduction materials are available at http://generationary.org.

pdf bib
Probing Pretrained Language Models for Lexical Semantics
Ivan Vulić | Edoardo Maria Ponti | Robert Litschko | Goran Glavaš | Anna Korhonen

The success of large pretrained language models (LMs) such as BERT and RoBERTa has sparked interest in probing their representations, in order to unveil what types of knowledge they implicitly capture. While prior research focused on morphosyntactic, semantic, and world knowledge, it remains unclear to which extent LMs also derive lexical type-level knowledge from words in context. In this work, we present a systematic empirical analysis across six typologically diverse languages and five different lexical tasks, addressing the following questions: 1) How do different lexical knowledge extraction strategies (monolingual versus multilingual source LM, out-of-context versus in-context encoding, inclusion of special tokens, and layer-wise averaging) impact performance? How consistent are the observed effects across tasks and languages? 2) Is lexical knowledge stored in few parameters, or is it scattered throughout the network? 3) How do these representations fare against traditional static word vectors in lexical tasks 4) Does the lexical information emerging from independently trained monolingual LMs display latent similarities? Our main results indicate patterns and best practices that hold universally, but also point to prominent variations across languages and tasks. Moreover, we validate the claim that lower Transformer layers carry more type-level lexical knowledge, but also show that this knowledge is distributed across multiple layers.

pdf bib
Cross-lingual Spoken Language Understanding with Regularized Representation Alignment
Zihan Liu | Genta Indra Winata | Peng Xu | Zhaojiang Lin | Pascale Fung

Despite the promising results of current cross-lingual models for spoken language understanding systems, they still suffer from imperfect cross-lingual representation alignments between the source and target languages, which makes the performance sub-optimal. To cope with this issue, we propose a regularization approach to further align word-level and sentence-level representations across languages without any external resource. First, we regularize the representation of user utterances based on their corresponding labels. Second, we regularize the latent variable model (Liu et al., 2019) by leveraging adversarial training to disentangle the latent variables. Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios, and our model, trained on a few-shot setting with only 3% of the target language training data, achieves comparable performance to the supervised training with all the training data.

pdf bib
SLURP: A Spoken Language Understanding Resource Package
Emanuele Bastianelli | Andrea Vanzo | Pawel Swietojanski | Verena Rieser

Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https://github.com/pswietojanski/slurp.

pdf bib
Neural Conversational QA: Learning to Reason vs Exploiting Patterns
Nikhil Verma | Abhishek Sharma | Dhiraj Madan | Danish Contractor | Harshit Kumar | Sachindra Joshi

Neural Conversational QA tasks such as ShARC require systems to answer questions based on the contents of a given passage. On studying recent state-of-the-art models on the ShARC QA task, we found indications that the model(s) learn spurious clues/patterns in the data-set. Further, a heuristic-based program, built to exploit these patterns, had comparative performance to that of the neural models. In this paper we share our findings about the four types of patterns in the ShARC corpus and how the neural models exploit them. Motivated by the above findings, we create and share a modified data-set that has fewer spurious patterns than the original data-set, consequently allowing models to learn better.

pdf bib
Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recognition
Xiangji Zeng | Yunliang Li | Yuchen Zhai | Yin Zhang

Past progress on neural models has proven that named entity recognition is no longer a problem if we have enough labeled data. However, collecting enough data and annotating them are labor-intensive, time-consuming, and expensive. In this paper, we decompose the sentence into two parts: entity and context, and rethink the relationship between them and model performance from a causal perspective. Based on this, we propose the Counterfactual Generator, which generates counterfactual examples by the interventions on the existing observational examples to enhance the original dataset. Experiments across three datasets show that our method improves the generalization ability of models under limited observational examples. Besides, we provide a theoretical foundation by using a structural causal model to explore the spurious correlations between input features and output labels. We investigate the causal effects of entity or context on model performance under both conditions: the non-augmented and the augmented. Interestingly, we find that the non-spurious correlations are more located in entity representation rather than context representation. As a result, our method eliminates part of the spurious correlations between context representation and output labels. The code is available at https://github.com/xijiz/cfgen.

pdf bib
Understanding Procedural Text using Interactive Entity Networks
Jizhi Tang | Yansong Feng | Dongyan Zhao

The task of procedural text comprehension aims to understand the dynamic nature of entities/objects in a process. Here, the key is to track how the entities interact with each other and how their states are changing along the procedure. Recent efforts have made great progress to track multiple entities in a procedural text, but usually treat each entity separately and ignore the fact that there are often multiple entities interacting with each other during one process, some of which are even explicitly mentioned. In this paper, we propose a novel Interactive Entity Network (IEN), which is a recurrent network with memory equipped cells for state tracking. In each IEN cell, we maintain different attention matrices through specific memories to model different types of entity interactions. Importantly, we can update these memories in a sequential manner so as to explore the causal relationship between entity actions and subsequent state changes. We evaluate our model on a benchmark dataset, and the results show that IEN outperforms state-of-the-art models by precisely capturing the interactions of multiple entities and explicitly leverage the relationship between entity interactions and subsequent state changes.

pdf bib
A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model Lead to the Promised Land?
Hongyu Lin | Yaojie Lu | Jialong Tang | Xianpei Han | Le Sun | Zhicheng Wei | Nicholas Jing Yuan

Fine-tuning pretrained model has achieved promising performance on standard NER benchmarks. Generally, these benchmarks are blessed with strong name regularity, high mention coverage and sufficient context diversity. Unfortunately, when scaling NER to open situations, these advantages may no longer exist. And therefore it raises a critical question of whether previous creditable approaches can still work well when facing these challenges. As there is no currently available dataset to investigate this problem, this paper proposes to conduct randomization test on standard benchmarks. Specifically, we erase name regularity, mention coverage and context diversity respectively from the benchmarks, in order to explore their impact on the generalization ability of models. To further verify our conclusions, we also construct a new open NER dataset that focuses on entity types with weaker name regularity and lower mention coverage to verify our conclusion. From both randomization test and empirical experiments, we draw the conclusions that 1) name regularity is critical for the models to generalize to unseen mentions; 2) high mention coverage may undermine the model generalization ability and 3) context patterns may not require enormous data to capture when using pretrained encoders.

pdf bib
DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion
Zhen Han | Peng Chen | Yunpu Ma | Volker Tresp

There has recently been increasing interest in learning representations of temporal knowledge graphs (KGs), which record the dynamic relationships between entities over time. Temporal KGs often exhibit multiple simultaneous non-Euclidean structures, such as hierarchical and cyclic structures. However, existing embedding approaches for temporal KGs typically learn entity representations and their dynamic evolution in the Euclidean space, which might not capture such intrinsic structures very well. To this end, we propose DyERNIE, a non-Euclidean embedding approach that learns evolving entity representations in a product of Riemannian manifolds, where the composed spaces are estimated from the sectional curvatures of underlying data. Product manifolds enable our approach to better reflect a wide variety of geometric structures on temporal KGs. Besides, to capture the evolutionary dynamics of temporal KGs, we let the entity representations evolve according to a velocity vector defined in the tangent space at each timestamp. We analyze in detail the contribution of geometric spaces to representation learning of temporal KGs and evaluate our model on temporal knowledge graph completion tasks. Extensive experiments on three real-world datasets demonstrate significantly improved performance, indicating that the dynamics of multi-relational graph data can be more properly modeled by the evolution of embeddings on Riemannian manifolds.

pdf bib
Embedding Words in Non-Vector Space with Unsupervised Graph Learning
Max Ryabinin | Sergei Popov | Liudmila Prokhorenkova | Elena Voita

It has become a de-facto standard to represent words as elements of a vector space (word2vec, GloVe). While this approach is convenient, it is unnatural for language: words form a graph with a latent hierarchical structure, and this structure has to be revealed and encoded by word embeddings. We introduce GraphGlove: unsupervised graph word representations which are learned end-to-end. In our setting, each word is a node in a weighted graph and the distance between words is the shortest path distance between the corresponding nodes. We adopt a recent method learning a representation of data in the form of a differentiable weighted graph and use it to modify the GloVe training algorithm. We show that our graph-based representations substantially outperform vector-based methods on word similarity and analogy tasks. Our analysis reveals that the structure of the learned graphs is hierarchical and similar to that of WordNet, the geometry is highly non-trivial and contains subgraphs with different local topology.

pdf bib
Debiasing knowledge graph embeddings
Joseph Fisher | Arpit Mittal | Dave Palfrey | Christos Christodoulopoulos

It has been shown that knowledge graph embeddings encode potentially harmful social biases, such as the information that women are more likely to be nurses, and men more likely to be bankers. As graph embeddings begin to be used more widely in NLP pipelines, there is a need to develop training methods which remove such biases. Previous approaches to this problem both significantly increase the training time, by a factor of eight or more, and decrease the accuracy of the model substantially. We present a novel approach, in which all embeddings are trained to be neutral to sensitive attributes such as gender by default using an adversarial loss. We then add sensitive attributes back on in whitelisted cases. Training time only marginally increases over a baseline model, and the debiased embeddings perform almost as accurately in the triple prediction task as their non-debiased counterparts.

pdf bib
Message Passing for Hyper-Relational Knowledge Graphs
Mikhail Galkin | Priyansh Trivedi | Gaurav Maheshwari | Ricardo Usbeck | Jens Lehmann

Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.

pdf bib
Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations
Taichi Ishiwatari | Yuki Yasuda | Taro Miyazaki | Jun Goto

Interest in emotion recognition in conversations (ERC) has been increasing in various fields, because it can be used to analyze user behaviors and detect fake news. Many recent ERC methods use graph-based neural networks to take the relationships between the utterances of the speakers into account. In particular, the state-of-the-art method considers self- and inter-speaker dependencies in conversations by using relational graph attention networks (RGAT). However, graph-based neural networks do not take sequential information into account. In this paper, we propose relational position encodings that provide RGAT with sequential information reflecting the relational graph structure. Accordingly, our RGAT model can capture both the speaker dependency and the sequential information. Experiments on four ERC datasets show that our model is beneficial to recognizing emotions expressed in conversations. In addition, our approach empirically outperforms the state-of-the-art on all of the benchmark datasets.

pdf bib
BERT Knows Punta Cana is not just beautiful, it’s gorgeous: Ranking Scalar Adjectives with Contextualised Representations
Aina Garí Soler | Marianna Apidianaki

Adjectives like pretty, beautiful and gorgeous describe positive properties of the nouns they modify but with different intensity. These differences are important for natural language understanding and reasoning. We propose a novel BERT-based approach to intensity detection for scalar adjectives. We model intensity by vectors directly derived from contextualised representations and show they can successfully rank scalar adjectives. We evaluate our models both intrinsically, on gold standard datasets, and on an Indirect Question Answering task. Our results demonstrate that BERT encodes rich knowledge about the semantics of scalar adjectives, and is able to provide better quality intensity rankings than static embeddings and previous models with access to dedicated resources.

pdf bib
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
Hai Ye | Qingyu Tan | Ruidan He | Juntao Li | Hwee Tou Ng | Lidong Bing

Adapting pre-trained language models (PrLMs) (e.g., BERT) to new domains has gained much attention recently. Instead of fine-tuning PrLMs as done in most previous work, we investigate how to adapt the features of PrLMs to new domains without fine-tuning. We explore unsupervised domain adaptation (UDA) in this paper. With the features from PrLMs, we adapt the models trained with labeled data from the source domain to the unlabeled target domain. Self-training is widely used for UDA, and it predicts pseudo labels on the target domain data for training. However, the predicted pseudo labels inevitably include noise, which will negatively affect training a robust model. To improve the robustness of self-training, in this paper we present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs, in which PrLM features are self-distilled into a feature adaptation module and the features from the same class are more tightly clustered. We further extend CFd to a cross-language setting, in which language discrepancy is studied. Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training in cross-domain and cross-language settings.

pdf bib
Textual Data Augmentation for Efficient Active Learning on Tiny Datasets
Husam Quteineh | Spyridon Samothrakis | Richard Sutcliffe

In this paper we propose a novel data augmentation approach where guided outputs of a language generation model, e.g. GPT-2, when labeled, can improve the performance of text classifiers through an active learning process. We transform the data generation task into an optimization problem which maximizes the usefulness of the generated output, using Monte Carlo Tree Search (MCTS) as the optimization strategy and incorporating entropy as one of the optimization criteria. We test our approach against a Non-Guided Data Generation (NGDG) process that does not optimize for a reward function. Starting with a small set of data, our results show an increased performance with MCTS of 26% on the TREC-6 Questions dataset, and 10% on the Stanford Sentiment Treebank SST-2 dataset. Compared with NGDG, we are able to achieve increases of 3% and 5% on TREC-6 and SST-2.

pdf bib
I’d rather just go to bed”: Understanding Indirect Answers
Annie Louis | Dan Roth | Filip Radlinski

We revisit a pragmatic inference problem in dialog: Understanding indirect responses to questions. Humans can interpret ‘I’m starving.’ in response to ‘Hungry?’, even without direct cue words such as ‘yes’ and ‘no’. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today’s systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus ‘Circa’ with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.

pdf bib
PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction
Xinyao Ma | Maarten Sap | Hannah Rashkin | Yejin Choi

Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction. For example, a female character in a story is often portrayed as passive and powerless (“_She daydreams about being a doctor_”) while a man is portrayed as more proactive and powerful (“_He pursues his dream of being a doctor_”). We formulate **Controllable Debiasing**, a new revision task that aims to rewrite a given text to correct the implicit and potentially undesirable bias in character portrayals. We then introduce PowerTransformer as an approach that debiases text through the lens of connotation frames (Sap et al., 2017), which encode pragmatic knowledge of implied power dynamics with respect to verb predicates. One key challenge of our task is the lack of parallel corpora. To address this challenge, we adopt an unsupervised approach using auxiliary supervision with related tasks such as paraphrasing and self-supervision based on a reconstruction loss, building on pretrained language models. Through comprehensive experiments based on automatic and human evaluations, we demonstrate that our approach outperforms ablations and existing methods from related tasks. Furthermore, we demonstrate the use of PowerTransformer as a step toward mitigating the well-documented gender bias in character portrayal in movie scripts.

pdf bib
MEGA RST Discourse Treebanks with Structure and Nuclearity from Scalable Distant Sentiment Supervision
Patrick Huber | Giuseppe Carenini

The lack of large and diverse discourse treebanks hinders the application of data-driven approaches, such as deep-learning, to RST-style discourse parsing. In this work, we present a novel scalable methodology to automatically generate discourse treebanks using distant supervision from sentiment annotated datasets, creating and publishing MEGA-DT, a new large-scale discourse-annotated corpus. Our approach generates discourse trees incorporating structure and nuclearity for documents of arbitrary length by relying on an efficient heuristic beam-search strategy, extended with a stochastic component. Experiments on multiple datasets indicate that a discourse parser trained on our MEGA-DT treebank delivers promising inter-domain performance gains when compared to parsers trained on human-annotated discourse corpora.

pdf bib
Centering-based Neural Coherence Modeling with Hierarchical Discourse Segments
Sungho Jeon | Michael Strube

Previous neural coherence models have focused on identifying semantic relations between adjacent sentences. However, they do not have the means to exploit structural information. In this work, we propose a coherence model which takes discourse structural information into account without relying on human annotations. We approximate a linguistic theory of coherence, Centering theory, which we use to track the changes of focus between discourse segments. Our model first identifies the focus of each sentence, recognized with regards to the context, and constructs the structural relationship for discourse segments by tracking the changes of the focus. The model then incorporates this structural information into a structure-aware transformer. We evaluate our model on two tasks, automated essay scoring and assessing writing quality. Our results demonstrate that our model, built on top of a pretrained language model, achieves state-of-the-art performance on both tasks. We next statistically examine the identified trees of texts assigned to different quality scores. Finally, we investigate what our model learns in terms of theoretical claims.

pdf bib
Keeping Up Appearances: Computational Modeling of Face Acts in Persuasion Oriented Discussions
Ritam Dutt | Rishabh Joshi | Carolyn Rose

The notion of face refers to the public self-image of an individual that emerges both from the individual’s own actions as well as from the interaction with others. Modeling face and understanding its state changes throughout a conversation is critical to the study of maintenance of basic human needs in and through interaction. Grounded in the politeness theory of Brown and Levinson (1978), we propose a generalized framework for modeling face acts in persuasion conversations, resulting in a reliable coding manual, an annotated corpus, and computational models. The framework reveals insights about differences in face act utilization between asymmetric roles in persuasion conversations. Using computational models, we are able to successfully identify face acts as well as predict a key conversational outcome (e.g. donation success). Finally, we model a latent representation of the conversational state to analyze the impact of predicted face acts on the probability of a positive conversational outcome and observe several correlations that corroborate previous findings.

pdf bib
HABERTOR: An Efficient and Effective Deep Hatespeech Detector
Thanh Tran | Yifan Hu | Changwei Hu | Kevin Yen | Fei Tan | Kyumin Lee | Se Rim Park

We present our HABERTOR model for detecting hatespeech in large scale user-generated content. Inspired by the recent success of the BERT model, we propose several modifications to BERT to enhance the performance on the downstream hatespeech classification task. HABERTOR inherits BERT’s architecture, but is different in four aspects: (i) it generates its own vocabularies and is pre-trained from the scratch using the largest scale hatespeech dataset; (ii) it consists of Quaternion-based factorized components, resulting in a much smaller number of parameters, faster training and inferencing, as well as less memory usage; (iii) it uses our proposed multi-source ensemble heads with a pooling layer for separate input sources, to further enhance its effectiveness; and (iv) it uses a regularized adversarial training with our proposed fine-grained and adaptive noise magnitude to enhance its robustness. Through experiments on the large-scale real-world hatespeech dataset with 1.4M annotated comments, we show that HABERTOR works better than 15 state-of-the-art hatespeech detection methods, including fine-tuning Language Models. In particular, comparing with BERT, our HABERTOR is 4 5 times faster in the training/inferencing phase, uses less than 1/3 of the memory, and has better performance, even though we pre-train it by using less than 1% of the number of words. Our generalizability analysis shows that HABERTOR transfers well to other unseen hatespeech datasets and is a more efficient and effective alternative to BERT for the hatespeech classification.

pdf bib
An Empirical Study on Large-Scale Multi-Label Text Classification Including Few and Zero-Shot Labels
Ilias Chalkidis | Manos Fergadiotis | Sotiris Kotitsas | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos

Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications and presents interesting challenges. First, not all labels are well represented in the training set, due to the very large label set and the skewed label distributions of datasets. Also, label hierarchies and differences in human labelling guidelines may affect graph-aware annotation proximity. Finally, the label hierarchies are periodically updated, requiring LMTC models capable of zero-shot generalization. Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs), which (1) typically treat LMTC as flat multi-label classification; (2) may use the label hierarchy to improve zero-shot learning, although this practice is vastly understudied; and (3) have not been combined with pre-trained Transformers (e.g. BERT), which have led to state-of-the-art results in several NLP benchmarks. Here, for the first time, we empirically evaluate a battery of LMTC methods from vanilla LWANs to hierarchical classification approaches and transfer learning, on frequent, few, and zero-shot learning on three datasets from different domains. We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs. Furthermore, we show that Transformer-based approaches outperform the state-of-the-art in two of the datasets, and we propose a new state-of-the-art method which combines BERT with LWAN. Finally, we propose new models that leverage the label hierarchy to improve few and zero-shot learning, considering on each dataset a graph-aware annotation proximity measure that we introduce.

pdf bib
Which *BERT? A Survey Organizing Contextualized Encoders
Patrick Xia | Shijie Wu | Benjamin Van Durme

Pretrained contextualized text encoders are now a staple of the NLP community. We present a survey on language representation learning with the aim of consolidating a series of shared lessons learned across a variety of recent efforts. While significant advancements continue at a rapid pace, we find that enough has now been discovered, in different directions, that we can begin to organize advances according to common themes. Through this organization, we highlight important considerations when interpreting recent contributions and choosing which model to use.

pdf bib
Fact or Fiction: Verifying Scientific Claims
David Wadden | Shanchuan Lin | Kyle Lo | Lucy Lu Wang | Madeleine van Zuylen | Arman Cohan | Hannaneh Hajishirzi

We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SciFact, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SciFact will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at https://github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at https://scifact.apps.allenai.org.

pdf bib
Semantic Role Labeling as Syntactic Dependency Parsing
Tianze Shi | Igor Malioutov | Ozan Irsoy

We reduce the task of (span-based) PropBank-style semantic role labeling (SRL) to syntactic dependency parsing. Our approach is motivated by our empirical analysis that shows three common syntactic patterns account for over 98% of the SRL annotations for both English and Chinese data. Based on this observation, we present a conversion scheme that packs SRL annotations into dependency tree representations through joint labels that permit highly accurate recovery back to the original format. This representation allows us to train statistical dependency parsers to tackle SRL and achieve competitive performance with the current state of the art. Our findings show the promise of syntactic dependency trees in encoding semantic role relations within their syntactic domain of locality, and point to potential further integration of syntactic methods into semantic role labeling in the future.

pdf bib
PARADE: A New Dataset for Paraphrase Identification Requiring Computer Science Domain Knowledge
Yun He | Zhuoer Wang | Yin Zhang | Ruihong Huang | James Caverlee

We present a new benchmark dataset called PARADE for paraphrase identification that requires specialized domain knowledge. PARADE contains paraphrases that overlap very little at the lexical and syntactic level but are semantically equivalent based on computer science domain knowledge, as well as non-paraphrases that overlap greatly at the lexical and syntactic level but are not semantically equivalent based on this domain knowledge. Experiments show that both state-of-the-art neural models and non-expert human annotators have poor performance on PARADE. For example, BERT after fine-tuning achieves an F1 score of 0.709, which is much lower than its performance on other paraphrase identification datasets. PARADE can serve as a resource for researchers interested in testing models that incorporate domain knowledge. We make our data and code freely available.

pdf bib
Causal Inference of Script Knowledge
Noah Weber | Rachel Rudinger | Benjamin Van Durme

When does a sequence of events define an everyday scenario and how can this knowledge be induced from text? Prior works in inducing such scripts have relied on, in one form or another, measures of correlation between instances of events in a corpus. We argue from both a conceptual and practical sense that a purely correlation-based approach is insufficient, and instead propose an approach to script induction based on the causal effect between events, formally defined via interventions. Through both human and automatic evaluations, we show that the output of our method based on causal effects better matches the intuition of what a script represents.

pdf bib
Towards Debiasing NLU Models from Unknown Biases
Prasetya Ajie Utama | Nafise Sadat Moosavi | Iryna Gurevych

NLU models often exploit biases to achieve high dataset-specific performance without properly learning the intended task. Recently proposed debiasing methods are shown to be effective in mitigating this tendency. However, these methods rely on a major assumption that the types of bias should be known a-priori, which limits their application to many NLU tasks and datasets. In this work, we present the first step to bridge this gap by introducing a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance. The proposed framework is general and complementary to the existing debiasing methods. We show that it allows these existing methods to retain the improvement on the challenge datasets (i.e., sets of examples designed to expose models’ reliance on biases) without specifically targeting certain biases. Furthermore, the evaluation suggests that applying the framework results in improved overall robustness.

pdf bib
On the Role of Supervision in Unsupervised Constituency Parsing
Haoyue Shi | Karen Livescu | Kevin Gimpel

We analyze several recent unsupervised constituency parsing models, which are tuned with respect to the parsing F1 score on the Wall Street Journal (WSJ) development set (1,700 sentences). We introduce strong baselines for them, by training an existing supervised parsing model (Kitaev and Klein, 2018) on the same labeled examples they access. When training on the 1,700 examples, or even when using only 50 examples for training and 5 for development, such a few-shot parsing approach can outperform all the unsupervised parsing methods by a significant margin. Few-shot parsing can be further improved by a simple data augmentation method and self-training. This suggests that, in order to arrive at fair conclusions, we should carefully consider the amount of labeled data used for model development. We propose two protocols for future work on unsupervised parsing: (i) use fully unsupervised criteria for hyperparameter tuning and model selection; (ii) use as few labeled examples as possible for model development, and compare to few-shot parsing trained on the same labeled examples.

pdf bib
Language Model Prior for Low-Resource Neural Machine Translation
Christos Baziotis | Barry Haddow | Alexandra Birch

The scarcity of large parallel corpora is an important obstacle for neural machine translation. A common solution is to exploit the knowledge of language models (LM) trained on abundant monolingual data. In this work, we propose a novel approach to incorporate a LM as prior in a neural translation model (TM). Specifically, we add a regularization term, which pushes the output distributions of the TM to be probable under the LM prior, while avoiding wrong predictions when the TM “disagrees” with the LM. This objective relates to knowledge distillation, where the LM can be viewed as teaching the TM about the target language. The proposed approach does not compromise decoding speed, because the LM is used only at training time, unlike previous work that requires it during inference. We present an analysis of the effects that different methods have on the distributions of the TM. Results on two low-resource machine translation datasets show clear improvements even with limited monolingual data.

pdf bib
Detecting Word Sense Disambiguation Biases in Machine Translation for Model-Agnostic Adversarial Attacks
Denis Emelin | Ivan Titov | Rico Sennrich

Word sense disambiguation is a well-known source of translation errors in NMT. We posit that some of the incorrect disambiguation choices are due to models’ over-reliance on dataset artifacts found in training data, specifically superficial word co-occurrences, rather than a deeper understanding of the source text. We introduce a method for the prediction of disambiguation errors based on statistical data properties, demonstrating its effectiveness across several domains and model types. Moreover, we develop a simple adversarial attack strategy that minimally perturbs sentences in order to elicit disambiguation errors to further probe the robustness of translation models. Our findings indicate that disambiguation robustness varies substantially between domains and that different models trained on the same data are vulnerable to different attacks.

pdf bib
MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer
Jonas Pfeiffer | Ivan Vulić | Iryna Gurevych | Sebastian Ruder

The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.

pdf bib
Translation Artifacts in Cross-lingual Transfer Learning
Mikel Artetxe | Gorka Labaka | Eneko Agirre

Both human and machine translation play a central role in cross-lingual transfer learning: many multilingual datasets have been created through professional translation services, and using machine translation to translate either the test set or the training set is a widely used transfer technique. In this paper, we show that such translation process can introduce subtle artifacts that have a notable impact in existing cross-lingual models. For instance, in natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them, which current models are highly sensitive to. We show that some previous findings in cross-lingual transfer learning need to be reconsidered in the light of this phenomenon. Based on the gained insights, we also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.

pdf bib
A Time-Aware Transformer Based Model for Suicide Ideation Detection on Social Media
Ramit Sawhney | Harshit Joshi | Saumya Gandhi | Rajiv Ratn Shah

Social media’s ubiquity fosters a space for users to exhibit suicidal thoughts outside of traditional clinical settings. Understanding the build-up of such ideation is critical for the identification of at-risk users and suicide prevention. Suicide ideation is often linked to a history of mental depression. The emotional spectrum of a user’s historical activity on social media can be indicative of their mental state over time. In this work, we focus on identifying suicidal intent in English tweets by augmenting linguistic models with historical context. We propose STATENet, a time-aware transformer based model for preliminary screening of suicidal risk on social media. STATENet outperforms competitive methods, demonstrating the utility of emotional and temporal contextual cues for suicide risk assessment. We discuss the empirical, qualitative, practical, and ethical aspects of STATENet for suicide ideation detection.

pdf bib
Weakly Supervised Learning of Nuanced Frames for Analyzing Polarization in News Media
Shamik Roy | Dan Goldwasser

In this paper, we suggest a minimally supervised approach for identifying nuanced frames in news article coverage of politically divisive topics. We suggest to break the broad policy frames suggested by Boydstun et al., 2014 into fine-grained subframes which can capture differences in political ideology in a better way. We evaluate the suggested subframes and their embedding, learned using minimal supervision, over three topics, namely, immigration, gun-control, and abortion. We demonstrate the ability of the subframes to capture ideological differences and analyze political discourse in news media.

pdf bib
Where Are the Facts? Searching for Fact-checked Information to Alleviate the Spread of Fake News
Nguyen Vo | Kyumin Lee

Although many fact-checking systems have been developed in academia and industry, fake news is still proliferating on social media. These systems mostly focus on fact-checking but usually neglect online users who are the main drivers of the spread of misinformation. How can we use fact-checked information to improve users’ consciousness of fake news to which they are exposed? How can we stop users from spreading fake news? To tackle these questions, we propose a novel framework to search for fact-checking articles, which address the content of an original tweet (that may contain misinformation) posted by online users. The search can directly warn fake news posters and online users (e.g. the posters’ followers) about misinformation, discourage them from spreading fake news, and scale up verified content on social media. Our framework uses both text and images to search for fact-checking articles, and achieves promising results on real-world datasets. Our code and datasets are released at https://github.com/nguyenvo09/EMNLP2020.

pdf bib
Fortifying Toxic Speech Detectors Against Veiled Toxicity
Xiaochuang Han | Yulia Tsvetkov

Modern toxic speech detectors are incompetent in recognizing disguised offensive language, such as adversarial attacks that deliberately avoid known toxic lexicons, or manifestations of implicit bias. Building a large annotated dataset for such veiled toxicity can be very expensive. In this work, we propose a framework aimed at fortifying existing toxic speech detectors without a large labeled corpus of veiled toxicity. Just a handful of probing examples are used to surface orders of magnitude more disguised offenses. We augment the toxic speech detector’s training data with these discovered offensive examples, thereby making it more robust to veiled toxicity while preserving its utility in detecting overt toxicity.

pdf bib
Explainable Automated Fact-Checking for Public Health Claims
Neema Kotonya | Francesca Toni

Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.

pdf bib
Interactive Fiction Game Playing as Multi-Paragraph Reading Comprehension with Reinforcement Learning
Xiaoxiao Guo | Mo Yu | Yupeng Gao | Chuang Gan | Murray Campbell | Shiyu Chang

Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches.

pdf bib
DORB: Dynamically Optimizing Multiple Rewards with Bandits
Ramakanth Pasunuru | Han Guo | Mohit Bansal

Policy gradients-based reinforcement learning has proven to be a promising approach for directly optimizing non-differentiable evaluation metrics for language generation tasks. However, optimizing for a specific metric reward leads to improvements in mostly that metric only, suggesting that the model is gaming the formulation of that metric in a particular way without often achieving real qualitative improvements. Hence, it is more beneficial to make the model optimize multiple diverse metric rewards jointly. While appealing, this is challenging because one needs to manually decide the importance and scaling weights of these metric rewards. Further, it is important to consider using a dynamic combination and curriculum of metric rewards that flexibly changes over time. Considering the above aspects, in our work, we automate the optimization of multiple metric rewards simultaneously via a multi-armed bandit approach (DORB), where at each round, the bandit chooses which metric reward to optimize next, based on expected arm gains. We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit). We empirically show the effectiveness of our approaches via various automatic metrics and human evaluation on two important NLG tasks: question generation and data-to-text generation. Finally, we present interpretable analyses of the learned bandit curriculum over the optimized rewards.

pdf bib
MedFilter: Improving Extraction of Task-relevant Utterances through Integration of Discourse Structure and Ontological Knowledge
Sopan Khosla | Shikhar Vashishth | Jill Fain Lehman | Carolyn Rose

Information extraction from conversational data is particularly challenging because the task-centric nature of conversation allows for effective communication of implicit information by humans, but is challenging for machines. The challenges may differ between utterances depending on the role of the speaker within the conversation, especially when relevant expertise is distributed asymmetrically across roles. Further, the challenges may also increase over the conversation as more shared context is built up through information communicated implicitly earlier in the dialogue. In this paper, we propose the novel modeling approach MedFilter, which addresses these insights in order to increase performance at identifying and categorizing task-relevant utterances, and in so doing, positively impacts performance at a downstream information extraction task. We evaluate this approach on a corpus of nearly 7,000 doctor-patient conversations where MedFilter is used to identify medically relevant contributions to the discussion (achieving a 10% improvement over SOTA baselines in terms of area under the PR curve). Identifying task-relevant utterances benefits downstream medical processing, achieving improvements of 15%, 105%, and 23% respectively for the extraction of symptoms, medications, and complaints.

pdf bib
Hierarchical Evidence Set Modeling for Automated Fact Extraction and Verification
Shyam Subramanian | Kyumin Lee

Automated fact extraction and verification is a challenging task that involves finding relevant evidence sentences from a reliable corpus to verify the truthfulness of a claim. Existing models either (i) concatenate all the evidence sentences, leading to the inclusion of redundant and noisy information; or (ii) process each claim-evidence sentence pair separately and aggregate all of them later, missing the early combination of related sentences for more accurate claim verification. Unlike the prior works, in this paper, we propose Hierarchical Evidence Set Modeling (HESM), a framework to extract evidence sets (each of which may contain multiple evidence sentences), and verify a claim to be supported, refuted or not enough info, by encoding and attending the claim and evidence sets at different levels of hierarchy. Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification. Our source code is available at https://github.com/ShyamSubramanian/HESM.

pdf bib
Program Enhanced Fact Verification with Verbalization and Graph Attention Network
Xiaoyu Yang | Feng Nie | Yufei Feng | Quan Liu | Zhigang Chen | Xiaodan Zhu

Performing fact verification based on structured data is important for many real-life applications and is a challenging research problem, particularly when it involves both symbolic operations and informal inference based on language understanding. In this paper, we present a Program-enhanced Verbalization and Graph Attention Network (ProgVGAT) to integrate programs and execution into textual inference models. Specifically, a verbalization with program execution model is proposed to accumulate evidences that are embedded in operations over the tables. Built on that, we construct the graph attention verification networks, which are designed to fuse different sources of evidences from verbalized program execution, program structures, and the original statements and tables, to make the final verification decision. To support the above framework, we propose a program selection module optimized with a new training strategy based on margin loss, to produce more accurate programs, which is shown to be effective in enhancing the final verification results. Experimental results show that the proposed framework achieves the new state-of-the-art performance, a 74.4% accuracy, on the benchmark dataset TABFACT.

pdf bib
Constrained Fact Verification for FEVER
Adithya Pratapa | Sai Muralidhar Jayanthi | Kavya Nerella

Fact-verification systems are well explored in the NLP literature with growing attention owing to shared tasks like FEVER. Though the task requires reasoning on extracted evidence to verify a claim’s factuality, there is little work on understanding the reasoning process. In this work, we propose a new methodology for fact-verification, specifically FEVER, that enforces a closed-world reliance on extracted evidence. We present an extensive evaluation of state-of-the-art verification models under these constraints.

pdf bib
Entity Linking in 100 Languages
Jan A. Botha | Zifei Shan | Daniel Gillick

We propose a new formulation for multilingual entity linking, where language-specific mentions resolve to a language-agnostic Knowledge Base. We train a dual encoder in this new setting, building on prior work with improved feature representation, negative mining, and an auxiliary entity-pairing task, to obtain a single entity retrieval model that covers 100+ languages and 20 million entities. The model outperforms state-of-the-art results from a far more limited cross-lingual linking task. Rare entities and low-resource languages pose challenges at this large-scale, so we advocate for an increased focus on zero- and few-shot evaluation. To this end, we provide Mewsli-9, a large new multilingual dataset matched to our setting, and show how frequency-based analysis provided key insights for our model and training enhancements.

pdf bib
PatchBERT: Just-in-Time, Out-of-Vocabulary Patching
Sangwhan Moon | Naoaki Okazaki

Large scale pre-trained language models have shown groundbreaking performance improvements for transfer learning in the domain of natural language processing. In our paper, we study a pre-trained multilingual BERT model and analyze the OOV rate on downstream tasks, how it introduces information loss, and as a side-effect, obstructs the potential of the underlying model. We then propose multiple approaches for mitigation and demonstrate that it improves performance with the same parameter count when combined with fine-tuning.

pdf bib
On the importance of pre-training data volume for compact language models
Vincent Micheli | Martin d’Hoffschmidt | François Fleuret

Recent advances in language modeling have led to computationally intensive and resource-demanding state-of-the-art models. In an effort towards sustainable practices, we study the impact of pre-training data volume on compact language models. Multiple BERT-based models are trained on gradually increasing amounts of French text. Through fine-tuning on the French Question Answering Dataset (FQuAD), we observe that well-performing models are obtained with as little as 100 MB of text. In addition, we show that past critically low amounts of pre-training data, an intermediate pre-training step on the task-specific corpus does not yield substantial improvements.

pdf bib
BERT-of-Theseus: Compressing BERT by Progressive Module Replacing
Canwen Xu | Wangchunshu Zhou | Tao Ge | Furu Wei | Ming Zhou

In this paper, we propose a novel model compression approach to effectively compress BERT by progressive module replacing. Our approach first divides the original BERT into several modules and builds their compact substitutes. Then, we randomly replace the original modules with their substitutes to train the compact modules to mimic the behavior of the original modules. We progressively increase the probability of replacement through the training. In this way, our approach brings a deeper level of interaction between the original and compact models. Compared to the previous knowledge distillation approaches for BERT compression, our approach does not introduce any additional loss function. Our approach outperforms existing knowledge distillation approaches on GLUE benchmark, showing a new perspective of model compression.

pdf bib
Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting
Sanyuan Chen | Yutai Hou | Yiming Cui | Wanxiang Che | Ting Liu | Xiangzhan Yu

Deep pretrained language models have achieved great success in the way of pretraining first and then fine-tuning. But such a sequential transfer learning paradigm often confronts the catastrophic forgetting problem and leads to sub-optimal performance. To fine-tune with less forgetting, we propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks. Specifically, we introduce a Pretraining Simulation mechanism to recall the knowledge from pretraining tasks without data, and an Objective Shifting mechanism to focus the learning on downstream tasks gradually. Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark. Our method also enables BERT-base to achieve better average performance than directly fine-tuning of BERT-large. Further, we provide the open-source RecAdam optimizer, which integrates the proposed mechanisms into Adam optimizer, to facility the NLP community.

pdf bib
Exploring and Predicting Transferability across NLP Tasks
Tu Vu | Tong Wang | Tsendsuren Munkhdalai | Alessandro Sordoni | Adam Trischler | Andrew Mattarella-Micke | Subhransu Maji | Mohit Iyyer

Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we conduct an extensive study of the transferability between 33 NLP tasks across three broad classes of problems (text classification, question answering, and sequence labeling). Our results show that transfer learning is more beneficial than previously thought, especially when target task data is scarce, and can improve performance even with low-data source tasks that differ substantially from the target task (e.g., part-of-speech tagging transfers well to the DROP QA dataset). We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task, and we validate their effectiveness in experiments controlled for source and target data size. Overall, our experiments reveal that factors such as data size, task and domain similarity, and task complexity all play a role in determining transferability.

pdf bib
To BERT or Not to BERT: Comparing Task-specific and Task-agnostic Semi-Supervised Approaches for Sequence Tagging
Kasturi Bhattacharjee | Miguel Ballesteros | Rishita Anubhai | Smaranda Muresan | Jie Ma | Faisal Ladhak | Yaser Al-Onaizan

Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success. However, training these models can be costly both from an economic and environmental standpoint. In this work, we investigate how to effectively use unlabeled data: by exploring the task-specific semi-supervised approach, Cross-View Training (CVT) and comparing it with task-agnostic BERT in multiple settings that include domain and task relevant English data. CVT uses a much lighter model architecture and we show that it achieves similar performance to BERT on a set of sequence tagging tasks, with lesser financial and environmental impact.

pdf bib
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan | Hsuan-Tien Lin | Jordan Boyd-Graber

Active learning strives to reduce annotation costs by choosing the most critical examples to label. Typically, the active learning strategy is contingent on the classification model. For instance, uncertainty sampling depends on poorly calibrated model confidence scores. In the cold-start setting, active learning is impractical because of model instability and data scarcity. Fortunately, modern NLP provides an additional source of information: pre-trained language models. The pre-training loss can find examples that surprise the model and should be labeled for efficient fine-tuning. Therefore, we treat the language modeling loss as a proxy for classification uncertainty. With BERT, we develop a simple strategy based on the masked language modeling loss that minimizes labeling costs for text classification. Compared to other baselines, our approach reaches higher accuracy within less sampling iterations and computation time.

pdf bib
Active Learning for BERT: An Empirical Study
Liat Ein-Dor | Alon Halfon | Ariel Gera | Eyal Shnarch | Lena Dankin | Leshem Choshen | Marina Danilevsky | Ranit Aharonov | Yoav Katz | Noam Slonim

Real world scenarios present a challenge for text classification, since labels are usually expensive and the data is often characterized by class imbalance. Active Learning (AL) is a ubiquitous paradigm to cope with data scarcity. Recently, pre-trained NLP models, and BERT in particular, are receiving massive attention due to their outstanding performance in various NLP tasks. However, the use of AL with deep pre-trained models has so far received little consideration. Here, we present a large-scale empirical study on active learning techniques for BERT-based classification, addressing a diverse set of AL strategies and datasets. We focus on practical scenarios of binary text classification, where the annotation budget is very small, and the data is often skewed. Our results demonstrate that AL can boost BERT performance, especially in the most realistic scenario in which the initial set of labeled examples is created using keyword-based queries, resulting in a biased sample of the minority class. We release our research framework, aiming to facilitate future research along the lines explored here.

pdf bib
Transformer Based Multi-Source Domain Adaptation
Dustin Wright | Isabelle Augenstein

In practical machine learning settings, the data on which a model must make predictions often come from a different distribution than the data it was trained on. Here, we investigate the problem of unsupervised multi-source domain adaptation, where a model is trained on labelled data from multiple source domains and must make predictions on a domain for which no labelled data has been seen. Prior work with CNNs and RNNs has demonstrated the benefit of mixture of experts, where the predictions of multiple domain expert classifiers are combined; as well as domain adversarial training, to induce a domain agnostic representation space. Inspired by this, we investigate how such methods can be effectively applied to large pretrained transformer models. We find that domain adversarial training has an effect on the learned representations of these models while having little effect on their performance, suggesting that large transformer-based models are already relatively robust across domains. Additionally, we show that mixture of experts leads to significant performance improvements by comparing several variants of mixing functions, including one novel metric based on attention. Finally, we demonstrate that the predictions of large pretrained transformer based domain experts are highly homogenous, making it challenging to learn effective metrics for mixing their predictions.

pdf bib
Vector-Vector-Matrix Architecture: A Novel Hardware-Aware Framework for Low-Latency Inference in NLP Applications
Matthew Khoury | Rumen Dangovski | Longwu Ou | Preslav Nakov | Yichen Shen | Li Jing

Deep neural networks have become the standard approach to building reliable Natural Language Processing (NLP) applications, ranging from Neural Machine Translation (NMT) to dialogue systems. However, improving accuracy by increasing the model size requires a large number of hardware computations, which can slow down NLP applications significantly at inference time. To address this issue, we propose a novel vector-vector-matrix architecture (VVMA), which greatly reduces the latency at inference time for NMT. This architecture takes advantage of specialized hardware that has low-latency vector-vector operations and higher-latency vector-matrix operations. It also reduces the number of parameters and FLOPs for virtually all models that rely on efficient matrix multipliers without significantly impacting accuracy. We present empirical results suggesting that our framework can reduce the latency of sequence-to-sequence and Transformer models used for NMT by a factor of four. Finally, we show evidence suggesting that our VVMA extends to other domains, and we discuss novel hardware for its efficient use.

pdf bib
The importance of fillers for text representations of speech transcripts
Tanvi Dinkar | Pierre Colombo | Matthieu Labeau | Chloé Clavel

While being an essential component of spoken language, fillers (e.g. “um” or “uh”) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks — predicting a speaker’s stance and expressed confidence.

pdf bib
The role of context in neural pitch accent detection in English
Elizabeth Nielsen | Mark Steedman | Sharon Goldwater

Prosody is a rich information source in natural language, serving as a marker for phenomena such as contrast. In order to make this information available to downstream tasks, we need a way to detect prosodic events in speech. We propose a new model for pitch accent detection, inspired by the work of Stehwien et al. (2018), who presented a CNN-based model for this task. Our model makes greater use of context by using full utterances as input and adding an LSTM layer. We find that these innovations lead to an improvement from 87.5% to 88.7% accuracy on pitch accent detection on American English speech in the Boston University Radio News Corpus, a state-of-the-art result. We also find that a simple baseline that just predicts a pitch accent on every content word yields 82.2% accuracy, and we suggest that this is the appropriate baseline for this task. Finally, we conduct ablation tests that show pitch is the most important acoustic feature for this task and this corpus.

pdf bib
VolTAGE: Volatility Forecasting via Text Audio Fusion with Graph Convolution Networks for Earnings Calls
Ramit Sawhney | Piyush Khanna | Arshiya Aggarwal | Taru Jain | Puneet Mathur | Rajiv Ratn Shah

Natural language processing has recently made stock movement forecasting and volatility forecasting advances, leading to improved financial forecasting. Transcripts of companies’ earnings calls are well studied for risk modeling, offering unique investment insight into stock performance. However, vocal cues in the speech of company executives present an underexplored rich source of natural language data for estimating financial risk. Additionally, most existing approaches ignore the correlations between stocks. Building on existing work, we introduce a neural model for stock volatility prediction that accounts for stock interdependence via graph convolutions while fusing verbal, vocal, and financial features in a semi-supervised multi-task risk forecasting formulation. Our proposed model, VolTAGE, outperforms existing methods demonstrating the effectiveness of multimodal learning for volatility prediction.

pdf bib
Effectively pretraining a speech translation decoder with Machine Translation data
Ashkan Alinejad | Anoop Sarkar

Directly translating from speech to text using an end-to-end approach is still challenging for many language pairs due to insufficient data. Although pretraining the encoder parameters using the Automatic Speech Recognition (ASR) task improves the results in low resource settings, attempting to use pretrained parameters from the Neural Machine Translation (NMT) task has been largely unsuccessful in previous works. In this paper, we will show that by using an adversarial regularizer, we can bring the encoder representations of the ASR and NMT tasks closer even though they are in different modalities, and how this helps us effectively use a pretrained NMT decoder for speech translation.

pdf bib
A Preliminary Exploration of GANs for Keyphrase Generation
Avinash Swaminathan | Haimin Zhang | Debanjan Mahata | Rakesh Gosangi | Rajiv Ratn Shah | Amanda Stent

We introduce a new keyphrase generation approach using Generative Adversarial Networks (GANs). For a given document, the generator produces a sequence of keyphrases, and the discriminator distinguishes between human-curated and machine-generated keyphrases. We evaluated this approach on standard benchmark datasets. We observed that our model achieves state-of-the-art performance in the generation of abstractive keyphrases and is comparable to the best performing extractive techniques. Although we achieve promising results using GANs, they are not significantly better than the state-of-the-art generative models. To our knowledge, this is one of the first works that use GANs for keyphrase generation. We present a detailed analysis of our observations and expect that these findings would help other researchers to further study the use of GANs for the task of keyphrase generation.

pdf bib
TESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Clément Jumel | Annie Louis | Jackie Chi Kit Cheung

Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named entities such as ‘London’ and ‘Paris’ with different expressions: “the major cities”, “the capital cities” and “two European cities”. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3K crowd-sourced entity aggregations of Person, Organization, and Location named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We finetune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.

pdf bib
MLSUM: The Multilingual Summarization Corpus
Thomas Scialom | Paul-Alexis Dray | Sylvain Lamprier | Benjamin Piwowarski | Jacopo Staiano

We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages – namely, French, German, Spanish, Russian, Turkish. Together with English news articles from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.

pdf bib
Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles
Yao Lu | Yue Dong | Laurent Charlin

Multi-document summarization is a challenging task for which there exists little large-scale datasets. We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and empirical results—using several state-of-the-art models trained on the Multi-XScience dataset—reveal that Multi-XScience is well suited for abstractive models.

pdf bib
Intrinsic Evaluation of Summarization Datasets
Rishi Bommasani | Claire Cardie

High quality data forms the bedrock for building meaningful statistical models in NLP. Consequently, data quality must be evaluated either during dataset construction or *post hoc*. Almost all popular summarization datasets are drawn from natural sources and do not come with inherent quality assurance guarantees. In spite of this, data quality has gone largely unquestioned for many of these recent datasets. We perform the first large-scale evaluation of summarization datasets by introducing 5 intrinsic metrics and applying them to 10 popular datasets. We find that data usage in recent summarization research is sometimes inconsistent with the underlying properties of the data. Further, we discover that our metrics can serve the additional purpose of being inexpensive heuristics for detecting generically low quality examples.

pdf bib
Iterative Feature Mining for Constraint-Based Data Collection to Increase Data Diversity and Model Robustness
Stefan Larson | Anthony Zheng | Anish Mahendran | Rishi Tekriwal | Adrian Cheung | Eric Guldan | Kevin Leach | Jonathan K. Kummerfeld

Diverse data is crucial for training robust models, but crowdsourced text often lacks diversity as workers tend to write simple variations from prompts. We propose a general approach for guiding workers to write more diverse text by iteratively constraining their writing. We show how prior workflows are special cases of our approach, and present a way to apply the approach to dialog tasks such as intent classification and slot-filling. Using our method, we create more challenging versions of test sets from prior dialog datasets and find dramatic performance drops for standard models. Finally, we show that our approach is complementary to recent work on improving data diversity, and training on data collected with our approach leads to more robust models.

pdf bib
Conversational Semantic Parsing for Dialog State Tracking
Jianpeng Cheng | Devang Agrawal | Héctor Martínez Alonso | Shruti Bhargava | Joris Driesen | Federico Flego | Dain Kaplan | Dimitri Kartsaklis | Lin Li | Dhivya Piraviperumal | Jason D. Williams | Hong Yu | Diarmuid Ó Séaghdha | Anders Johannsen

We consider a new perspective on dialog state tracking (DST), the task of estimating a user’s goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to ~20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.

pdf bib
doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset
Song Feng | Hui Wan | Chulaka Gunasekara | Siva Patel | Sachindra Joshi | Luis Lastras

We introduce doc2dial, a new dataset of goal-oriented dialogues that are grounded in the associated documents. Inspired by how the authors compose documents for guiding end users, we first construct dialogue flows based on the content elements that corresponds to higher-level relations across text sections as well as lower-level relations between discourse units within a section. Then we present these dialogue flows to crowd contributors to create conversational utterances. The dataset includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets, this dataset covers a variety of dialogue scenes in information-seeking conversations. For evaluating the versatility of the dataset, we introduce multiple dialogue modeling tasks and present baseline approaches.

pdf bib
Interview: Large-scale Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding
Bodhisattwa Prasad Majumder | Shuyang Li | Jianmo Ni | Julian McAuley

In this work, we perform the first large-scale analysis of discourse in media dialog and its impact on generative modeling of dialog turns, with a focus on interrogative patterns and use of external knowledge. Discourse analysis can help us understand modes of persuasion, entertainment, and information elicitation in such settings, but has been limited to manual review of small corpora. We introduce **Interview**—a large-scale (105K conversations) media dialog dataset collected from news interview transcripts—which allows us to investigate such patterns at scale. We present a dialog model that leverages external knowledge as well as dialog acts via auxiliary losses and demonstrate that our model quantitatively and qualitatively outperforms strong discourse-agnostic baselines for dialog modeling—generating more specific and topical responses in interview-style conversations.

pdf bib
INSPIRED: Toward Sociable Recommendation Dialog Systems
Shirley Anugrah Hayati | Dongyeop Kang | Qingxiaoyang Zhu | Weiyan Shi | Zhou Yu

In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.

pdf bib
Information Seeking in the Spirit of Learning: A Dataset for Conversational Curiosity
Pedro Rodriguez | Paul Crook | Seungwhan Moon | Zhiguang Wang

Open-ended human learning and information-seeking are increasingly mediated by digital assistants. However, such systems often ignore the user’s pre-existing knowledge. Assuming a correlation between engagement and user responses such as “liking” messages or asking followup questions, we design a Wizard-of-Oz dialog task that tests the hypothesis that engagement increases when users are presented with facts related to what they know. Through crowd-sourcing of this experiment, we collect and release 14K dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages. Responses using a user’s prior knowledge increase engagement. We incorporate this knowledge into a multi-task model that reproduces human assistant policies and improves over a bert content model by 13 mean reciprocal rank points.

pdf bib
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan | Angela Fan | Adina Williams | Jack Urbanek | Douwe Kiela | Jason Weston

Social biases present in data are often directly reflected in the predictions of models trained on that data. We analyze gender bias in dialogue data, and examine how this bias is not only replicated, but is also amplified in subsequent generative chit-chat dialogue models. We measure gender bias in six existing dialogue datasets before selecting the most biased one, the multi-player text-based fantasy adventure dataset LIGHT, as a testbed for bias mitigation techniques. We consider three techniques to mitigate gender bias: counterfactual data augmentation, targeted data collection, and bias controlled training. We show that our proposed techniques mitigate gender bias by balancing the genderedness of generated dialogue utterances, and find that they are particularly effective in combination. We evaluate model performance with a variety of quantitative methods—including the quantity of gendered words, a dialogue safety classifier, and human assessments—all of which show that our models generate less gendered, but equally engaging chit-chat responses.

pdf bib
Discriminatively-Tuned Generative Classifiers for Robust Natural Language Inference
Xiaoan Ding | Tianyu Liu | Baobao Chang | Zhifang Sui | Kevin Gimpel

While discriminative neural network classifiers are generally preferred, recent work has shown advantages of generative classifiers in term of data efficiency and robustness. In this paper, we focus on natural language inference (NLI). We propose GenNLI, a generative classifier for NLI tasks, and empirically characterize its performance by comparing it to five baselines, including discriminative models and large-scale pretrained language representation models like BERT. We explore training objectives for discriminative fine-tuning of our generative classifiers, showing improvements over log loss fine-tuning from prior work (Lewis and Fan, 2019). In particular, we find strong results with a simple unbounded modification to log loss, which we call the “infinilog loss”. Our experiments show that GenNLI outperforms both discriminative and pretrained baselines across several challenging NLI experimental settings, including small training sets, imbalanced label distributions, and label noise.

pdf bib
New Protocols and Negative Results for Textual Entailment Data Collection
Samuel R. Bowman | Jennimaria Palomaki | Livio Baldini Soares | Emily Pitler

Natural language inference (NLI) data has proven useful in benchmarking and, especially, as pretraining data for tasks requiring language understanding. However, the crowdsourcing protocol that was used to collect this data has known issues and was not explicitly optimized for either of these purposes, so it is likely far from ideal. We propose four alternative protocols, each aimed at improving either the ease with which annotators can produce sound training examples or the quality and diversity of those examples. Using these alternatives and a fifth baseline protocol, we collect and compare five new 8.5k-example training sets. In evaluations focused on transfer learning applications, our results are solidly negative, with models trained on our baseline dataset yielding good transfer performance to downstream tasks, but none of our four new methods (nor the recent ANLI) showing any improvements over that baseline. In a small silver lining, we observe that all four new protocols, especially those where annotators edit *pre-filled* text boxes, reduce previously observed issues with annotation artifacts.

pdf bib
The Curse of Performance Instability in Analysis Datasets: Consequences, Source, and Suggestions
Xiang Zhou | Yixin Nie | Hao Tan | Mohit Bansal

We find that the performance of state-of-the-art models on Natural Language Inference (NLI) and Reading Comprehension (RC) analysis/stress sets can be highly unstable. This raises three questions: (1) How will the instability affect the reliability of the conclusions drawn based on these analysis sets? (2) Where does this instability come from? (3) How should we handle this instability and what are some potential solutions? For the first question, we conduct a thorough empirical study over analysis sets and find that in addition to the unstable final performance, the instability exists all along the training curve. We also observe lower-than-expected correlations between the analysis validation set and standard validation set, questioning the effectiveness of the current model-selection routine. Next, to answer the second question, we give both theoretical explanations and empirical evidence regarding the source of the instability, demonstrating that the instability mainly comes from high inter-example correlations within analysis sets. Finally, for the third question, we discuss an initial attempt to mitigate the instability and suggest guidelines for future work such as reporting the decomposed variance for more interpretable results and fair comparison across models.

pdf bib
Universal Natural Language Processing with Limited Annotations: Try Few-shot Textual Entailment as a Start
Wenpeng Yin | Nazneen Fatema Rajani | Dragomir Radev | Richard Socher | Caiming Xiong

A standard way to address different NLP problems is by first constructing a problem-specific dataset, then building a model to fit this dataset. To build the ultimate artificial intelligence, we desire a single machine that can handle diverse new problems, for which task-specific annotations are limited. We bring up textual entailment as a unified solver for such NLP problems. However, current research of textual entailment has not spilled much ink on the following questions: (i) How well does a pretrained textual entailment system generalize across domains with only a handful of domain-specific examples? and (ii) When is it worth transforming an NLP task into textual entailment? We argue that the transforming is unnecessary if we can obtain rich annotations for this task. Textual entailment really matters particularly when the target NLP task has insufficient annotations. Universal NLP can be probably achieved through different routines. In this work, we introduce Universal Few-shot textual Entailment (UFO-Entail). We demonstrate that this framework enables a pretrained entailment model to work well on new entailment domains in a few-shot setting, and show its effectiveness as a unified solver for several downstream NLP tasks such as question answering and coreference resolution when the end-task annotations are limited.

pdf bib
ConjNLI: Natural Language Inference Over Conjunctive Sentences
Swarnadeep Saha | Yixin Nie | Mohit Bansal

Reasoning about conjuncts in conjunctive sentences is important for a deeper understanding of conjunctions in English and also how their usages and semantics differ from conjunctive and disjunctive boolean logic. Existing NLI stress tests do not consider non-boolean usages of conjunctions and use templates for testing such model knowledge. Hence, we introduce ConjNLI, a challenge stress-test for natural language inference over conjunctive sentences, where the premise differs from the hypothesis by conjuncts removed, added, or replaced. These sentences contain single and multiple instances of coordinating conjunctions (“and”, “or”, “but”, “nor”) with quantifiers, negations, and requiring diverse boolean and non-boolean inferences over conjuncts. We find that large-scale pre-trained language models like RoBERTa do not understand conjunctive semantics well and resort to shallow heuristics to make inferences over such sentences. As some initial solutions, we first present an iterative adversarial fine-tuning method that uses synthetically created training data based on boolean and non-boolean heuristics. We also propose a direct model advancement by making RoBERTa aware of predicate semantic roles. While we observe some performance gains, ConjNLI is still challenging for current methods, thus encouraging interesting future work for better understanding of conjunctions.

pdf bib
Data and Representation for Turkish Natural Language Inference
Emrah Budur | Rıza Özçelik | Tunga Gungor | Christopher Potts

Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.

pdf bib
Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies
Maryam Aminian | Mohammad Sadegh Rasooli | Mona Diab

We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with annotation projection. We use syntactic parsing as the auxiliary task in our multitask setup. Our annotation projection experiments from English to Czech show that our multitask setup yields 3.1% (4.2%) improvement in labeled F1-score on in-domain (out-of-domain) test set compared to a single-task baseline.

pdf bib
Precise Task Formalization Matters in Winograd Schema Evaluations
Haokun Liu | William Huang | Dhara Mungra | Samuel R. Bowman

Performance on the Winograd Schema Challenge (WSC), a respected English commonsense reasoning benchmark, recently rocketed from chance accuracy to 89% on the SuperGLUE leaderboard, with relatively little corroborating evidence of a correspondingly large improvement in reasoning ability. We hypothesize that much of this improvement comes from recent changes in task formalization—the combination of input specification, loss function, and reuse of pretrained parameters—by users of the dataset, rather than improvements in the pretrained model’s reasoning ability. We perform an ablation on two Winograd Schema datasets that interpolates between the formalizations used before and after this surge, and find (i) framing the task as multiple choice improves performance dramatically and (ii)several additional techniques, including the reuse of a pretrained language modeling head, can mitigate the model’s extreme sensitivity to hyperparameters. We urge future benchmark creators to impose additional structure to minimize the impact of formalization decisions on reported results.

pdf bib
Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training
Joe Stacey | Pasquale Minervini | Haim Dubossarsky | Sebastian Riedel | Tim Rocktäschel

Natural Language Inference (NLI) datasets contain annotation artefacts resulting in spurious correlations between the natural language utterances and their respective entailment classes. These artefacts are exploited by neural networks even when only considering the hypothesis and ignoring the premise, leading to unwanted biases. Belinkov et al. (2019b) proposed tackling this problem via adversarial training, but this can lead to learned sentence representations that still suffer from the same biases. We show that the bias can be reduced in the sentence representations by using an ensemble of adversaries, encouraging the model to jointly decrease the accuracy of these different adversaries while fitting the data. This approach produces more robust NLI models, outperforming previous de-biasing efforts when generalised to 12 other NLI datasets (Belinkov et al., 2019a; Mahabadi et al., 2020). In addition, we find that the optimal number of adversarial classifiers depends on the dimensionality of the sentence representations, with larger sentence representations being more difficult to de-bias while benefiting from using a greater number of adversaries.

pdf bib
SynSetExpan: An Iterative Framework for Joint Entity Set Expansion and Synonym Discovery
Jiaming Shen | Wenda Qiu | Jingbo Shang | Michelle Vanni | Xiang Ren | Jiawei Han

Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have a similar likelihood of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities’ infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks.

pdf bib
Evaluating the Calibration of Knowledge Graph Embeddings for Trustworthy Link Prediction
Tara Safavi | Danai Koutra | Edgar Meij

Little is known about the trustworthiness of predictions made by knowledge graph embedding (KGE) models. In this paper we take initial steps toward this direction by investigating the calibration of KGE models, or the extent to which they output confidence scores that reflect the expected correctness of predicted knowledge graph triples. We first conduct an evaluation under the standard closed-world assumption (CWA), in which predicted triples not already in the knowledge graph are considered false, and show that existing calibration techniques are effective for KGE under this common but narrow assumption. Next, we introduce the more realistic but challenging open-world assumption (OWA), in which unobserved predictions are not considered true or false until ground-truth labels are obtained. Here, we show that existing calibration techniques are much less effective under the OWA than the CWA, and provide explanations for this discrepancy. Finally, to motivate the utility of calibration for KGE from a practitioner’s perspective, we conduct a unique case study of human-AI collaboration, showing that calibrated predictions can improve human performance in a knowledge graph completion task.

pdf bib
Text Graph Transformer for Document Classification
Haopeng Zhang | Jiawei Zhang

Text classification is a fundamental problem in natural language processing. Recent studies applied graph neural network (GNN) techniques to capture global word co-occurrence in a corpus. However, previous works are not scalable to large-sized corpus and ignore the heterogeneity of the text graph. To address these problems, we introduce a novel Transformer based heterogeneous graph neural network, namely Text Graph Transformer (TG-Transformer). Our model learns effective node representations by capturing structure and heterogeneity from the text graph. We propose a mini-batch text graph sampling method that significantly reduces computing and memory costs to handle large-sized corpus. Extensive experiments have been conducted on several benchmark datasets, and the results demonstrate that TG-Transformer outperforms state-of-the-art approaches on text classification task.

pdf bib
CoDEx: A Comprehensive Knowledge Graph Completion Benchmark
Tara Safavi | Danai Koutra

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at https://bit.ly/2EPbrJs.

pdf bib
META: Metadata-Empowered Weak Supervision for Text Classification
Dheeraj Mekala | Xinyang Zhang | Jingbo Shang

Recent advances in weakly supervised learning enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a bootstrapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision.

pdf bib
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He | Xuchao Zhang | Shuo Lei | Zhiqian Chen | Fanglan Chen | Abdulaziz Alhamadani | Bei Xiao | ChangTien Lu

The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.

pdf bib
Chapter Captor: Text Segmentation in Novels
Charuta Pethe | Allen Kim | Steve Skiena

Books are typically segmented into chapters and sections, representing coherent sub-narratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving a F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels.

pdf bib
Authorship Attribution for Neural Text Generation
Adaku Uchendu | Thai Le | Kai Shu | Dongwon Lee

In recent years, the task of generating realistic short and long texts have made tremendous advancements. In particular, several recently proposed neural network-based language models have demonstrated their astonishing capabilities to generate texts that are challenging to distinguish from human-written texts with the naked eye. Despite many benefits and utilities of such neural methods, in some applications, being able to tell the “author” of a text in question becomes critically important. In this work, in the context of this Turing Test, we investigate the so-called authorship attribution problem in three versions: (1) given two texts T1 and T2, are both generated by the same method or not? (2) is the given text T written by a human or machine? (3) given a text T and k candidate neural methods, can we single out the method (among k alternatives) that generated T? Against one humanwritten and eight machine-generated texts (i.e., CTRL, GPT, GPT2, GROVER, XLM, XLNET, PPLM, FAIR), we empirically experiment with the performance of various models in three problems. By and large, we find that most generators still generate texts significantly different from human-written ones, thereby making three problems easier to solve. However, the qualities of texts generated by GPT2, GROVER, and FAIR are better, often confusing machine classifiers in solving three problems. All codes and datasets of our experiments are available at: https://bit.ly/ 302zWdz

pdf bib
NwQM: A neural quality assessment framework for Wikipedia
Bhanu Prakash Reddy Guda | Sasi Bhushan Seelaboyina | Soumya Sarkar | Animesh Mukherjee

Millions of people irrespective of socioeconomic and demographic backgrounds, depend on Wikipedia articles everyday for keeping themselves informed regarding popular as well as obscure topics. Articles have been categorized by editors into several quality classes, which indicate their reliability as encyclopedic content. This manual designation is an onerous task because it necessitates profound knowledge about encyclopedic language, as well navigating circuitous set of wiki guidelines. In this paper we propose Neural wikipedia Quality Monitor (NwQM), a novel deep learning model which accumulates signals from several key information sources such as article text, meta data and images to obtain improved Wikipedia article representation. We present comparison of our approach against a plethora of available solutions and show 8% improvement over state-of-the-art approaches with detailed ablation studies.

pdf bib
Towards Modeling Revision Requirements in wikiHow Instructions
Irshad Bhat | Talita Anthonio | Michael Roth

wikiHow is a resource of how-to guidesthat describe the steps necessary to accomplish a goal. Guides in this resource are regularly edited by a community of users, who try to improve instructions in terms of style, clarity and correctness. In this work, we test whether the need for such edits can be predicted automatically. For this task, we extend an existing resource of textual edits with a complementary set of approx. 4 million sentences that remain unedited over time and report on the outcome of two revision modeling experiments.

pdf bib
Deep Attentive Learning for Stock Movement Prediction From Social Media Text and Company Correlations
Ramit Sawhney | Shivam Agarwal | Arnav Wadhwa | Rajiv Ratn Shah

In the financial domain, risk modeling and profit generation heavily rely on the sophisticated and intricate stock movement prediction task. Stock forecasting is complex, given the stochastic dynamics and non-stationary behavior of the market. Stock movements are influenced by varied factors beyond the conventionally studied historical prices, such as social media and correlations among stocks. The rising ubiquity of online content and knowledge mandates an exploration of models that factor in such multimodal signals for accurate stock forecasting. We introduce an architecture that achieves a potent blend of chaotic temporal signals from financial data, social media, and inter-stock relationships via a graph neural network in a hierarchical temporal fashion. Through experiments on real-world S&P 500 index data and English tweets, we show the practical applicability of our model as a tool for investment decision making and trading.

pdf bib
Natural Language Processing for Achieving Sustainable Development: the Case of Neural Labelling to Enhance Community Profiling
Costanza Conforti | Stephanie Hirmer | Dai Morgan | Marco Basaldella | Yau Ben Or

In recent years, there has been an increasing interest in the application of Artificial Intelligence – and especially Machine Learning – to the field of Sustainable Development (SD). However, until now, NLP has not been systematically applied in this context. In this paper, we show the high potential of NLP to enhance project sustainability. In particular, we focus on the case of community profiling in developing countries, where, in contrast to the developed world, a notable data gap exists. Here, NLP could help to address the cost and time barrier of structuring qualitative data that prohibits its widespread use and associated benefits. We propose the new extreme multi-class multi-label Automatic UserPerceived Value classification task. We release Stories2Insights, an expert-annotated dataset of interviews carried out in Uganda, we provide a detailed corpus analysis, and we implement a number of strong neural baselines to address the task. Experimental results show that the problem is challenging, and leaves considerable room for future research at the intersection of NLP and SD.

pdf bib
To Schedule or not to Schedule: Extracting Task Specific Temporal Entities and Associated Negation Constraints
Barun Patra | Chala Fufa | Pamela Bhattacharya | Charles Lee

State of the art research for date-time entity extraction from text is task agnostic. Consequently, while the methods proposed in literature perform well for generic date-time extraction from texts, they don’t fare as well on task specific date-time entity extraction where only a subset of the date-time entities present in the text are pertinent to solving the task. Furthermore, some tasks require identifying negation constraints associated with the date-time entities to correctly reason over time. We showcase a novel model for extracting task-specific date-time entities along with their negation constraints. We show the efficacy of our method on the task of date-time understanding in the context of scheduling meetings for an email-based digital AI scheduling assistant. Our method achieves an absolute gain of 19% f-score points compared to baseline methods in detecting the date-time entities relevant to scheduling meetings and a 4% improvement over baseline methods for detecting negation constraints over date-time entities.

pdf bib
Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models
Changmao Li | Elaine Fisher | Rebecca Thomas | Steve Pittard | Vicki Hertzberg | Jinho D. Choi

This paper presents a comprehensive study on resume classification to reduce the time and labor needed to screen an overwhelming number of applications significantly, while improving the selection of suitable candidates. A total of 6,492 resumes are extracted from 24,933 job applications for 252 positions designated into four levels of experience for Clinical Research Coordinators (CRC). Each resume is manually annotated to its most appropriate CRC position by experts through several rounds of triple annotation to establish guidelines. As a result, a high Kappa score of 61% is achieved for inter-annotator agreement. Given this dataset, novel transformer-based classification models are developed for two tasks: the first task takes a resume and classifies it to a CRC level (T1), and the second task takes both a resume and a job description to apply and predicts if the application is suited to the job (T2). Our best models using section encoding and a multi-head attention decoding give results of 73.3% to T1 and 79.2% to T2. Our analysis shows that the prediction errors are mostly made among adjacent CRC levels, which are hard for even experts to distinguish, implying the practical value of our models in real HR platforms.

pdf bib
Grammatical Error Correction in Low Error Density Domains: A New Benchmark and Analyses
Simon Flachs | Ophélie Lacroix | Helen Yannakoudakis | Marek Rei | Anders Søgaard

Evaluation of grammatical error correction (GEC) systems has primarily focused on essays written by non-native learners of English, which however is only part of the full spectrum of GEC applications. We aim to broaden the target domain of GEC and release CWEB, a new benchmark for GEC consisting of website text generated by English speakers of varying levels of proficiency. Website data is a common and important domain that contains far fewer grammatical errors than learner essays, which we show presents a challenge to state-of-the-art GEC systems. We demonstrate that a factor behind this is the inability of systems to rely on a strong internal language model in low error density domains. We hope this work shall facilitate the development of open-domain GEC models that generalize to different topics and genres.

pdf bib
Deconstructing word embedding algorithms
Kian Kenyon-Dean | Edward Newell | Jackie Chi Kit Cheung

Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memory capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.

pdf bib
Sequential Modelling of the Evolution of Word Representations for Semantic Change Detection
Adam Tsakalidis | Maria Liakata

Semantic change detection concerns the task of identifying words whose meaning has changed over time. Current state-of-the-art approaches operating on neural embeddings detect the level of semantic change in a word by comparing its vector representation in two distinct time periods, without considering its evolution through time. In this work, we propose three variants of sequential models for detecting semantically shifted words, effectively accounting for the changes in the word representations over time. Through extensive experimentation under various settings with synthetic and real data we showcase the importance of sequential modelling of word vectors through time for semantic change detection. Finally, we compare different approaches in a quantitative manner, demonstrating that temporal modelling of word representations yields a clear-cut advantage in performance.

pdf bib
Sparsity Makes Sense: Word Sense Disambiguation Using Sparse Contextualized Word Representations
Gábor Berend

In this paper, we demonstrate that by utilizing sparse word representations, it becomes possible to surpass the results of more complex task-specific models on the task of fine-grained all-words word sense disambiguation. Our proposed algorithm relies on an overcomplete set of semantic basis vectors that allows us to obtain sparse contextualized word representations. We introduce such an information theory-inspired synset representation based on the co-occurrence of word senses and non-zero coordinates for word forms which allows us to achieve an aggregated F-score of 78.8 over a combination of five standard word sense disambiguating benchmark datasets. We also demonstrate the general applicability of our proposed framework by evaluating it towards part-of-speech tagging on four different treebanks. Our results indicate a significant improvement over the application of the dense word representations.

pdf bib
Exploring Semantic Capacity of Terms
Jie Huang | Zilong Wang | Kevin Chang | Wen-mei Hwu | JinJun Xiong

We introduce and study semantic capacity of terms. For example, the semantic capacity of artificial intelligence is higher than that of linear regression since artificial intelligence possesses a broader meaning scope. Understanding semantic capacity of terms will help many downstream tasks in natural language processing. For this purpose, we propose a two-step model to investigate semantic capacity of terms, which takes a large text corpus as input and can evaluate semantic capacity of terms if the text corpus can provide enough co-occurrence information of terms. Extensive experiments in three fields demonstrate the effectiveness and rationality of our model compared with well-designed baselines and human-level evaluations.

pdf bib
Learning to Ignore: Long Document Coreference with Bounded Memory Neural Networks
Shubham Toshniwal | Sam Wiseman | Allyson Ettinger | Karen Livescu | Kevin Gimpel

Long document coreference resolution remains a challenging task due to the large memory and runtime requirements of current models. Recent work doing incremental coreference resolution using just the global representation of entities shows practical benefits but requires keeping all entities in memory, which can be impractical for long documents. We argue that keeping all entities in memory is unnecessary, and we propose a memory-augmented neural network that tracks only a small bounded number of entities at a time, thus guaranteeing a linear runtime in length of document. We show that (a) the model remains competitive with models with high memory and computational requirements on OntoNotes and LitBank, and (b) the model learns an efficient memory management strategy easily outperforming a rule-based strategy

pdf bib
Revealing the Myth of Higher-Order Inference in Coreference Resolution
Liyan Xu | Jinho D. Choi

This paper analyzes the impact of higher-order inference (HOI) on the task of coreference resolution. HOI has been adapted by almost all recent coreference resolution models without taking much investigation on its true effectiveness over representation learning. To make a comprehensive analysis, we implement an end-to-end coreference system as well as four HOI approaches, attended antecedent, entity equalization, span clustering, and cluster merging, where the latter two are our original methods. We find that given a high-performing encoder such as SpanBERT, the impact of HOI is negative to marginal, providing a new perspective of HOI to this task. Our best model using cluster merging shows the Avg-F1 of 80.2 on the CoNLL 2012 shared task dataset in English.

pdf bib
Pre-training Mention Representations in Coreference Models
Yuval Varkel | Amir Globerson

Collecting labeled data for coreference resolution is a challenging task, requiring skilled annotators. It is thus desirable to develop coreference resolution models that can make use of unlabeled data. Here we provide such an approach for the powerful class of neural coreference models. These models rely on representations of mentions, and we show these representations can be learned in a self-supervised manner towards improving resolution accuracy. We propose two self-supervised tasks that are closely related to coreference resolution and thus improve mention representation. Applying this approach to the GAP dataset results in new state of the arts results.

pdf bib
Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning
Deren Lei | Gangrong Jiang | Xiaotao Gu | Kexuan Sun | Yuning Mao | Xiang Ren

Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions. However, the sparse reward signals offered by the KG during a traversal are often insufficient to guide a sophisticated walk-based reinforcement learning (RL) model. An alternate approach is to use traditional symbolic methods (e.g., rule induction), which achieve good performance but can be hard to generalize due to the limitation of symbolic representation. In this paper, we propose RuleGuider, which leverages high-quality rules generated by symbolic-based methods to provide reward supervision for walk-based agents. Experiments on benchmark datasets shows that RuleGuider clearly improves the performance of walk-based models without losing interpretability.

pdf bib
Exploring Contextualized Neural Language Models for Temporal Dependency Parsing
Hayley Ross | Jonathon Cai | Bonan Min

Extracting temporal relations between events and time expressions has many applications such as constructing event timelines and time-related question answering. It is a challenging problem which requires syntactic and semantic information at sentence or discourse levels, which may be captured by deep contextualized language models (LMs) such as BERT (Devlin et al., 2019). In this paper, we develop several variants of BERT-based temporal dependency parser, and show that BERT significantly improves temporal dependency parsing (Zhang and Xue, 2018a). We also present a detailed analysis on why deep contextualized neural LMs help and where they may fall short. Source code and resources are made available at https://github.com/bnmin/tdp_ranking.

pdf bib
Systematic Comparison of Neural Architectures and Training Approaches for Open Information Extraction
Patrick Hohenecker | Frank Mtumbuka | Vid Kocijan | Thomas Lukasiewicz

The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form <subject,predicate, object>. For example, given the sentence “Beethoven composed the Ode to Joy.”, we are expected to extract the triple <Beethoven, composed, Ode to Joy>. In this work, we systematically compare different neural network architectures and training approaches, and improve the performance of the currently best models on the OIE16 benchmark (Stanovsky and Dagan, 2016) by 0.421 F1 score and 0.420 AUC-PR, respectively, in our experiments (i.e., by more than 200% in both cases). Furthermore, we show that appropriate problem and loss formulations often affect the performance more than the network architecture.

pdf bib
SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup
Rongzhi Zhang | Yue Yu | Chao Zhang

Active learning is an important technique for low-resource sequence labeling tasks. However, current active sequence labeling methods use the queried samples alone in each iteration, which is an inefficient way of leveraging human annotations. We propose a simple but effective data augmentation method to improve label efficiency of active sequence labeling. Our method, SeqMix, simply augments the queried samples by generating extra labeled sequences in each iteration. The key difficulty is to generate plausible sequences along with token-level labels. In SeqMix, we address this challenge by performing mixup for both sequences and token-level labels of the queried samples. Furthermore, we design a discriminator during sequence mixup, which judges whether the generated sequences are plausible or not. Our experiments on Named Entity Recognition and Event Detection tasks show that SeqMix can improve the standard active sequence labeling method by 2.27%–3.75% in terms of F1 scores. The code and data for SeqMix can be found at https://github.com/rz-zhang/SeqMix.

pdf bib
AxCell: Automatic Extraction of Results from Machine Learning Papers
Marcin Kardas | Piotr Czapla | Pontus Stenetorp | Sebastian Ruder | Sebastian Riedel | Ross Taylor | Robert Stojnic

Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.

pdf bib
Knowledge-guided Open Attribute Value Extraction with Reinforcement Learning
Ye Liu | Sheng Zhang | Rui Song | Suo Feng | Yanghua Xiao

Open attribute value extraction for emerging entities is an important but challenging task. A lot of previous works formulate the problem as a question-answering (QA) task. While the collections of articles from web corpus provide updated information about the emerging entities, the retrieved texts can be noisy, irrelevant, thus leading to inaccurate answers. Effectively filtering out noisy articles as well as bad answers is the key to improve extraction accuracy. Knowledge graph (KG), which contains rich, well organized information about entities, provides a good resource to address the challenge. In this work, we propose a knowledge-guided reinforcement learning (RL) framework for open attribute value extraction. Informed by relevant knowledge in KG, we trained a deep Q-network to sequentially compare extracted answers to improve extraction accuracy. The proposed framework is applicable to different information extraction system. Our experimental results show that our method outperforms the baselines by 16.5 - 27.8%.

pdf bib
DualTKB: A Dual Learning Bridge between Text and Knowledge Base
Pierre Dognin | Igor Melnyk | Inkit Padhi | Cicero Nogueira dos Santos | Payel Das

In this work, we present a dual learning approach for unsupervised text to path and path to text transfers in Commonsense Knowledge Bases (KBs). We investigate the impact of weak supervision by creating a weakly supervised dataset and show that even a slight amount of supervision can significantly improve the model performance and enable better-quality transfers. We examine different model architectures, and evaluation metrics, proposing a novel Commonsense KB completion metric tailored for generative models. Extensive experimental results show that the proposed method compares very favorably to the existing baselines. This approach is a viable step towards a more advanced system for automatic KB construction/expansion and the reverse operation of KB conversion to coherent textual descriptions.

pdf bib
Incremental Neural Coreference Resolution in Constant Memory
Patrick Xia | João Sedoc | Benjamin Van Durme

We investigate modeling coreference resolution under a fixed memory constraint by extending an incremental clustering algorithm to utilize contextualized encoders and neural components. Given a new sentence, our end-to-end algorithm proposes and scores each mention span against explicit entity representations created from the earlier document context (if any). These spans are then used to update the entity’s representations before being forgotten; we only retain a fixed set of salient entities throughout the document. In this work, we successfully convert a high-performing model (Joshi et al., 2020), asymptotically reducing its memory usage to constant space with only a 0.3% relative loss in F1 on OntoNotes 5.0.

pdf bib
Improving Low Compute Language Modeling with In-Domain Embedding Initialisation
Charles Welch | Rada Mihalcea | Jonathan K. Kummerfeld

Many NLP applications, such as biomedical data and technical support, have 10-100 million tokens of in-domain data and limited computational resources for learning from it. How should we train a language model in this scenario? Most language modeling research considers either a small dataset with a closed vocabulary (like the standard 1 million token Penn Treebank), or the whole web with byte-pair encoding. We show that for our target setting in English, initialising and freezing input embeddings using in-domain data can improve language model performance by providing a useful representation of rare words, and this pattern holds across several different domains. In the process, we show that the standard convention of tying input and output embeddings does not improve perplexity when initializing with embeddings trained on in-domain data.

pdf bib
KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation
Wenhu Chen | Yu Su | Xifeng Yan | William Yang Wang

Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework.

pdf bib
POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training
Yizhe Zhang | Guoyin Wang | Chunyuan Li | Zhe Gan | Chris Brockett | Bill Dolan

Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields a logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that Pointer achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research.

pdf bib
Unsupervised Text Style Transfer with Padded Masked Language Models
Eric Malmi | Aliaksei Severyn | Sascha Rothe

We propose Masker, an unsupervised text-editing method for style transfer. To tackle cases when no parallel source–target pairs are available, we train masked language models (MLMs) for both the source and the target domain. Then we find the text spans where the two models disagree the most in terms of likelihood. This allows us to identify the source tokens to delete to transform the source text to match the style of the target domain. The deleted tokens are replaced with the target MLM, and by using a padded MLM variant, we avoid having to predetermine the number of inserted tokens. Our experiments on sentence fusion and sentiment transfer demonstrate that Masker performs competitively in a fully unsupervised setting. Moreover, in low-resource settings, it improves supervised methods’ accuracy by over 10 percentage points when pre-training them on silver training data generated by Masker.

pdf bib
PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation
Bin Bi | Chenliang Li | Chen Wu | Ming Yan | Wei Wang | Songfang Huang | Fei Huang | Luo Si

Self-supervised pre-training, such as BERT, MASS and BART, has emerged as a powerful technique for natural language understanding and generation. Existing pre-training techniques employ autoencoding and/or autoregressive objectives to train Transformer-based models by recovering original word tokens from corrupted text with some masked tokens. The training goals of existing techniques are often inconsistent with the goals of many language generation tasks, such as generative question answering and conversational response generation, for producing new text given context. This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. The new scheme alleviates the mismatch introduced by the existing denoising scheme between pre-training and fine-tuning where generation is more than reconstructing original text. An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks covering generative question answering (Rank 1 on the official MARCO leaderboard), abstractive summarization on CNN/DailyMail as well as Gigaword, question generation on SQuAD, and conversational response generation on Cornell Movie Dialogues.

pdf bib
Gradient-guided Unsupervised Lexically Constrained Text Generation
Lei Sha

Lexically constrained generation requires the target sentence to satisfy some lexical constraints, such as containing some specific words or being the paraphrase to a given sentence, which is very important in many real-world natural language generation applications. Previous works usually apply beam-search-based methods or stochastic searching methods to lexically-constrained generation. However, when the search space is too large, beam-search-based methods always fail to find the constrained optimal solution. At the same time, stochastic search methods always cost too many steps to find the correct optimization direction. In this paper, we propose a novel method G2LC to solve the lexically-constrained generation as an unsupervised gradient-guided optimization problem. We propose a differentiable objective function and use the gradient to help determine which position in the sequence should be changed (deleted or inserted/replaced by another word). The word updating process of the inserted/replaced word also benefits from the guidance of gradient. Besides, our method is free of parallel data training, which is flexible to be used in the inference stage of any pre-trained generation model. We apply G2LC to two generation tasks: keyword-to-sentence generation and unsupervised paraphrase generation. The experiment results show that our method achieves state-of-the-art compared to previous lexically-constrained methods.

pdf bib
TeaForN: Teacher-Forcing with N-grams
Sebastian Goodman | Nan Ding | Radu Soricut

Sequence generation models trained with teacher-forcing suffer from issues related to exposure bias and lack of differentiability across timesteps. Our proposed method, Teacher-Forcing with N-grams (TeaForN), addresses both these problems directly, through the use of a stack of N decoders trained to decode along a secondary time axis that allows model-parameter updates based on N prediction steps. TeaForN can be used with a wide class of decoder architectures and requires minimal modifications from a standard teacher-forcing setup. Empirically, we show that TeaForN boosts generation quality on one Machine Translation benchmark, WMT 2014 English-French, and two News Summarization benchmarks, CNN/Dailymail and Gigaword.

pdf bib
Experience Grounds Language
Yonatan Bisk | Ari Holtzman | Jesse Thomason | Jacob Andreas | Yoshua Bengio | Joyce Chai | Mirella Lapata | Angeliki Lazaridou | Jonathan May | Aleksandr Nisnevich | Nicolas Pinto | Joseph Turian

Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication.

pdf bib
Keep CALM and Explore: Language Models for Action Generation in Text-based Games
Shunyu Yao | Rohan Rao | Matthew Hausknecht | Karthik Narasimhan

Text-based games present a unique challenge for autonomous agents to operate in natural language and handle enormous action spaces. In this paper, we propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state. Our key insight is to train language models on human gameplay, where people demonstrate linguistic priors and a general game sense for promising actions conditioned on game history. We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards. We evaluate our approach using the Jericho benchmark, on games unseen by CALM during training. Our method obtains a 69% relative improvement in average game score over the previous state-of-the-art model. Surprisingly, on half of these games, CALM is competitive with or better than other models that have access to ground truth admissible actions. Code and data are available at https://github.com/princeton-nlp/calm-textgame.

pdf bib
CapWAP: Image Captioning with a Purpose
Adam Fisch | Kenton Lee | Ming-Wei Chang | Jonathan Clark | Regina Barzilay

The traditional image captioning task uses generic reference captions to provide textual information about images. Different user populations, however, will care about different visual aspects of images. In this paper, we propose a new task, Captioning with A Purpose (CapWAP). Our goal is to develop systems that can be tailored to be useful for the information needs of an intended population, rather than merely provide generic information about an image. In this task, we use question-answer (QA) pairs—a natural expression of information need—from users, instead of reference captions, for both training and post-inference evaluation. We show that it is possible to use reinforcement learning to directly optimize for the intended information need, by rewarding outputs that allow a question answering model to provide correct answers to sampled user questions. We convert several visual question answering datasets into CapWAP datasets, and demonstrate that under a variety of scenarios our purposeful captioning system learns to anticipate and fulfill specific information needs better than its generic counterparts, as measured by QA performance on user questions from unseen images, when using the caption alone as context.

pdf bib
What is More Likely to Happen Next? Video-and-Language Future Event Prediction
Jie Lei | Licheng Yu | Tamara Berg | Mohit Bansal

Given a video with aligned dialogue, people can often infer what is more likely to happen next. Making such predictions requires not only a deep understanding of the rich dynamics underlying the video and dialogue, but also a significant amount of commonsense knowledge. In this work, we explore whether AI models are able to learn to make such multimodal commonsense next-event predictions. To support research in this direction, we collect a new dataset, named Video-and-Language Event Prediction (VLEP), with 28,726 future event prediction examples (along with their rationales) from 10,234 diverse TV Show and YouTube Lifestyle Vlog video clips. In order to promote the collection of non-trivial challenging examples, we employ an adversarial human-and-model-in-the-loop data collection procedure. We also present a strong baseline incorporating information from video, dialogue, and commonsense knowledge. Experiments show that each type of information is useful for this challenging task, and that compared to the high human performance on VLEP, our model provides a good starting point but leaves large room for future work.

pdf bib
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers
Jaemin Cho | Jiasen Lu | Dustin Schwenk | Hannaneh Hajishirzi | Aniruddha Kembhavi

Mirroring the success of masked language models, vision-and-language counterparts like VILBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning. This begs the question: Can these models go the other way and generate images from pieces of text? Our analysis of a popular representative from this model family – LXMERT – finds that it is unable to generate rich and semantically meaningful imagery with its current training setup. We introduce X-LXMERT, an extension to LXMERT with training refinements including: discretizing visual representations, using uniform masking with a large range of masking ratios and aligning the right pre-training datasets to the right objectives which enables it to paint. X-LXMERT’s image generation capabilities rival state of the art generative models while its question answering and captioning abilities remains comparable to LXMERT. Finally, we demonstrate the generality of these training refinements by adding image generation capabilities into UNITER to produce X-UNITER.

pdf bib
Towards Understanding Sample Variance in Visually Grounded Language Generation: Evaluations and Observations
Wanrong Zhu | Xin Wang | Pradyumna Narayana | Kazoo Sone | Sugato Basu | William Yang Wang

A major challenge in visually grounded language generation is to build robust benchmark datasets and models that can generalize well in real-world settings. To do this, it is critical to ensure that our evaluation protocols are correct, and benchmarks are reliable. In this work, we set forth to design a set of experiments to understand an important but often ignored problem in visually grounded language generation: given that humans have different utilities and visual attention, how will the sample variance in multi-reference datasets affect the models’ performance? Empirically, we study several multi-reference datasets and corresponding vision-and-language tasks. We show that it is of paramount importance to report variance in experiments; that human-generated references could vary drastically in different datasets/tasks, revealing the nature of each task; that metric-wise, CIDEr has shown systematically larger variances than others. Our evaluations on reference-per-instance shed light on the design of reliable datasets in the future.

pdf bib
Beyond Instructional Videos: Probing for More Diverse Visual-Textual Grounding on YouTube
Jack Hessel | Zhenhai Zhu | Bo Pang | Radu Soricut

Pretraining from unlabelled web videos has quickly become the de-facto means of achieving high performance on many video understanding tasks. Features are learned via prediction of grounded relationships between visual content and automatic speech recognition (ASR) tokens. However, prior pretraining work has been limited to only instructional videos; a priori, we expect this domain to be relatively “easy:” speakers in instructional videos will often reference the literal objects/actions being depicted. We ask: can similar models be trained on more diverse video corpora? And, if so, what types of videos are “grounded” and what types are not? We fit a representative pretraining model to the diverse YouTube8M dataset, and study its success and failure cases. We find that visual-textual grounding is indeed possible across previously unexplored video categories, and that pretraining on a more diverse set results in representations that generalize to both non-instructional and instructional domains.

pdf bib
Hierarchical Graph Network for Multi-hop Question Answering
Yuwei Fang | Siqi Sun | Zhe Gan | Rohit Pillai | Shuohang Wang | Jingjing Liu

In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.

pdf bib
A Simple Yet Strong Pipeline for HotpotQA
Dirk Groeneveld | Tushar Khot | Mausam | Ashish Sabharwal

State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design complexity? Our results suggest that the answer may be no, because even our simple pipeline based on BERT, named , performs surprisingly well. Specifically, on HotpotQA, Quark outperforms these models on both question answering and support identification (and achieves performance very close to a RoBERTa model). Our pipeline has three steps: 1) use BERT to identify potentially relevant sentences independently of each other; 2) feed the set of selected sentences as context into a standard BERT span prediction model to choose an answer; and 3) use the sentence selection model, now with the chosen answer, to produce supporting sentences. The strong performance of Quark resurfaces the importance of carefully exploring simple model designs before using popular benchmarks to justify the value of complex techniques.

pdf bib
Is Multihop QA in DiRe Condition? Measuring and Reducing Disconnected Reasoning
Harsh Trivedi | Niranjan Balasubramanian | Tushar Khot | Ashish Sabharwal

Has there been real progress in multi-hop question-answering? Models often exploit dataset artifacts to produce correct answers, without connecting information across multiple supporting facts. This limits our ability to measure true progress and defeats the purpose of building multi-hop QA datasets. We make three contributions towards addressing this. First, we formalize such undesirable behavior as disconnected reasoning across subsets of supporting facts. This allows developing a model-agnostic probe for measuring how much any model can cheat via disconnected reasoning. Second, using a notion of contrastive support sufficiency, we introduce an automatic transformation of existing datasets that reduces the amount of disconnected reasoning. Third, our experiments suggest that there hasn’t been much progress in multi-hop QA in the reading comprehension setting. For a recent large-scale model (XLNet), we show that only 18 points out of its answer F1 score of 72 on HotpotQA are obtained through multifact reasoning, roughly the same as that of a simpler RNN baseline. Our transformation substantially reduces disconnected reasoning (19 points in answer F1). It is complementary to adversarial approaches, yielding further reductions in conjunction.

pdf bib
Unsupervised Question Decomposition for Question Answering
Ethan Perez | Patrick Lewis | Wen-tau Yih | Kyunghyun Cho | Douwe Kiela

We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.

pdf bib
SRLGRN: Semantic Role Labeling Graph Reasoning Network
Chen Zheng | Parisa Kordjamshidi

This work deals with the challenge of learning and reasoning over multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn cross paragraph reasoning paths and find the supporting facts and the answer jointly. The proposed graph is a heterogeneous document-level graph that contains nodes of type sentence (question, title, and other sentences), and semantic role labeling sub-graphs per sentence that contain arguments as nodes and predicates as edges. Incorporating the argument types, the argument phrases, and the semantics of the edges originated from SRL predicates into the graph encoder helps in finding and also the explainability of the reasoning paths. Our proposed approach shows competitive performance on the HotpotQA distractor setting benchmark compared to the recent state-of-the-art models.

pdf bib
CancerEmo: A Dataset for Fine-Grained Emotion Detection
Tiberiu Sosea | Cornelia Caragea

Emotions are an important element of human nature, often affecting the overall wellbeing of a person. Therefore, it is no surprise that the health domain is a valuable area of interest for emotion detection, as it can provide medical staff or caregivers with essential information about patients. However, progress on this task has been hampered by the absence of large labeled datasets. To this end, we introduce CancerEmo, an emotion dataset created from an online health community and annotated with eight fine-grained emotions. We perform a comprehensive analysis of these emotions and develop deep learning models on the newly created dataset. Our best BERT model achieves an average F1 of 71%, which we improve further using domain-specific pre-training.

pdf bib
Exploring the Role of Argument Structure in Online Debate Persuasion
Jialu Li | Esin Durmus | Claire Cardie

Online debate forums provide users a platform to express their opinions on controversial topics while being exposed to opinions from diverse set of viewpoints. Existing work in Natural Language Processing (NLP) has shown that linguistic features extracted from the debate text and features encoding the characteristics of the audience are both critical in persuasion studies. In this paper, we aim to further investigate the role of discourse structure of the arguments from online debates in their persuasiveness. In particular, we use the factor graph model to obtain features for the argument structure of debates from an online debating platform and incorporate these features to an LSTM-based model to predict the debater that makes the most convincing arguments. We find that incorporating argument structure features play an essential role in achieving the best predictive performance in assessing the persuasiveness of the arguments on online debates.

pdf bib
Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations
Emily Allaway | Kathleen McKeown

Stance detection is an important component of understanding hidden influences in everyday life. Since there are thousands of potential topics to take a stance on, most with little to no training data, we focus on zero-shot stance detection: classifying stance from no training examples. In this paper, we present a new dataset for zero-shot stance detection that captures a wider range of topics and lexical variation than in previous datasets. Additionally, we propose a new model for stance detection that implicitly captures relationships between topics using generalized topic representations and show that this model improves performance on a number of challenging linguistic phenomena.

pdf bib
Sentiment Analysis of Tweets using Heterogeneous Multi-layer Network Representation and Embedding
Loitongbam Gyanendro Singh | Anasua Mitra | Sanasam Ranbir Singh

Sentiment classification on tweets often needs to deal with the problems of under-specificity, noise, and multilingual content. This study proposes a heterogeneous multi-layer network-based representation of tweets to generate multiple representations of a tweet and address the above issues. The generated representations are further ensembled and classified using a neural-based early fusion approach. Further, we propose a centrality aware random-walk for node embedding and tweet representations suitable for the multi-layer network. From various experimental analysis, it is evident that the proposed method can address the problem of under-specificity, noisy text, and multilingual content present in a tweet and provides better classification performance than the text-based counterparts. Further, the proposed centrality aware based random walk provides better representations than unbiased and other biased counterparts.

pdf bib
Introducing Syntactic Structures into Target Opinion Word Extraction with Deep Learning
Amir Pouran Ben Veyseh | Nasim Nouri | Franck Dernoncourt | Dejing Dou | Thien Huu Nguyen

Targeted opinion word extraction (TOWE) is a sub-task of aspect based sentiment analysis (ABSA) which aims to find the opinion words for a given aspect-term in a sentence. Despite their success for TOWE, the current deep learning models fail to exploit the syntactic information of the sentences that have been proved to be useful for TOWE in the prior research. In this work, we propose to incorporate the syntactic structures of the sentences into the deep learning models for TOWE, leveraging the syntax-based opinion possibility scores and the syntactic connections between the words. We also introduce a novel regularization technique to improve the performance of the deep learning models based on the representation distinctions between the words in TOWE. The proposed model is extensively analyzed and achieves the state-of-the-art performance on four benchmark datasets.

pdf bib
EmoTag1200: Understanding the Association between Emojis and Emotions
Abu Awal Md Shoeb | Gerard de Melo

Given the growing ubiquity of emojis in language, there is a need for methods and resources that shed light on their meaning and communicative role. One conspicuous aspect of emojis is their use to convey affect in ways that may otherwise be non-trivial to achieve. In this paper, we seek to explore the connection between emojis and emotions by means of a new dataset consisting of human-solicited association ratings. We additionally conduct experiments to assess to what extent such associations can be inferred from existing data in an unsupervised manner. Our experiments show that this succeeds when high-quality word-level information is available.

pdf bib
MIME: MIMicking Emotions for Empathetic Response Generation
Navonil Majumder | Pengfei Hong | Shanshan Peng | Jiankun Lu | Deepanway Ghosal | Alexander Gelbukh | Rada Mihalcea | Soujanya Poria

Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure, where all the emotions are treated uniformly. We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of these polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations. The implementation of MIME is publicly available at https://github.com/declare-lab/MIME.

pdf bib
Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning
Tao Shen | Yi Mao | Pengcheng He | Guodong Long | Adam Trischler | Weizhu Chen

In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition, we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective that is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmarks, including question answering and knowledge base completion.

pdf bib
Named Entity Recognition Only from Word Embeddings
Ying Luo | Hai Zhao | Junlang Zhan

Deep neural network models have helped named entity recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings.We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and then refine these coarse-grained annotations through neural networks. Extensive experiments on two CoNLL benchmark NER datasets (CoNLL-2003 English dataset and CoNLL-2002 Spanish dataset) demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.

pdf bib
Text Classification Using Label Names Only: A Language Model Self-Training Approach
Yu Meng | Yunyi Zhang | Jiaxin Huang | Chenyan Xiong | Heng Ji | Chao Zhang | Jiawei Han

Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.

pdf bib
Neural Topic Modeling with Cycle-Consistent Adversarial Training
Xuemeng Hu | Rui Wang | Deyu Zhou | Yuxuan Xiong

Advances on deep generative models have attracted significant research interest in neural topic modeling. The recently proposed Adversarial-neural Topic Model models topics with an adversarially trained generator network and employs Dirichlet prior to capture the semantic patterns in latent topics. It is effective in discovering coherent topics but unable to infer topic distributions for given documents or utilize available document labels. To overcome such limitations, we propose Topic Modeling with Cycle-consistent Adversarial Training (ToMCAT) and its supervised version sToMCAT. ToMCAT employs a generator network to interpret topics and an encoder network to infer document topics. Adversarial training and cycle-consistent constraints are used to encourage the generator and the encoder to produce realistic samples that coordinate with each other. sToMCAT extends ToMCAT by incorporating document labels into the topic modeling process to help discover more coherent topics. The effectiveness of the proposed models is evaluated on unsupervised/supervised topic modeling and text classification. The experimental results show that our models can produce both coherent and informative topics, outperforming a number of competitive baselines.

pdf bib
Data Boost: Text Data Augmentation Through Reinforcement Learning Guided Conditional Generation
Ruibo Liu | Guangxuan Xu | Chenyan Jia | Weicheng Ma | Lili Wang | Soroush Vosoughi

Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforcement learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.

pdf bib
A State-independent and Time-evolving Network for Early Rumor Detection in Social Media
Rui Xia | Kaizhou Xuan | Jianfei Yu

In this paper, we study automatic rumor detection for in social media at the event level where an event consists of a sequence of posts organized according to the posting time. It is common that the state of an event is dynamically evolving. However, most of the existing methods to this task ignored this problem, and established a global representation based on all the posts in the event’s life cycle. Such coarse-grained methods failed to capture the event’s unique features in different states. To address this limitation, we propose a state-independent and time-evolving Network (STN) for rumor detection based on fine-grained event state detection and segmentation. Given an event composed of a sequence of posts, STN first predicts the corresponding sequence of states and segments the event into several state-independent sub-events. For each sub-event, STN independently trains an encoder to learn the feature representation for that sub-event and incrementally fuses the representation of the current sub-event with previous ones for rumor prediction. This framework can more accurately learn the representation of an event in the initial stage and enable early rumor detection. Experiments on two benchmark datasets show that STN can significantly improve the rumor detection accuracy in comparison with some strong baseline systems. We also design a new evaluation metric to measure the performance of early rumor detection, under which STN shows a higher advantage in comparison.

pdf bib
PyMT5: multi-mode translation of natural language and Python code with transformers
Colin Clement | Dawn Drain | Jonathan Timcheck | Alexey Svyatkovskiy | Neel Sundaresan

Simultaneously modeling source code and natural language has many exciting applications in automated software development and understanding. Pursuant to achieving such technology, we introduce PyMT5, the Python method text-to-text transfer transformer, which is trained to translate between all pairs of Python method feature combinations: a single model that can both predict whole methods from natural language documentation strings (docstrings) and summarize code into docstrings of any common style. We present an analysis and modeling effort of a large-scale parallel corpus of 26 million Python methods and 7.7 million method-docstring pairs, demonstrating that for docstring and method generation, PyMT5 outperforms similarly-sized auto-regressive language models (GPT2) which were English pre-trained or randomly initialized. On the CodeSearchNet test set, our best model predicts 92.1% syntactically correct method bodies, achieved a BLEU score of 8.59 for method generation and 16.3 for docstring generation (summarization), and achieved a ROUGE-L F-score of 24.8 for method generation and 36.7 for docstring generation.

pdf bib
PathQG: Neural Question Generation from Facts
Siyuan Wang | Zhongyu Wei | Zhihao Fan | Zengfeng Huang | Weijian Sun | Qi Zhang | Xuanjing Huang

Existing research for question generation encodes the input text as a sequence of tokens without explicitly modeling fact information. These models tend to generate irrelevant and uninformative questions. In this paper, we explore to incorporate facts in the text for question generation in a comprehensive way. We present a novel task of question generation given a query path in the knowledge graph constructed from the input text. We divide the task into two steps, namely, query representation learning and query-based question generation. We formulate query representation learning as a sequence labeling problem for identifying the involved facts to form a query and employ an RNN-based generator for question generation. We first train the two modules jointly in an end-to-end fashion, and further enforce the interaction between these two modules in a variational framework. We construct the experimental datasets on top of SQuAD and results show that our model outperforms other state-of-the-art approaches, and the performance margin is larger when target questions are complex. Human evaluation also proves that our model is able to generate relevant and informative questions.

pdf bib
What time is it? Temporal Analysis of Novels
Allen Kim | Charuta Pethe | Steve Skiena

Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hour. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.

pdf bib
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
Najoung Kim | Tal Linzen

Natural language is characterized by compositionality: the meaning of a complex expression is constructed from the meanings of its constituent parts. To facilitate the evaluation of the compositional abilities of language processing architectures, we introduce COGS, a semantic parsing dataset based on a fragment of English. The evaluation portion of COGS contains multiple systematic gaps that can only be addressed by compositional generalization; these include new combinations of familiar syntactic structures, or new combinations of familiar words and familiar structures. In experiments with Transformers and LSTMs, we found that in-distribution accuracy on the COGS test set was near-perfect (96–99%), but generalization accuracy was substantially lower (16–35%) and showed high sensitivity to random seed (+-6–8%). These findings indicate that contemporary standard NLP models are limited in their compositional generalization capacity, and position COGS as a good way to measure progress.

pdf bib
An Analysis of Natural Language Inference Benchmarks through the Lens of Negation
Md Mosharaf Hossain | Venelin Kovatchev | Pranoy Dutta | Tiffany Kao | Elizabeth Wei | Eduardo Blanco

Negation is underrepresented in existing natural language inference benchmarks. Additionally, one can often ignore the few negations in existing benchmarks and still make the right inference judgments. In this paper, we present a new benchmark for natural language inference in which negation plays a critical role. We also show that state-of-the-art transformers struggle making inference judgments with the new pairs.

pdf bib
On the Sentence Embeddings from Pre-trained Language Models
Bohan Li | Hao Zhou | Junxian He | Mingxuan Wang | Yiming Yang | Lei Li

Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.

pdf bib
What Can We Learn from Collective Human Opinions on Natural Language Inference Data?
Yixin Nie | Xiang Zhou | Mohit Bansal

Despite the subjective nature of many NLP tasks, most NLU evaluations have focused on using the majority label with presumably high agreement as the ground truth. Less attention has been paid to the distribution of human opinions. We collect ChaosNLI, a dataset with a total of 464,500 annotations to study Collective HumAn OpinionS in oft-used NLI evaluation sets. This dataset is created by collecting 100 annotations per example for 3,113 examples in SNLI and MNLI and 1,532 examples in αNLI. Analysis reveals that: (1) high human disagreement exists in a noticeable amount of examples in these datasets; (2) the state-of-the-art models lack the ability to recover the distribution over human labels; (3) models achieve near-perfect accuracy on the subset of data with a high level of human agreement, whereas they can barely beat a random guess on the data with low levels of human agreement, which compose most of the common errors made by state-of-the-art models on the evaluation sets. This questions the validity of improving model performance on old metrics for the low-agreement part of evaluation datasets. Hence, we argue for a detailed examination of human agreement in future data collection efforts, and evaluating model outputs against the distribution over collective human opinions.

pdf bib
Improving Text Generation with Student-Forcing Optimal Transport
Jianqiao Li | Chunyuan Li | Guoyin Wang | Hao Fu | Yuhchen Lin | Liqun Chen | Yizhe Zhang | Chenyang Tao | Ruiyi Zhang | Wenlin Wang | Dinghan Shen | Qian Yang | Lawrence Carin

Neural language models are often trained with maximum likelihood estimation (MLE), where the next word is generated conditioned on the ground-truth word tokens. During testing, however, the model is instead conditioned on previously generated tokens, resulting in what is termed exposure bias. To reduce this gap between training and testing, we propose using optimal transport (OT) to match the sequences generated in these two modes. We examine the necessity of adding Student-Forcing scheme during training with an imitation learning interpretation. An extension is further proposed to improve the OT learning for long sequences, based on the structural and contextual information of the text sequences. The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.

pdf bib
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation
Jian Guan | Minlie Huang

Despite the success of existing referenced metrics (e.g., BLEU and MoverScore), they correlate poorly with human judgments for open-ended text generation including story or dialog generation because of the notorious one-to-many issue: there are many plausible outputs for the same input, which may differ substantially in literal or semantics from the limited number of given references. To alleviate this issue, we propose UNION, a learnable UNreferenced metrIc for evaluating Open-eNded story generation, which measures the quality of a generated story without any reference. Built on top of BERT, UNION is trained to distinguish human-written stories from negative samples and recover the perturbation in negative stories. We propose an approach of constructing negative samples by mimicking the errors commonly observed in existing NLG models, including repeated plots, conflicting logic, and long-range incoherence. Experiments on two story datasets demonstrate that UNION is a reliable measure for evaluating the quality of generated stories, which correlates better with human judgments and is more generalizable than existing state-of-the-art metrics.

pdf bib
Fˆ2-Softmax: Diversifying Neural Text Generation via Frequency Factorized Softmax
Byung-Ju Choi | Jimin Hong | David Park | Sang Wan Lee

Despite recent advances in neural text generation, encoding the rich diversity in human language remains elusive. We argue that the sub-optimal text generation is mainly attributable to the imbalanced token distribution, which particularly misdirects the learning model when trained with the maximum-likelihood objective. As a simple yet effective remedy, we propose two novel methods, Fˆ2-Softmax and MefMax, for a balanced training even with the skewed frequency distribution. MefMax assigns tokens uniquely to frequency classes, trying to group tokens with similar frequencies and equalize frequency mass between the classes. Fˆ2-Softmax then decomposes a probability distribution of the target token into a product of two conditional probabilities of (1) frequency class, and (2) token from the target frequency class. Models learn more uniform probability distributions because they are confined to subsets of vocabularies. Significant performance gains on seven relevant metrics suggest the supremacy of our approach in improving not only the diversity but also the quality of generated texts.

pdf bib
Partially-Aligned Data-to-Text Generation with Distant Supervision
Zihao Fu | Bei Shi | Wai Lam | Lidong Bing | Zhiyuan Liu

The Data-to-Text task aims to generate human-readable text for describing some given structured data enabling more interpretability. However, the typical generation task is confined to a few particular domains since it requires well-aligned data which is difficult and expensive to obtain. Using partially-aligned data is an alternative way of solving the dataset scarcity problem. This kind of data is much easier to obtain since it can be produced automatically. However, using this kind of data induces the over-generation problem posing difficulties for existing models, which tends to add unrelated excerpts during the generation procedure. In order to effectively utilize automatically annotated partially-aligned datasets, we extend the traditional generation task to a refined task called Partially-Aligned Data-to-Text Generation (PADTG) which is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains. To tackle this new task, we propose a novel distant supervision generation framework. It firstly estimates the input data’s supportiveness for each target word with an estimator and then applies a supportiveness adaptor and a rebalanced beam search to harness the over-generation problem in the training and generation phases respectively. We also contribute a partially-aligned dataset (The data and source code of this paper can be obtained from https://github.com/fuzihaofzh/distant_supervision_nlg) by sampling sentences from Wikipedia and automatically extracting corresponding KB triples for each sentence from Wikidata. The experimental results show that our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.

pdf bib
Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expansions
Bodhisattwa Prasad Majumder | Harsh Jhamtani | Taylor Berg-Kirkpatrick | Julian McAuley

Existing persona-grounded dialog models often fail to capture simple implications of given persona descriptions, something which humans are able to do seamlessly. For example, state-of-the-art models cannot infer that interest in hiking might imply love for nature or longing for a break. In this paper, we propose to expand available persona sentences using existing commonsense knowledge bases and paraphrasing resources to imbue dialog models with access to an expanded and richer set of persona descriptions. Additionally, we introduce fine-grained grounding on personas by encouraging the model to make a discrete choice among persona sentences while synthesizing a dialog response. Since such a choice is not observed in the data, we model it using a discrete latent random variable and use variational learning to sample from hundreds of persona expansions. Our model outperforms competitive baselines on the Persona-Chat dataset in terms of dialog quality and diversity while achieving persona-consistent and controllable dialog generation.

pdf bib
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
Yichi Zhang | Zhijian Ou | Min Hu | Junlan Feng

Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ.

pdf bib
The World is Not Binary: Learning to Rank with Grayscale Data for Dialogue Response Selection
Zibo Lin | Deng Cai | Yan Wang | Xiaojiang Liu | Haitao Zheng | Shuming Shi

Response selection plays a vital role in building retrieval-based conversation systems. Despite that response selection is naturally a learning-to-rank problem, most prior works take a point-wise view and train binary classifiers for this task: each response candidate is labeled either relevant (one) or irrelevant (zero). On the one hand, this formalization can be sub-optimal due to its ignorance of the diversity of response quality. On the other hand, annotating grayscale data for learning-to-rank can be prohibitively expensive and challenging. In this work, we show that grayscale data can be automatically constructed without human effort. Our method employs off-the-shelf response retrieval models and response generation models as automatic grayscale data generators. With the constructed grayscale data, we propose multi-level ranking objectives for training, which can (1) teach a matching model to capture more fine-grained context-response relevance difference and (2) reduce the train-test discrepancy in terms of distractor strength. Our method is simple, effective, and universal. Experiments on three benchmark datasets and four state-of-the-art matching models show that the proposed approach brings significant and consistent performance improvements.

pdf bib
GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems
Lishan Huang | Zheng Ye | Jinghui Qin | Liang Lin | Xiaodan Liang

Automatically evaluating dialogue coherence is a challenging but high-demand ability for developing high-quality open-domain dialogue systems. However, current evaluation metrics consider only surface features or utterance-level semantics, without explicitly considering the fine-grained topic transition dynamics of dialogue flows. Here, we first consider that the graph structure constituted with topics in a dialogue can accurately depict the underlying communication logic, which is a more natural way to produce persuasive metrics. Capitalized on the topic-level dialogue graph, we propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation. Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence. The graph representations are obtained by reasoning over topic-level dialogue graphs enhanced with the evidence from a commonsense graph, including k-hop neighboring representations and hop-attention weights. Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models in terms of the Pearson and Spearman correlations with human judgments. Besides, we release a new large-scale human evaluation benchmark to facilitate future research on automatic metrics.

pdf bib
MedDialog: Large-scale Medical Dialogue Datasets
Guangtao Zeng | Wenmian Yang | Zeqian Ju | Yue Yang | Sicheng Wang | Ruisi Zhang | Meng Zhou | Jiaqi Zeng | Xiangyu Dong | Ruoyu Zhang | Hongchao Fang | Penghui Zhu | Shu Chen | Pengtao Xie

Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at https://github.com/UCSD-AI4H/Medical-Dialogue-System

pdf bib
An information theoretic view on selecting linguistic probes
Zining Zhu | Frank Rudzicz

There is increasing interest in assessing the linguistic knowledge encoded in neural representations. A popular approach is to attach a diagnostic classifier – or ”probe” – to perform supervised classification from internal representations. However, how to select a good probe is in debate. Hewitt and Liang (2019) showed that a high performance on diagnostic classification itself is insufficient, because it can be attributed to either ”the representation being rich in knowledge”, or ”the probe learning the task”, which Pimentel et al. (2020) challenged. We show this dichotomy is valid information-theoretically. In addition, we find that the ”good probe” criteria proposed by the two papers, *selectivity* (Hewitt and Liang, 2019) and *information gain* (Pimentel et al., 2020), are equivalent – the errors of their approaches are identical (modulo irrelevant terms). Empirically, these two selection criteria lead to results that highly agree with each other.

pdf bib
With Little Power Comes Great Responsibility
Dallas Card | Peter Henderson | Urvashi Khandelwal | Robin Jia | Kyle Mahowald | Dan Jurafsky

Despite its importance to experimental design, statistical power (the probability that, given a real effect, an experiment will reject the null hypothesis) has largely been ignored by the NLP community. Underpowered experiments make it more difficult to discern the difference between statistical noise and meaningful model improvements, and increase the chances of exaggerated findings. By meta-analyzing a set of existing NLP papers and datasets, we characterize typical power for a variety of settings and conclude that underpowered experiments are common in the NLP literature. In particular, for several tasks in the popular GLUE benchmark, small test sets mean that most attempted comparisons to state of the art models will not be adequately powered. Similarly, based on reasonable assumptions, we find that the most typical experimental design for human rating studies will be underpowered to detect small model differences, of the sort that are frequently studied. For machine translation, we find that typical test sets of 2000 sentences have approximately 75% power to detect differences of 1 BLEU point. To improve the situation going forward, we give an overview of best practices for power analysis in NLP and release a series of notebooks to assist with future power analyses.

pdf bib
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta | Roy Schwartz | Nicholas Lourie | Yizhong Wang | Hannaneh Hajishirzi | Noah A. Smith | Yejin Choi

Large datasets have become commonplace in NLP research. However, the increased emphasis on data quantity has made it challenging to assess the quality of data. We introduce Data Maps—a model-based tool to characterize and diagnose datasets. We leverage a largely ignored source of information: the behavior of the model on individual instances during training (training dynamics) for building data maps. This yields two intuitive measures for each example—the model’s confidence in the true class, and the variability of this confidence across epochs—obtained in a single run of training. Experiments on four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics. First, our data maps show the presence of “ambiguous” regions with respect to the model, which contribute the most towards out-of-distribution generalization. Second, the most populous regions in the data are “easy to learn” for the model, and play an important role in model optimization. Finally, data maps uncover a region with instances that the model finds “hard to learn”; these often correspond to labeling errors. Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.

pdf bib
Evaluating and Characterizing Human Rationales
Samuel Carton | Anirudh Rathore | Chenhao Tan

Two main approaches for evaluating the quality of machine-generated rationales are: 1) using human rationales as a gold standard; and 2) automated metrics based on how rationales affect model behavior. An open question, however, is how human rationales fare with these automatic metrics. Analyzing a variety of datasets and models, we find that human rationales do not necessarily perform well on these metrics. To unpack this finding, we propose improved metrics to account for model-dependent baseline performance. We then propose two methods to further characterize rationale quality, one based on model retraining and one on using “fidelity curves” to reveal properties such as irrelevance and redundancy. Our work leads to actionable suggestions for evaluating and characterizing rationales.

pdf bib
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Jonathan Pilault | Raymond Li | Sandeep Subramanian | Chris Pal

We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher ROUGE scores. We provide extensive comparisons with strong baseline methods, prior state of the art work as well as multiple variants of our approach including those using only transformers, only extractive techniques and combinations of the two. We examine these models using four different summarization tasks and datasets: arXiv papers, PubMed papers, the Newsroom and BigPatent datasets. We find that transformer based methods produce summaries with fewer n-gram copies, leading to n-gram copying statistics that are more similar to human generated abstracts. We include a human evaluation, finding that transformers are ranked highly for coherence and fluency, but purely extractive methods score higher for informativeness and relevance. We hope that these architectures and experiments may serve as strong points of comparison for future work. Note: The abstract above was collaboratively written by the authors and one of the models presented in this paper based on an earlier draft of this paper.

pdf bib
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong | Shuohang Wang | Zhe Gan | Yu Cheng | Jackie Chi Kit Cheung | Jingjing Liu

Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.

pdf bib
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kryscinski | Bryan McCann | Caiming Xiong | Richard Socher

The most common metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and generated summaries. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks: 1) predict whether each summary sentence is factually consistent or not, 2) in either case, extract a span in the source document to support this consistency prediction, 3) for each summary sentence that is deemed inconsistent, extract the inconsistent span from it. Transferring this model to summaries generated by several neural models reveals that this highly scalable approach outperforms previous models, including those trained with strong supervision using datasets from related domains, such as natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency. We also release a manually annotated dataset for factual consistency verification, code for training data generation, and trained model weights at https://github.com/salesforce/factCC.

pdf bib
Re-evaluating Evaluation in Text Summarization
Manik Bhandari | Pranav Narayan Gour | Atabak Ashfaq | Pengfei Liu | Graham Neubig

Automated evaluation metrics as a stand-in for manual evaluation are an essential part of the development of text-generation tasks such as text summarization. However, while the field has progressed, our standard metrics have not – for nearly 20 years ROUGE has been the standard evaluation in most summarization papers. In this paper, we make an attempt to re-evaluate the evaluation method for text summarization: assessing the reliability of automatic metrics using top-scoring system outputs, both abstractive and extractive, on recently popular datasets for both system-level and summary-level evaluation settings. We find that conclusions about evaluation metrics on older datasets do not necessarily hold on modern datasets and systems. We release a dataset of human judgments that are collected from 25 top-scoring neural summarization systems (14 abstractive and 11 extractive).

pdf bib
VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles
Mingzhe Li | Xiuying Chen | Shen Gao | Zhangming Chan | Dongyan Zhao | Rui Yan

A popular multimedia news format nowadays is providing users with a lively video and a corresponding news article, which is employed by influential news media including CNN, BBC, and social media including Twitter and Weibo. In such a case, automatically choosing a proper cover frame of the video and generating an appropriate textual summary of the article can help editors save time, and readers make the decision more effectively. Hence, in this paper, we propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO) to tackle such a problem. The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article. To this end, we propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator. In the dual interaction module, we propose a conditional self-attention mechanism that captures local semantic information within video and a global-attention mechanism that handles the semantic relationship between news text and video from a high level. Extensive experiments conducted on a large-scale real-world VMSMO dataset show that DIMS achieves the state-of-the-art performance in terms of both automatic metrics and human evaluations.