Computational Linguistics, Volume 48, Issue 3 - September 2022


Anthology ID:
2022.cl-3
Month:
September
Year:
2022
Address:
Cambridge, MA
Venue:
CL
SIG:
Publisher:
MIT Press
URL:
https://aclanthology.org/2022.cl-3
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Linear-Time Calculation of the Expected Sum of Edge Lengths in Random Projective Linearizations of Trees
Lluís Alemany-Puig | Ramon Ferrer-i-Cancho

The syntactic structure of a sentence is often represented using syntactic dependency trees. The sum of the distances between syntactically related words has been in the limelight for the past decades. Research on dependency distances led to the formulation of the principle of dependency distance minimization whereby words in sentences are ordered so as to minimize that sum. Numerous random baselines have been defined to carry out related quantitative studies on lan- guages. The simplest random baseline is the expected value of the sum in unconstrained random permutations of the words in the sentence, namely, when all the shufflings of the words of a sentence are allowed and equally likely. Here we focus on a popular baseline: random projective per- mutations of the words of the sentence, that is, permutations where the syntactic dependency structure is projective, a formal constraint that sentences satisfy often in languages. Thus far, the expectation of the sum of dependency distances in random projective shufflings of a sentence has been estimated approximately with a Monte Carlo procedure whose cost is of the order of Rn, where n is the number of words of the sentence and R is the number of samples; it is well known that the larger R is, the lower the error of the estimation but the larger the time cost. Here we pre- sent formulae to compute that expectation without error in time of the order of n. Furthermore, we show that star trees maximize it, and provide an algorithm to retrieve the trees that minimize it.

pdf bib
The Impact of Edge Displacement Vaserstein Distance on UD Parsing Performance
Mark Anderson | Carlos Gómez-Rodríguez

We contribute to the discussion on parsing performance in NLP by introducing a measurement that evaluates the differences between the distributions of edge displacement (the directed distance of edges) seen in training and test data. We hypothesize that this measurement will be related to differences observed in parsing performance across treebanks. We motivate this by building upon previous work and then attempt to falsify this hypothesis by using a number of statistical methods. We establish that there is a statistical correlation between this measurement and parsing performance even when controlling for potential covariants. We then use this to establish a sampling technique that gives us an adversarial and complementary split. This gives an idea of the lower and upper bounds of parsing systems for a given treebank in lieu of freshly sampled data. In a broader sense, the methodology presented here can act as a reference for future correlation-based exploratory work in NLP.

pdf bib
UDapter: Typology-based Language Adapters for Multilingual Dependency Parsing and Sequence Labeling
Ahmet Üstün | Arianna Bisazza | Gosse Bouma | Gertjan van Noord

Recent advances in multilingual language modeling have brought the idea of a truly universal parser closer to reality. However, such models are still not immune to the “curse of multilinguality”: Cross-language interference and restrained model capacity remain major obstacles. To address this, we propose a novel language adaptation approach by introducing contextual language adapters to a multilingual parser. Contextual language adapters make it possible to learn adapters via language embeddings while sharing model parameters across languages based on contextual parameter generation. Moreover, our method allows for an easy but effective integration of existing linguistic typology features into the parsing model. Because not all typological features are available for every language, we further combine typological feature prediction with parsing in a multi-task model that achieves very competitive parsing performance without the need for an external prediction system for missing features. The resulting parser, UDapter, can be used for dependency parsing as well as sequence labeling tasks such as POS tagging, morphological tagging, and NER. In dependency parsing, it outperforms strong monolingual and multilingual baselines on the majority of both high-resource and low-resource (zero-shot) languages, showing the success of the proposed adaptation approach. In sequence labeling tasks, our parser surpasses the baseline on high resource languages, and performs very competitively in a zero-shot setting. Our in-depth analyses show that adapter generation via typological features of languages is key to this success.1

pdf bib
Tractable Parsing for CCGs of Bounded Degree
Lena Katharina Schiffer | Marco Kuhlmann | Giorgio Satta

Unlike other mildly context-sensitive formalisms, Combinatory Categorial Grammar (CCG) cannot be parsed in polynomial time when the size of the grammar is taken into account. Refining this result, we show that the parsing complexity of CCG is exponential only in the maximum degree of composition. When that degree is fixed, parsing can be carried out in polynomial time. Our finding is interesting from a linguistic perspective because a bounded degree of composition has been suggested as a universal constraint on natural language grammar. Moreover, ours is the first complexity result for a version of CCG that includes substitution rules, which are used in practical grammars but have been ignored in theoretical work.

pdf bib
Investigating Language Relationships in Multilingual Sentence Encoders Through the Lens of Linguistic Typology
Rochelle Choenni | Ekaterina Shutova

Multilingual sentence encoders have seen much success in cross-lingual model transfer for downstream NLP tasks. The success of this transfer is, however, dependent on the model’s ability to encode the patterns of cross-lingual similarity and variation. Yet, we know relatively little about the properties of individual languages or the general patterns of linguistic variation that the models encode. In this article, we investigate these questions by leveraging knowledge from the field of linguistic typology, which studies and documents structural and semantic variation across languages. We propose methods for separating language-specific subspaces within state-of-the-art multilingual sentence encoders (LASER, M-BERT, XLM, and XLM-R) with respect to a range of typological properties pertaining to lexical, morphological, and syntactic structure. Moreover, we investigate how typological information about languages is distributed across all layers of the models. Our results show interesting differences in encoding linguistic variation associated with different pretraining strategies. In addition, we propose a simple method to study how shared typological properties of languages are encoded in two state-of-the-art multilingual models—M-BERT and XLM-R. The results provide insight into their information-sharing mechanisms and suggest that these linguistic properties are encoded jointly across typologically similar languages in these models.

pdf bib
Survey of Low-Resource Machine Translation
Barry Haddow | Rachel Bawden | Antonio Valerio Miceli Barone | Jindřich Helcl | Alexandra Birch

We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.

pdf bib
Position Information in Transformers: An Overview
Philipp Dufter | Martin Schmitt | Hinrich Schütze

Transformers are arguably the main workhorse in recent natural language processing research. By definition, a Transformer is invariant with respect to reordering of the input. However, language is inherently sequential and word order is essential to the semantics and syntax of an utterance. In this article, we provide an overview and theoretical comparison of existing methods to incorporate position information into Transformer models. The objectives of this survey are to (1) showcase that position information in Transformer is a vibrant and extensive research area; (2) enable the reader to compare existing methods by providing a unified notation and systematization of different approaches along important model dimensions; (3) indicate what characteristics of an application should be taken into account when selecting a position encoding; and (4) provide stimuli for future research.