Findings of the Association for Computational Linguistics: ACL 2023

Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki (Editors)

Anthology ID:
Toronto, Canada
Association for Computational Linguistics
Bib Export formats:

pdf bib
Findings of the Association for Computational Linguistics: ACL 2023
Anna Rogers | Jordan Boyd-Graber | Naoaki Okazaki

pdf bib
Investigating Glyph-Phonetic Information for Chinese Spell Checking: What Works and What’s Next?
Xiaotian Zhang | Yanjun Zheng | Hang Yan | Xipeng Qiu

While pre-trained Chinese language models have demonstrated impressive performance on a wide range of NLP tasks, the Chinese Spell Checking (CSC) task remains a challenge. Previous research has explored using information such as glyphs and phonetics to improve the ability of CSC models to distinguish misspelled characters, with good results at the accuracy level on public datasets. However, the generalization ability of these CSC models has not been well understood: it is unclear whether they incorporate glyph-phonetic information and, if so, whether this information is fully utilized. In this paper, we aim to better understand the role of glyph-phonetic information in the CSC task and suggest directions for improvement. Additionally, we propose a new, more challenging, and practical setting for testing the generalizability of CSC models. All code is made publicly available.

pdf bib
A Self-Supervised Integration Method of Pretrained Language Models and Word Definitions
Hwiyeol Jo

We investigate the representation of pretrained language models and humans, using the idea of word definition modeling–how well a word is represented by its definition, and vice versa. Our analysis shows that a word representation in pretrained language models does not successfully map its human-written definition and its usage in example sentences. We then present a simple method DefBERT that integrates pretrained models with word semantics in dictionaries. We show its benefits on newly-proposed tasks of definition ranking and definition sense disambiguation. Furthermore, we present the results on standard word similarity tasks and short text classification tasks where models are required to encode semantics with only a few words. The results demonstrate the effectiveness of integrating word definitions and pretrained language models.

pdf bib
Conformal Nucleus Sampling
Shauli Ravfogel | Yoav Goldberg | Jacob Goldberger

Language models generate text based on successively sampling the next word. A decoding procedure based on nucleus (top-p) sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability p. In this work, we assess whether a top-p set is indeed aligned with its probabilistic meaning in various linguistic contexts.We employ conformal prediction, a calibration procedure that focuses on the construction of minimal prediction sets according to a desired confidence level, to calibrate the parameter p as a function of the entropy of the next word distribution. We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.

pdf bib
DiscoPrompt: Path Prediction Prompt Tuning for Implicit Discourse Relation Recognition
Chunkit Chan | Xin Liu | Jiayang Cheng | Zihan Li | Yangqiu Song | Ginny Wong | Simon See

Implicit Discourse Relation Recognition (IDRR) is a sophisticated and challenging task to recognize the discourse relations between the arguments with the absence of discourse connectives. The sense labels for each discourse relation follow a hierarchical classification scheme in the annotation process (Prasad et al., 2008), forming a hierarchy structure. Most existing works do not well incorporate the hierarchy structure but focus on the syntax features and the prior knowledge of connectives in the manner of pure text classification. We argue that it is more effective to predict the paths inside the hierarchical tree (e.g., “Comparison -> Contrast -> however”) rather than flat labels (e.g., Contrast) or connectives (e.g., however). We propose a prompt-based path prediction method to utilize the interactive information and intrinsic senses among the hierarchy in IDRR. This is the first work that injects such structure information into pre-trained language models via prompt tuning, and the performance of our solution shows significant and consistent improvement against competitive baselines.

pdf bib
Modularized Zero-shot VQA with Pre-trained Models
Rui Cao | Jing Jiang

Large-scale pre-trained models (PTMs) show great zero-shot capabilities. In this paper, we study how to leverage them for zero-shot visual question answering (VQA).Our approach is motivated by a few observations. First, VQA questions often require multiple steps of reasoning, which is still a capability that most PTMs lack. Second, different steps in VQA reasoning chains require different skills such as object detection and relational reasoning, but a single PTM may not possess all these skills. Third, recent work on zero-shot VQA does not explicitly consider multi-step reasoning chains, which makes them less interpretable compared with a decomposition-based approach. We propose a modularized zero-shot network that explicitly decomposes questions into sub reasoning steps and is highly interpretable. We convert sub reasoning tasks to acceptable objectives of PTMs and assign tasks to proper PTMs without any adaptation. Our experiments on two VQA benchmarks under the zero-shot setting demonstrate the effectiveness of our method and better interpretability compared with several baselines.

pdf bib
TimelineQA: A Benchmark for Question Answering over Timelines
Wang-Chiew Tan | Jane Dwivedi-Yu | Yuliang Li | Lambert Mathias | Marzieh Saeidi | Jing Nathan Yan | Alon Halevy

Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.

pdf bib
Abstractive Text Summarization Using the BRIO Training Paradigm
Khang Lam | Thieu Doan | Khang Pham | Jugal Kalita

Summary sentences produced by abstractive summarization models may be coherent and comprehensive, but they lack control and rely heavily on reference summaries. The BRIO training paradigm assumes a non-deterministic distribution to reduce the model’s dependence on reference summaries, and improve model performance during inference. This paper presents a straightforward but effective technique to improve abstractive summaries by fine-tuning pre-trained language models, and training them with the BRIO paradigm. We build a text summarization dataset for Vietnamese, called VieSum. We perform experiments with abstractive summarization models trained with the BRIO paradigm on the CNNDM and the VieSum datasets. The results show that the models, trained on basic hardware, outperform all existing abstractive summarization models, especially for Vietnamese.

pdf bib
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Ting Wu | Rui Zheng | Tao Gui | Qi Zhang | Xuanjing Huang

Models trained with empirical risk minimization (ERM) are revealed to easily rely on spurious correlations, resulting in poor generalization. Group distributionally robust optimization (group DRO) can alleviate this problem by minimizing the worst-case loss over pre-defined groups. While promising, in practice factors like expensive annotations and privacy preclude the availability of group labels. More crucially, when taking a closer look at the failure modes of out-of-distribution generalization, the typical procedure of reweighting in group DRO loses efficiency. Hinged on the limitations, in this work, we reformulate the group DRO framework by proposing Q-Diversity. Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization. Furthermore, a novel mixing strategy across groups is presented to diversify the under-represented groups. In a series of experiments on both synthetic and real-world text classification tasks, results demonstrate that Q-Diversity can consistently improve worst-case accuracy under different distributional shifts, outperforming state-of-the-art alternatives.

pdf bib
Pre-training Language Model as a Multi-perspective Course Learner
Beiduo Chen | Shaohan Huang | Zihan Zhang | Wu Guo | Zhenhua Ling | Haizhen Huang | Furu Wei | Weiwei Deng | Qi Zhang

ELECTRA, the generator-discriminator pre-training framework, has achieved impressive semantic construction capability among various downstream tasks. Despite the convincing performance, ELECTRA still faces the challenges of monotonous training and deficient interaction. Generator with only masked language modeling (MLM) leads to biased learning and label imbalance for discriminator, decreasing learning efficiency; no explicit feedback loop from discriminator to generator results in the chasm between these two components, underutilizing the course learning. In this study, a multi-perspective course learning (MCL) method is proposed to fetch a many degrees and visual angles for sample-efficient pre-training, and to fully leverage the relationship between generator and discriminator. Concretely, three self-supervision courses are designed to alleviate inherent flaws of MLM and balance the label in a multi-perspective way. Besides, two self-correction courses are proposed to bridge the chasm between the two encoders by creating a “correction notebook” for secondary-supervision. Moreover, a course soups trial is conducted to solve the “tug-of-war” dynamics problem of MCL, evolving a stronger pre-trained model. Experimental results show that our method significantly improves ELECTRA’s average performance by 2.8% and 3.2% absolute points respectively on GLUE and SQuAD 2.0 benchmarks, and overshadows recent advanced ELECTRA-style models under the same settings. The pre-trained MCL model is available at

pdf bib
Layerwise universal adversarial attack on NLP models
Olga Tsymboi | Danil Malaev | Andrei Petrovskii | Ivan Oseledets

In this work, we examine the vulnerability of language models to universal adversarial triggers (UATs). We propose a new white-box approach to the construction of layerwise UATs (LUATs), which searches the triggers by perturbing hidden layers of a network. On the example of three transformer models and three datasets from the GLUE benchmark, we demonstrate that our method provides better transferability in a model-to-model setting with an average gain of 9.3% in the fooling rate over the baseline. Moreover, we investigate triggers transferability in the task-to-task setting. Using small subsets from the datasets similar to the target tasks for choosing a perturbed layer, we show that LUATs are more efficient than vanilla UATs by 7.1% in the fooling rate.

pdf bib
Scene-robust Natural Language Video Localization via Learning Domain-invariant Representations
Zehan Wang | Yang Zhao | Haifeng Huang | Yan Xia | Zhou Zhao

Natural language video localization(NLVL) task involves the semantic matching of a text query with a moment from an untrimmed video. Previous methods primarily focus on improving performance with the assumption of independently identical data distribution while ignoring the out-of-distribution data. Therefore, these approaches often fail when handling the videos and queries in novel scenes, which is inevitable in real-world scenarios. In this paper, we, for the first time, formulate the scene-robust NLVL problem and propose a novel generalizable NLVL framework utilizing data in multiple available scenes to learn a robust model. Specifically, our model learns a group of generalizable domain-invariant representations by alignment and decomposition. First, we propose a comprehensive intra- and inter-sample distance metric for complex multi-modal feature space, and an asymmetric multi-modal alignment loss for different information densities of text and vision. Further, to alleviate the conflict between domain-invariant features for generalization and domain-specific information for reasoning, we introduce domain-specific and domain-agnostic predictors to decompose and refine the learned features by dynamically adjusting the weights of samples. Based on the original video tags, we conduct extensive experiments on three NLVL datasets with different-grained scene shifts to show the effectiveness of our proposed methods.

pdf bib
Exploiting Pseudo Image Captions for Multimodal Summarization
Chaoya Jiang | Rui Xie | Wei Ye | Jinan Sun | Shikun Zhang

Multimodal summarization with multimodal output (MSMO) faces a challenging semantic gap between visual and textual modalities due to the lack of reference images for training. Our pilot investigation indicates that image captions, which naturally connect texts and images, can significantly benefit MSMO. However, exposure of image captions during training is inconsistent with MSMO’s task settings, where prior cross-modal alignment information is excluded to guarantee the generalization of cross-modal semantic modeling. To this end, we propose a novel coarse-to-fine image-text alignment mechanism to identify the most relevant sentence of each image in a document, resembling the role of image captions in capturing visual knowledge and bridging the cross-modal semantic gap. Equipped with this alignment mechanism, our method easily yet impressively sets up state-of-the-art performances on all intermodality and intramodality metrics (e.g., more than 10% relative improvement on image recommendation precision). Further experiments reveal the correlation between image captions and text summaries, and prove that the pseudo image captions we generated are even better than the original ones in terms of promoting multimodal summarization.

pdf bib
Cross-Lingual Transfer with Target Language-Ready Task Adapters
Marinela Parovic | Alan Ansell | Ivan Vulić | Anna Korhonen

Adapters have emerged as a modular and parameter-efficient approach to (zero-shot) cross-lingual transfer. The established MAD-X framework employs separate language and task adapters which can be arbitrarily combined to perform the transfer of any task to any target language. Subsequently, BAD-X, an extension of the MAD-X framework, achieves improved transfer at the cost of MAD-X’s modularity by creating ‘bilingual’ adapters specific to the source-target language pair. In this work, we aim to take the best of both worlds by (i) fine-tuning *task* adapters adapted to the target language(s) (so-called *‘target language-ready’ (TLR)* adapters) to maintain high transfer performance, but (ii) without sacrificing the highly modular design of MAD-X. The main idea of ‘target language-ready’ adapters is to resolve the training-vs-inference discrepancy of MAD-X: the task adapter ‘sees’ the target language adapter for the very first time during inference, and thus might not be fully compatible with it. We address this mismatch by exposing the task adapter to the target language adapter during training, and empirically validate several variants of the idea: in the simplest form, we alternate between using the source and target language adapters during task adapter training, which can be generalized to cycling over any set of language adapters. We evaluate different TLR-based transfer configurations with varying degrees of generality across a suite of standard cross-lingual benchmarks, and find that the most general (and thus most modular) configuration consistently outperforms MAD-X and BAD-X on most tasks and languages.

pdf bib
DynaMiTE: Discovering Explosive Topic Evolutions with User Guidance
Nishant Balepur | Shivam Agarwal | Karthik Venkat Ramanan | Susik Yoon | Diyi Yang | Jiawei Han

Dynamic topic models (DTMs) analyze text streams to capture the evolution of topics. Despite their popularity, existing DTMs are either fully supervised, requiring expensive human annotations, or fully unsupervised, producing topic evolutions that often do not cater to a user’s needs. Further, the topic evolutions produced by DTMs tend to contain generic terms that are not indicative of their designated time steps. To address these issues, we propose the task of discriminative dynamic topic discovery. This task aims to discover topic evolutions from temporal corpora that distinctly align with a set of user-provided category names and uniquely capture topics at each time step. We solve this task by developing DynaMiTE, a framework that ensembles semantic similarity, category indicative, and time indicative scores to produce informative topic evolutions. Through experiments on three diverse datasets, including the use of a newly-designed human evaluation experiment, we demonstrate that DynaMiTE is a practical and efficient framework for helping users discover high-quality topic evolutions suited to their interests.

pdf bib
Boost Transformer-based Language Models with GPU-Friendly Sparsity and Quantization
Chong Yu | Tao Chen | Zhongxue Gan

Along with the performance improvement in NLP domain, the sizes of transformer-based language models (TLM) are also dramatically increased. Some prior works intend to compress TLM models into more compact forms, but do not fully consider the hardware characters may not support the efficient execution for these forms, leading to the deployment of TLM on hardware with noticeable acceleration is still challenging. This paper thoroughly designs a compression scheme named GPUSQ-TLM to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization characters. Especially, a dense TLM model is first pruned to meet the GPU’s acceleration constraint of sparse patterns with FP16 type, then it is further quantized into a fixed-point one by quantization-aware training, to provide an extra speedup for integer tensors on GPU. A mixed-strategy knowledge distillation of labels, logits and feature maps is used for best accuracy compensation during pruning and quantization process. Experiment results show GPUSQ-TLM scheme achieves state-of-the-art compression on TLM model of various encoder and decoder blocks with negligible accuracy degradation on SQuAD, GLUE, CNN-DM & XSum and WikiText benchmarking tasks. Moreover, GPUSQ-TLM can boost actual deployment performance by up to 4.08-4.25x latency and 6.18-6.79x throughput on A100 GPU.

pdf bib
RMSSinger: Realistic-Music-Score based Singing Voice Synthesis
Jinzheng He | Jinglin Liu | Zhenhui Ye | Rongjie Huang | Chenye Cui | Huadai Liu | Zhou Zhao

We are interested in a challenging task, Realistic-Music-Score based Singing Voice Synthesis (RMS-SVS). RMS-SVS aims to generate high-quality singing voices given realistic music scores with different note types (grace, slur, rest, etc.). Though significant progress has been achieved, recent singing voice synthesis (SVS) methods are limited to fine-grained music scores, which require a complicated data collection pipeline with time-consuming manual annotation to align music notes with phonemes. % Furthermore, existing approaches cannot synthesize rhythmic singing voices given realistic music scores due to the domain gap between fine-grained music scores and realistic music scores. Furthermore, these manual annotation destroys the regularity of note durations in music scores, making fine-grained music scores inconvenient for composing. To tackle these challenges, we propose RMSSinger, the first RMS-SVS method, which takes realistic music scores as input, eliminating most of the tedious manual annotation and avoiding the aforementioned inconvenience. Note that music scores are based on words rather than phonemes, in RMSSinger, we introduce word-level modeling to avoid the time-consuming phoneme duration annotation and the complicated phoneme-level mel-note alignment. Furthermore, we propose the first diffusion-based pitch modeling method, which ameliorates the naturalness of existing pitch-modeling methods. To achieve these, we collect a new dataset containing realistic music scores and singing voices according to these realistic music scores from professional singers. Extensive experiments on the dataset demonstrate the effectiveness of our methods. Audio samples are available at

pdf bib
Zero-Shot Prompting for Implicit Intent Prediction and Recommendation with Commonsense Reasoning
Hui-Chi Kuo | Yun-Nung Chen

The current generation of intelligent assistants require explicit user requests to perform tasks or services, often leading to lengthy and complex conversations. In contrast, human assistants can infer multiple implicit intents from utterances via their commonsense knowledge, thereby simplifying interactions. To bridge this gap, this paper proposes a framework for multi-domain dialogue systems. This framework automatically infers implicit intents from user utterances, and prompts a large pre-trained language model to suggest suitable task-oriented bots. By leveraging commonsense knowledge, our framework recommends associated bots in a zero-shot manner, enhancing interaction efficiency and effectiveness. This approach substantially reduces interaction complexity, seamlessly integrates various domains and tasks, and represents a significant step towards creating more human-like intelligent assistants that can reason about implicit intents, offering a superior user experience.

pdf bib
MTGP: Multi-turn Target-oriented Dialogue Guided by Generative Global Path with Flexible Turns
Anqi Liu | Bo Wang | Yue Tan | Dongming Zhao | Kun Huang | Ruifang He | Yuexian Hou

Target-oriented dialogue guides the dialogue to a target quickly and smoothly. The latest approaches focus on global planning, which plans toward the target before the conversation instead of adopting a greedy strategy during the conversation. However, the global plan in existing works is fixed to certain turns by generating paths with certain nodes, which limits the optimization of turns and coherence of the target-oriented process. Toward flexible global planning, we propose to generate a global path as a natural language sentence instead of a sequence of nodes. With this path, the dialog is guided to the target with flexible turns of dialog. For model training, we also extract targetoriented dialogues from the chit-chat corpus with a knowledge graph. We conduct experiments on three datasets and simulate scenarios with and without user participation. The results show that our method has fewer turns, more coherent semantics, and a higher success rate in reaching the target than baselines.

pdf bib
The Larger they are, the Harder they Fail: Language Models do not Recognize Identifier Swaps in Python
Antonio Valerio Miceli Barone | Fazl Barez | Shay B. Cohen | Ioannis Konstas

Large Language Models (LLMs) have successfully been applied to code generation tasks, raising the question of how well these models understand programming. Typical programming languages have invariances and equivariances in their semantics that human programmers intuitively understand and exploit, such as the (near) invariance to the renaming of identifiers. We show that LLMs not only fail to properly generate correct Python code when default function names are swapped, but some of them even become more confident in their incorrect predictions as the model size increases, an instance of the recently discovered phenomenon of Inverse Scaling, which runs contrary to the commonly observed trend of increasing prediction quality with increasing model size. Our findings indicate that, despite their astonishing typical-case performance, LLMs still lack a deep, abstract understanding of the content they manipulate, making them unsuitable for tasks that statistically deviate from their training data, and that mere scaling is not enough to achieve such capability.

pdf bib
Class Lifelong Learning for Intent Detection via Structure Consolidation Networks
Qingbin Liu | Yanchao Hao | Xiaolong Liu | Bo Li | Dianbo Sui | Shizhu He | Kang Liu | Jun Zhao | Xi Chen | Ningyu Zhang | Jiaoyan Chen

Intent detection, which estimates diverse intents behind user utterances, is an essential component of task-oriented dialogue systems. Previous intent detection models are usually trained offline, which can only handle predefined intent classes. In the real world, new intents may keep challenging deployed models. For example, with the prevalence of the COVID-19 pandemic, users may pose various issues related to the pandemic to conversational systems, which brings many new intents. A general intent detection model should be intelligent enough to continually learn new data and recognize new arriving intent classes. Therefore, this work explores Class Lifelong Learning for Intent Detection (CLL-ID), where the model continually learns new intent classes from new data while avoiding catastrophic performance degradation on old data. To this end, we propose a novel lifelong learning method, called Structure Consolidation Networks (SCN), which consists of structure-based retrospection and contrastive knowledge distillation to handle the problems of expression diversity and class imbalance in the CLL-ID task. In addition to formulating the new task, we construct 3 benchmarks based on 8 intent detection datasets. Experimental results demonstrate the effectiveness of SCN, which significantly outperforms previous lifelong learning methods on the three benchmarks.

pdf bib
On Evaluating and Mitigating Gender Biases in Multilingual Settings
Aniket Vashishtha | Kabir Ahuja | Sunayana Sitaram

While understanding and removing gender biases in language models has been a long-standing problem in Natural Language Processing, prior research work has primarily been limited to English. In this work, we investigate some of the challenges with evaluating and mitigating biases in multilingual settings which stem from a lack of existing benchmarks and resources for bias evaluation beyond English especially for non-western context. In this paper, we first create a benchmark for evaluating gender biases in pre-trained masked language models by extending DisCo to different Indian languages using human annotations. We extend various debiasing methods to work beyond English and evaluate their effectiveness for SOTA massively multilingual models on our proposed metric. Overall, our work highlights the challenges that arise while studying social biases in multilingual settings and provides resources as well as mitigation techniques to take a step toward scaling to more languages.

pdf bib
Rethinking Round-Trip Translation for Machine Translation Evaluation
Terry Yue Zhuo | Qiongkai Xu | Xuanli He | Trevor Cohn

Automatic evaluation methods for translation often require model training, and thus the availability of parallel corpora limits their applicability to low-resource settings. Round-trip translation is a potential workaround, which can reframe bilingual evaluation into a much simpler monolingual task. Early results from the era of statistical machine translation (SMT) raised fundamental concerns about the utility of this approach, based on poor correlation with human translation quality judgments. In this paper, we revisit this technique with modern neural translation (NMT) and show that round-trip translation does allow for accurate automatic evaluation without the need for reference translations. These opposite findings can be explained through the copy mechanism in SMT that is absent in NMT. We demonstrate that round-trip translation benefits multiple machine translation evaluation tasks: i) predicting forward translation scores; ii) improving the performance of a quality estimation model; and iii) identifying adversarial competitors in shared tasks via cross-system verification.

pdf bib
G3R: A Graph-Guided Generate-and-Rerank Framework for Complex and Cross-domain Text-to-SQL Generation
Yanzheng Xiang | Qian-Wen Zhang | Xu Zhang | Zejie Liu | Yunbo Cao | Deyu Zhou

We present a framework called G3R for complex and cross-domain Text-to-SQL generation. G3R aims to address two limitations of current approaches: (1) The structure of the abstract syntax tree (AST) is not fully explored during the decoding process which is crucial for complex SQL generation; (2) Domain knowledge is not incorporated to enhance their ability to generalise to unseen domains. G3R consists of a graph-guided SQL generator and a knowledge-enhanced re-ranking mechanism. Firstly, during the decoding process, An AST-Grammar bipartite graph is constructed for both the AST and corresponding grammar rules of the generated partial SQL query. The graph-guided SQL generator captures its structural information and fuses heterogeneous information to predict the action sequence which can construct the AST for the corresponding SQL query uniquely. Then, in the inference stage, a knowledge-enhanced re-ranking mechanism is proposed to introduce domain knowledge to re-rank candidate SQL queries from the beam output and choose the final answer. The SQL ranker is based on pre-trained language models (PLM) and contrastive learning with hybrid prompt tuning is incorporated to stimulate the knowledge of PLMs and make it more discriminative. The proposed approach achieves state-of-the-art results on the Spider and Spider-DK benchmarks, which are challenging complex and cross-domain benchmarks for Text-to-SQL semantic analysis.

pdf bib
A Unified Knowledge Graph Augmentation Service for Boosting Domain-specific NLP Tasks
Ruiqing Ding | Xiao Han | Leye Wang

By focusing the pre-training process on domain-specific corpora, some domain-specific pre-trained language models (PLMs) have achieved state-of-the-art results. However, it is under-investigated to design a unified paradigm to inject domain knowledge in the PLM fine-tuning stage. We propose KnowledgeDA, a unified domain language model development service to enhance the task-specific training procedure with domain knowledge graphs. Given domain-specific task texts input, KnowledgeDA can automatically generate a domain-specific language model following three steps: (i) localize domain knowledge entities in texts via an embedding-similarity approach; (ii) generate augmented samples by retrieving replaceable domain entity pairs from two views of both knowledge graph and training data; (iii) select high-quality augmented samples for fine-tuning via confidence-based assessment. We implement a prototype of KnowledgeDA to learn language models for two domains, healthcare and software development. Experiments on domain-specific text classification and QA tasks verify the effectiveness and generalizability of KnowledgeDA.

pdf bib
Dialogue Planning via Brownian Bridge Stochastic Process for Goal-directed Proactive Dialogue
Jian Wang | Dongding Lin | Wenjie Li

Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations. The key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target. However, this is a challenging and under-explored task. In this work, we propose a coherent dialogue planning approach that uses a stochastic process to model the temporal dynamics of dialogue paths. We define a latent space that captures the coherence of goal-directed behavior using a Brownian bridge process, which allows us to incorporate user feedback flexibly in dialogue planning. Based on the derived latent trajectories, we generate dialogue paths explicitly using pre-trained language models. We finally employ these paths as natural language prompts to guide dialogue generation. Our experiments show that our approach generates more coherent utterances and achieves the goal with a higher success rate.

pdf bib
A Match Made in Heaven: A Multi-task Framework for Hyperbole and Metaphor Detection
Naveen Badathala | Abisek Rajakumar Kalarani | Tejpalsingh Siledar | Pushpak Bhattacharyya

Hyperbole and metaphor are common in day-to-day communication (e.g., “I am in deep trouble”: how does trouble have depth?), which makes their detection important, especially in a conversational AI setting. Existing approaches to automatically detect metaphor and hyperbole have studied these language phenomena independently, but their relationship has hardly, if ever, been explored computationally. In this paper, we propose a multi-task deep learning framework to detect hyperbole and metaphor simultaneously. We hypothesize that metaphors help in hyperbole detection, and vice-versa. To test this hypothesis, we annotate two hyperbole datasets- HYPO and HYPO-L- with metaphor labels. Simultaneously, we annotate two metaphor datasets- TroFi and LCC- with hyperbole labels. Experiments using these datasets give an improvement of the state of the art of hyperbole detection by 12%. Additionally, our multi-task learning (MTL) approach shows an improvement of up to 17% over single-task learning (STL) for both hyperbole and metaphor detection, supporting our hypothesis. To the best of our knowledge, ours is the first demonstration of computational leveraging of linguistic intimacy between metaphor and hyperbole, leading to showing the superiority of MTL over STL for hyperbole and metaphor detection.

pdf bib
Prompt Tuning for Unified Multimodal Pretrained Models
Hao Yang | Junyang Lin | An Yang | Peng Wang | Chang Zhou

Prompt tuning has become a new paradigm for model tuning and it has demonstrated success in natural language pretraining and even vision pretraining. The parameter-efficient prompt tuning methods that optimize soft embeddings while keeping the pretrained model frozen demonstrate advantages in low computation costs and almost lossless performance. In this work, we explore the transfer of prompt tuning to multimodal pretrained models. Specifically, we implement prompt tuning to a unified sequence-to-sequence pretrained model by adding a sequence of learnable embeddings to each layer and finetuning the pretrained model on downstream task with only the learnable embeddings being optimized. Experimental results on a series of multimodal understanding and generation tasks demonstrate that our method OFA-PT can achieve comparable performance with finetuning across a series of multimodal generation and understanding tasks. Additionally, it significantly outperforms the unified multimodal pretrained model with other parameter-efficient tuning methods, e.g., Adapter, BitFit. etc. Besides, in comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks. We further figure out that experimental factors, including prompt length, prompt depth, and reparameteratization, have great impacts on the model performance, and thus we empirically provide a recommendation for the setups of prompt tuning.

pdf bib
Learning Joint Structural and Temporal Contextualized Knowledge Embeddings for Temporal Knowledge Graph Completion
Yifu Gao | Yongquan He | Zhigang Kan | Yi Han | Linbo Qiao | Dongsheng Li

Temporal knowledge graph completion that predicts missing links for incomplete temporal knowledge graphs (TKG) is gaining increasing attention. Most existing works have achieved good results by incorporating time information into static knowledge graph embedding methods. However, they ignore the contextual nature of the TKG structure, i.e., query-specific subgraph contains both structural and temporal neighboring facts. This paper presents the SToKE, a novel method that employs the pre-trained language model (PLM) to learn joint Structural and Temporal Contextualized Knowledge Embeddings.Specifically, we first construct an event evolution tree (EET) for each query to enable PLMs to handle the TKG, which can be seen as a structured event sequence recording query-relevant structural and temporal contexts. We then propose a novel temporal embedding and structural matrix to learn the time information and structural dependencies of facts in EET.Finally, we formulate TKG completion as a mask prediction problem by masking the missing entity of the query to fine-tune pre-trained language models. Experimental results on three widely used datasets show the superiority of our model.

pdf bib
A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets
Md Tahmid Rahman Laskar | M Saiful Bari | Mizanur Rahman | Md Amran Hossen Bhuiyan | Shafiq Joty | Jimmy Huang

The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT’s performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT’s performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.

pdf bib
Generating Deep Questions with Commonsense Reasoning Ability from the Text by Disentangled Adversarial Inference
Jianxing Yu | Shiqi Wang | Libin Zheng | Qinliang Su | Wei Liu | Baoquan Zhao | Jian Yin

This paper proposes a new task of commonsense question generation, which aims to yield deep-level and to-the-point questions from the text. Their answers need to reason over disjoint relevant contexts and external commonsense knowledge, such as encyclopedic facts and causality. The knowledge may not be explicitly mentioned in the text but is used by most humans for problem-shooting. Such complex reasoning with hidden contexts involves deep semantic understanding. Thus, this task has great application value, such as making high-quality quizzes in advanced exams. Due to the lack of modeling complexity, existing methods may produce shallow questions that can be answered by simple word matching. To address these challenges, we propose a new QG model by simultaneously considering asking contents, expressive ways, and answering complexity. We first retrieve text-related commonsense context. Then we disentangle the key factors that control questions in terms of reasoning content and verbalized way. Independence priors and constraints are imposed to facilitate disentanglement. We further develop a discriminator to promote the deep results by considering their answering complexity. Through adversarial inference, we learn the latent factors from data. By sampling the expressive factor from the data distributions, diverse questions can be yielded. Evaluations of two typical data sets show the effectiveness of our approach.

pdf bib
TADA: Efficient Task-Agnostic Domain Adaptation for Transformers
Chia-Chien Hung | Lukas Lange | Jannik Strötgen

Intermediate training of pre-trained transformer-based language models on domain-specific data leads to substantial gains for downstream tasks. To increase efficiency and prevent catastrophic forgetting alleviated from full domain-adaptive pre-training, approaches such as adapters have been developed. However, these require additional parameters for each layer, and are criticized for their limited expressiveness. In this work, we introduce TADA, a novel task-agnostic domain adaptation method which is modular, parameter-efficient, and thus, data-efficient. Within TADA, we retrain the embeddings to learn domain-aware input representations and tokenizers for the transformer encoder, while freezing all other parameters of the model. Then, task-specific fine-tuning is performed. We further conduct experiments with meta-embeddings and newly introduced meta-tokenizers, resulting in one model per task in multi-domain use cases. Our broad evaluation in 4 downstream tasks for 14 domains across single- and multi-domain setups and high- and low-resource scenarios reveals that TADA is an effective and efficient alternative to full domain-adaptive pre-training and adapters for domain adaptation, while not introducing additional parameters or complex training steps.

pdf bib
Robust Natural Language Understanding with Residual Attention Debiasing
Fei Wang | James Y. Huang | Tianyi Yan | Wenxuan Zhou | Muhao Chen

Natural language understanding (NLU) models often suffer from unintended dataset biases. Among bias mitigation methods, ensemble-based debiasing methods, especially product-of-experts (PoE), have stood out for their impressive empirical success. However, previous ensemble-based debiasing methods typically apply debiasing on top-level logits without directly addressing biased attention patterns. Attention serves as the main media of feature interaction and aggregation in PLMs and plays a crucial role in providing robust prediction. In this paper, we propose REsidual Attention Debiasing (READ), an end-to-end debiasing method that mitigates unintended biases from attention. Experiments on three NLU benchmarks show that READ significantly improves the OOD performance of BERT-based models, including +12.9% accuracy on HANS, +11.0% accuracy on FEVER-Symmetric, and +2.7% F1 on PAWS. Detailed analyses demonstrate the crucial role of unbiased attention in robust NLU models and that READ effectively mitigates biases in attention.

pdf bib
MoNET: Tackle State Momentum via Noise-Enhanced Training for Dialogue State Tracking
Haoning Zhang | Junwei Bao | Haipeng Sun | Youzheng Wu | Wenye Li | Shuguang Cui | Xiaodong He

Dialogue state tracking (DST) aims to convert the dialogue history into dialogue states which consist of slot-value pairs. As condensed structural information memorizes all history information, the dialogue state in the previous turn is typically adopted as the input for predicting the current state by DST models. However, these models tend to keep the predicted slot values unchanged, which is defined as state momentum in this paper. Specifically, the models struggle to update slot values that need to be changed and correct wrongly predicted slot values in the previous turn. To this end, we propose MoNET to tackle state momentum via noise-enhanced training. First, the previous state of each turn in the training data is noised via replacing some of its slot values. Then, the noised previous state is used as the input to learn to predict the current state, improving the model’s ability to update and correct slot values. Furthermore, a contrastive contextmatching framework is designed to narrow the representation distance between a state and itscorresponding noised variant, which reduces the impact of noised state and makes the model better understand the dialogue history. Experimental results on MultiWOZ datasets show that MoNET outperforms previous DST methods. Ablations and analysis verify the effectiveness of MoNET in alleviating state momentum issues and improving the anti-noise ability.

pdf bib
PAL: Persona-Augmented Emotional Support Conversation Generation
Jiale Cheng | Sahand Sabour | Hao Sun | Zhuang Chen | Minlie Huang

Due to the lack of human resources for mental health support, there is an increasing demand for employing conversational agents for support. Recent work has demonstrated the effectiveness of dialogue models in providing emotional support. As previous studies have demonstrated that seekers’ persona is an important factor for effective support, we investigate whether there are benefits to modeling such information in dialogue models for support. In this paper, our empirical analysis verifies that persona has an important impact on emotional support. Therefore, we propose a framework for dynamically inferring and modeling seekers’ persona. We first train a model for inferring the seeker’s persona from the conversation history. Accordingly, we propose PAL, a model that leverages persona information and, in conjunction with our strategy-based controllable generation method, provides personalized emotional support. Automatic and manual evaluations demonstrate that PAL achieves state-of-the-art results, outperforming the baselines on the studied benchmark. Our code and data are publicly available at

pdf bib
Farewell to Aimless Large-scale Pretraining: Influential Subset Selection for Language Model
Xiao Wang | Weikang Zhou | Qi Zhang | Jie Zhou | SongYang Gao | Junzhe Wang | Menghan Zhang | Xiang Gao | Yun Wen Chen | Tao Gui

Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, which has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end task. Furthermore, we design a gradient matching-based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.

pdf bib
Exclusive Supermask Subnetwork Training for Continual Learning
Prateek Yadav | Mohit Bansal

Continual Learning (CL) methods focus on accumulating knowledge over time while avoiding catastrophic forgetting. Recently, Wortsman et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized, fixed base network (model) and finds a supermask for each new task that selectively keeps or removes each weight to produce a subnetwork. They prevent forgetting as the network weights are not being updated. Although there is no forgetting, the performance of SupSup is sub-optimal because fixed weights restrict its representational power. Furthermore, there is no accumulation or transfer of knowledge inside the model when new tasks are learned. Hence, we propose ExSSNeT (Exclusive Supermask SubNetwork Training), that performs exclusive and non-overlapping subnetwork weight training. This avoids conflicting updates to the shared weights by subsequent tasks to improve performance while still preventing forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer (KKT) module that utilizes previously acquired knowledge to learn new tasks better and faster. We demonstrate that ExSSNeT outperforms strong previous methods on both NLP and Vision domains while preventing forgetting. Moreover, ExSSNeT is particularly advantageous for sparse masks that activate 2-10% of the model parameters, resulting in an average improvement of 8.3% over SupSup. Furthermore, ExSSNeT scales to a large number of tasks (100).

pdf bib
Transferring General Multimodal Pretrained Models to Text Recognition
Junyang Lin | Xuancheng Ren | Yichang Zhang | Gao Liu | Peng Wang | An Yang | Chang Zhou

This paper proposes a new method, OFA-OCR, to transfer multimodal pretrained models to text recognition. Specifically, we recast text recognition as image captioning and directly transfer a unified vision-language pretrained model to the end task. Without pretraining on large-scale annotated or synthetic text recognition data, OFA-OCR outperforms the baselines and achieves state-of-the-art performance in the Chinese text recognition benchmark. Additionally, we construct an OCR pipeline with OFA-OCR, and we demonstrate that it can achieve competitive performance with the product-level API.

pdf bib
A Formal Perspective on Byte-Pair Encoding
Vilém Zouhar | Clara Meister | Juan Gastaldi | Li Du | Tim Vieira | Mrinmaya Sachan | Ryan Cotterell

Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method.BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a 1/sigma*(1-e(-sigma))-approximation of an optimal merge sequence, where sigma is the total backward curvature with respect to the optimal merge sequence. Empirically the lower bound of the approximation is approx0.37.We provide a faster implementation of BPE which improves the runtime complexity from O(NM) to O(N log M), where N is the sequence length and M is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.

pdf bib
Automatic Named Entity Obfuscation in Speech
Judita Preiss

Sharing data containing personal information often requires its anonymization, even when consent for sharing was obtained from the data originator. While approaches exist for automated anonymization of text, the area is not as thoroughly explored in speech. This work focuses on identifying, replacing and inserting replacement named entities synthesized using voice cloning into original audio thereby retaining prosodic information while reducing the likelihood of deanonymization. The approach employs a novel named entity recognition (NER) system built directly on speech by training HuBERT (Hsu et al, 2021) using the English speech NER dataset (Yadav et al, 2020). Name substitutes are found using a masked language model and are synthesized using text to speech voice cloning (Eren and team, 2021), upon which the substitute named entities are re-inserted into the original text. The approach is prototyped on a sample of the LibriSpeech corpus (Panyatov et al, 2015) with each step evaluated individually.

pdf bib
Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context Reasoning with Language Models
Soochan Lee | Gunhee Kim

Generating intermediate steps, or Chain of Thought (CoT), is an effective way to significantly improve language models’ (LM) multi-step reasoning capability. However, the CoT lengths can grow rapidly with the problem complexity, easily exceeding the maximum context size. Instead of increasing the context limit, which has already been heavily investigated, we explore an orthogonal direction: making LMs divide a problem into multiple contexts. We propose a new inference framework, called Recursion of Thought (RoT), which introduces several special tokens that the models can output to trigger context-related operations. Extensive experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs’ inference capability to solve problems, whose solution consists of hundreds of thousands of tokens.

pdf bib
UniS-MMC: Multimodal Classification via Unimodality-supervised Multimodal Contrastive Learning
Heqing Zou | Meng Shen | Chen Chen | Yuchen Hu | Deepu Rajan | Eng Siong Chng

Multimodal learning aims to imitate human beings to acquire complementary information from multiple modalities for various downstream tasks. However, traditional aggregation-based multimodal fusion methods ignore the inter-modality relationship, treat each modality equally, suffer sensor noise, and thus reduce multimodal learning performance. In this work, we propose a novel multimodal contrastive method to explore more reliable multimodal representations under the weak supervision of unimodal predicting. Specifically, we first capture task-related unimodal representations and the unimodal predictions from the introduced unimodal predicting task. Then the unimodal representations are aligned with the more effective one by the designed multimodal contrastive method under the supervision of the unimodal predictions. Experimental results with fused features on two image-text classification benchmarks UPMC-Food-101 and N24News show that our proposed Unimodality-Supervised MultiModal Contrastive UniS-MMC learning method outperforms current state-of-the-art multimodal methods. The detailed ablation study and analysis further demonstrate the advantage of our proposed method.

pdf bib
Robustness-Aware Word Embedding Improves Certified Robustness to Adversarial Word Substitutions
Yibin Wang | Yichen Yang | Di He | Kun He

Natural Language Processing (NLP) models have gained great success on clean texts, but they are known to be vulnerable to adversarial examples typically crafted by synonym substitutions. In this paper, we target to solve this problem and find that word embedding is important to the certified robustness of NLP models. Given the findings, we propose the Embedding Interval Bound Constraint (EIBC) triplet loss to train robustness-aware word embeddings for better certified robustness. We optimize the EIBC triplet loss to reduce distances between synonyms in the embedding space, which is theoretically proven to make the verification boundary tighter. Meanwhile, we enlarge distances among non-synonyms, maintaining the semantic representation of word embeddings. Our method is conceptually simple and componentized. It can be easily combined with IBP training and improves the certified robust accuracy from 76.73% to 84.78% on the IMDB dataset. Experiments demonstrate that our method outperforms various state-of-the-art certified defense baselines and generalizes well to unseen substitutions. The code is available at

pdf bib
Exploring the Compositional Generalization in Context Dependent Text-to-SQL Parsing
Aiwei Liu | Wei Liu | Xuming Hu | Shuang Li | Fukun Ma | Yawen Yang | Lijie Wen

In the context-dependent Text-to-SQL task, the generated SQL statements are refined iteratively based on the user input utterance from each interaction. The input text from each interaction can be viewed as component modifications to the previous SQL statements, which could be further extracted as the modification patterns. Since these modification patterns could also be combined with other SQL statements, the models are supposed to have the compositional generalization to these novel combinations. This work is the first exploration of compositional generalization in context-dependent Text-to-SQL scenarios. To facilitate related studies, we constructed two challenging benchmarks named CoSQL-CG and SParC-CG by recombining the modification patterns and existing SQL statements. The following experiments show that almost all current models struggle on our proposed benchmarks. Furthermore, we found that better aligning the previous SQL statements with the input utterance could give models better combinatorial generalization ability. Based on these observations, we propose a method name p-align to improve the combinatorial generalization of Text-to-SQL models. Further experiments validate the effectiveness of our model.

pdf bib
Towards Generative Event Factuality Prediction
John Murzaku | Tyler Osborne | Amittai Aviram | Owen Rambow

We present a novel end-to-end generative task and system for predicting event factuality holders, targets, and their associated factuality values. We perform the first experiments using all sources and targets of factuality statements from the FactBank corpus. We perform multi-task learning with other tasks and event-factuality corpora to improve on the FactBank source and target task. We argue that careful domain specific target text output format in generative systems is important and verify this with multiple experiments on target text output structure. We redo previous state-of-the-art author-only event factuality experiments and also offer insights towards a generative paradigm for the author-only event factuality prediction task.

pdf bib
Can Language Models Be Specific? How?
Jie Huang | Kevin Chen-Chuan Chang | Jinjun Xiong | Wen-mei Hwu

“He is a person”, “Paris is located on the earth”. Both statements are correct but meaningless - due to lack of specificity. In this paper, we propose to measure how specific the language of pre-trained language models (PLMs) is. To achieve this, we introduce a novel approach to build a benchmark for specificity testing by forming masked token prediction tasks with prompts. For instance, given “Toronto is located in [MASK].”, we want to test whether a more specific answer will be better filled in by PLMs, e.g., Ontario instead of Canada. From our evaluations, we show that existing PLMs have only a slight preference for more specific answers. We identify underlying factors affecting the specificity and design two prompt-based methods to improve the specificity. Results show that the specificity of the models can be improved by the proposed methods without additional training. We hope this work can bring to awareness the notion of specificity of language models and encourage the research community to further explore this important but understudied problem.

pdf bib
The Web Can Be Your Oyster for Improving Language Models
Junyi Li | Tianyi Tang | Wayne Xin Zhao | Jingyuan Wang | Jian-Yun Nie | Ji-Rong Wen

Pretrained language models (PLMs) encode a large amount of world knowledge. However, as such knowledge is frozen at the time of model training, the models become static and limited by the training data at that time. In order to further improve the capacity of PLMs for knowledge-intensive tasks, we consider augmenting PLMs with the large-scale web using search engine. Unlike previous augmentation sources (e.g., Wikipedia data dump), the web provides broader, more comprehensive and constantly updated information. In this paper, we present a web-augmented PLM – UniWeb, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format. Instead of simply using the retrieved contents from web, our approach has made two major improvements. Firstly, we propose an adaptive search engine assisted learning method that can self-evaluate the confidence level of PLM’s predictions, and adaptively determine when to refer to the web for more data, which can avoid useless or noisy augmentation from web. Secondly, we design a pretraining task, i.e., continual knowledge learning, based on salient spans prediction, to reduce the discrepancy between the encoded and retrieved knowledge. Experiments on a wide range of knowledge-intensive tasks show that our model significantly outperforms previous retrieval-augmented methods.

pdf bib
Enhancing Few-shot Cross-lingual Transfer with Target Language Peculiar Examples
Hwichan Kim | Mamoru Komachi

Few-shot cross-lingual transfer, fine-tuning Multilingual Masked Language Model (MMLM) with source language labeled data and a small amount of target language labeled data, provides excellent performance in the target language. However, if no labeled data in the target language are available, they need to be created through human annotations. In this study, we devise a metric to select annotation candidates from an unlabeled data pool that efficiently enhance accuracy for few-shot cross-lingual transfer. It is known that training a model with hard examples is important to improve the model’s performance. Therefore, we first identify examples that MMLM cannot solve in a zero-shot cross-lingual transfer setting and demonstrate that it is hard to predict peculiar examples in the target language, i.e., the examples distant from the source language examples in cross-lingual semantic space of the MMLM.We then choose high peculiarity examples as annotation candidates and perform few-shot cross-lingual transfer. In comprehensive experiments with 20 languages and 6 tasks, we demonstrate that the high peculiarity examples improve the target language accuracy compared to other candidate selection methods proposed in previous studies.

pdf bib
Overcoming Catastrophic Forgetting in Massively Multilingual Continual Learning
Genta Winata | Lingjue Xie | Karthik Radhakrishnan | Shijie Wu | Xisen Jin | Pengxiang Cheng | Mayank Kulkarni | Daniel Preotiuc-Pietro

Real-life multilingual systems should be able to efficiently incorporate new languages as data distributions fed to the system evolve and shift over time. To do this, systems need to handle the issue of catastrophic forgetting, where the model performance drops for languages or tasks seen further in its past. In this paper, we study catastrophic forgetting, as well as methods to minimize this, in a massively multilingual continual learning framework involving up to 51 languages and covering both classification and sequence labeling tasks. We present LR ADJUST, a learning rate scheduling method that is simple, yet effective in preserving new information without strongly overwriting past knowledge. Furthermore, we show that this method is effective across multiple continual learning approaches. Finally, we provide further insights into the dynamics of catastrophic forgetting in this massively multilingual setup.

pdf bib
UniFine: A Unified and Fine-grained Approach for Zero-shot Vision-Language Understanding
Rui Sun | Zhecan Wang | Haoxuan You | Noel Codella | Kai-Wei Chang | Shih-Fu Chang

Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model’s reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method.

pdf bib
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors
Kai Zhang | Bernal Jimenez Gutierrez | Yu Su

Recent work has shown that fine-tuning large language models (LLMs) on large-scale instruction-following datasets substantially improves their performance on a wide range of NLP tasks, especially in the zero-shot setting. However, even advanced instruction-tuned LLMs still fail to outperform small LMs on relation extraction (RE), a fundamental information extraction task. We hypothesize that instruction-tuning has been unable to elicit strong RE capabilities in LLMs due to RE’s low incidence in instruction-tuning datasets, making up less than 1% of all tasks (Wang et al. 2022). To address this limitation, we propose QA4RE, a framework that aligns RE with question answering (QA), a predominant task in instruction-tuning datasets. Comprehensive zero-shot RE experiments over four datasets with two series of instruction-tuned LLMs (six LLMs in total) demonstrate that our QA4RE framework consistently improves LLM performance, strongly verifying our hypothesis and enabling LLMs to outperform strong zero-shot baselines by a large margin. Additionally, we provide thorough experiments and discussions to show the robustness, few-shot effectiveness, and strong transferability of our QA4RE framework. This work illustrates a promising way of adapting LLMs to challenging and underrepresented tasks by aligning these tasks with more common instruction-tuning tasks like QA.

pdf bib
TADA : Task Agnostic Dialect Adapters for English
William Held | Caleb Ziems | Diyi Yang

Large Language Models, the dominant starting point for Natural Language Processing (NLP) applications, fail at a higher rate for speakers of English dialects other than Standard American English (SAE). Prior work addresses this using task specific data or synthetic data augmentation, both of which require intervention for each dialect and task pair. This poses a scalability issue that prevents the broad adoption of robust dialectal English NLP. We introduce a simple yet effective method for task-agnostic dialect adaptation by aligning non-SAE dialects using adapters and composing them with task-specific adapters from SAE. Task-Agnostic Dialect Adapters (TADA) improve dialectal robustness on 4 dialectal variants of the GLUE benchmark without task-specific supervision.

pdf bib
Generative Zero-Shot Prompt Learning for Cross-Domain Slot Filling with Inverse Prompting
Xuefeng Li | Liwen Wang | Guanting Dong | Keqing He | Jinzheng Zhao | Hao Lei | Jiachi Liu | Weiran Xu

Zero-shot cross-domain slot filling aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Existing models either encode slot descriptions and examples or design handcrafted question templates using heuristic rules, suffering from poor generalization capability or robustness. In this paper, we propose a generative zero-shot prompt learning framework for cross-domain slot filling, both improving generalization and robustness than previous work. Besides, we introduce a novel inverse prompting strategy to distinguish different slot types to avoid the multiple prediction problem, and an efficient prompt tuning strategy to boost higher performance only training fewer prompt parameters. Experiments and analysis demonstrate the effectiveness of our proposed framework, especially huge improvements (+13.44% F1) on the unseen slots.

pdf bib
Re-appraising the Schema Linking for Text-to-SQL
Yujian Gan | Xinyun Chen | Matthew Purver

Most text-to-SQL models, even though based on the same grammar decoder, generate the SQL structure first and then fill in the SQL slots with the correct schema items. This second step depends on schema linking: aligning the entity references in the question with the schema columns or tables. This is generally approached via Exact Match based Schema Linking (EMSL) within a neural network-based schema linking module. EMSL has become standard in text-to-SQL: many state-of-the-art models employ EMSL, with performance dropping significantly when the EMSL component is removed. In this work, however, we show that EMSL reduces robustness, rendering models vulnerable to synonym substitution and typos. Instead of relying on EMSL to make up for deficiencies in question-schema encoding, we show that using a pre-trained language model as an encoder can improve performance without using EMSL, giving a more robust model. We also study the design choice of the schema linking module, finding that a suitable design benefits performance and interoperability. Finally, based on the above study of schema linking, we introduce the grammar linking to help model align grammar references in the question with the SQL keywords.

pdf bib
Echoes from Alexandria: A Large Resource for Multilingual Book Summarization
Alessandro Scirè | Simone Conia | Simone Ciciliano | Roberto Navigli

In recent years, research in text summarization has mainly focused on the news domain, where texts are typically short and have strong layout features. The task of full-book summarization presents additional challenges which are hard to tackle with current resources, due to their limited size and availability in English only. To overcome these limitations, we present “Echoes from Alexandria”, or in shortened form, “Echoes”, a large resource for multilingual book summarization. Echoes featuresthree novel datasets: i) Echo-Wiki, for multilingual book summarization, ii) Echo-XSum, for extremely-compressive multilingual book summarization, and iii) Echo-FairySum, for extractive book summarization. To the best of our knowledge, Echoes – with its thousands of books and summaries – is the largest resource, and the first to be multilingual, featuring 5 languages and 25 language pairs. In addition to Echoes, we also introduce a new extractive-then-abstractive baseline, and, supported by our experimental results and manual analysis of the summaries generated, we argue that this baseline is more suitable for book summarization than purely-abstractive approaches. We release our resource and software at in the hope of fostering innovative research in multilingual booksummarization.

pdf bib
When Gradient Descent Meets Derivative-Free Optimization: A Match Made in Black-Box Scenario
Chengcheng Han | Liqing Cui | Renyu Zhu | Jianing Wang | Nuo Chen | Qiushi Sun | Xiang Li | Ming Gao

Large pre-trained language models (PLMs) have garnered significant attention for their versatility and potential for solving a wide spectrum of natural language processing (NLP) tasks. However, the cost of running these PLMs may be prohibitive. Furthermore, PLMs may not be open-sourced due to commercial considerations and potential risks of misuse, such as GPT-3. The parameters and gradients of PLMs are unavailable in this scenario. To solve the issue, black-box tuning has been proposed, which utilizes derivative-free optimization (DFO), instead of gradient descent, for training task-specific continuous prompts. However, these gradient-free methods still exhibit a significant gap compared to gradient-based methods. In this paper, we introduce gradient descent into black-box tuning scenario through knowledge distillation. Furthermore, we propose a novel method GDFO, which integrates gradient descent and derivative-free optimization to optimize task-specific continuous prompts in a harmonized manner. Experimental results show that GDFO can achieve significant performance gains over previous state-of-the-art methods.

pdf bib
Align-then-Enhance: Multilingual Entailment Graph Enhancement with Soft Predicate Alignment
Yuting Wu | Yutong Hu | Yansong Feng | Tianyi Li | Mark Steedman | Dongyan Zhao

Entailment graphs (EGs) with predicates as nodes and entailment relations as edges are typically incomplete, while EGs in different languages are often complementary to each other. In this paper, we propose a new task, multilingual entailment graph enhancement, which aims to utilize the entailment information from one EG to enhance another EG in a different language. The ultimate goal is to obtain an enhanced EG containing richer and more accurate entailment information. We present an align-then-enhance framework (ATE) to achieve accurate multilingual entailment graph enhancement, which first exploits a cross-graph guided interaction mechanism to automatically discover potential equivalent predicates between different EGs and then constructs more accurate enhanced entailment graphs based on soft predicate alignments. Extensive experiments show that ATE achieves better and more robust predicate alignment results between different EGs, and the enhanced entailment graphs generated by ATE outperform the original graphs for entailment detection.

pdf bib
Few-shot Classification with Hypersphere Modeling of Prototypes
Ning Ding | Yulin Chen | Ganqu Cui | Xiaobin Wang | Haitao Zheng | Zhiyuan Liu | Pengjun Xie

Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (“areas”) to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed as hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere’s center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot NLP tasks and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.

pdf bib
Structured Mean-Field Variational Inference for Higher-Order Span-Based Semantic Role Labeling
Wei Liu | Songlin Yang | Kewei Tu

In this work, we enhance higher-order graph-based approaches for span-based semantic role labeling (SRL) by means of structured modeling. To decrease the complexity of higher-order modeling, we decompose the edge from predicate word to argument span into three different edges, predicate-to-head (P2H), predicate-to-tail (P2T), and head-to-tail (H2T), where head/tail means the first/last word of the semantic argument span. As such, we use a CRF-based higher-order dependency parser and leverage Mean-Field Variational Inference (MFVI) for higher-order inference. Moreover, since semantic arguments of predicates are often constituents within a constituency parse tree, we can leverage such nice structural property by defining a TreeCRF distribution over all H2T edges, using the idea of partial marginalization to define structural training loss. We further leverage structured MFVI to enhance inference. We experiment on span-based SRL benchmarks, showing the effectiveness of both higher-order and structured modeling and the combination thereof. In addition, we show superior performance of structured MFVI against vanilla MFVI.

pdf bib
AQE: Argument Quadruplet Extraction via a Quad-Tagging Augmented Generative Approach
Jia Guo | Liying Cheng | Wenxuan Zhang | Stanley Kok | Xin Li | Lidong Bing

Argument mining involves multiple sub-tasks that automatically identify argumentative elements, such as claim detection, evidence extraction, stance classification, etc. However, each subtask alone is insufficient for a thorough understanding of the argumentative structure and reasoning process. To learn a complete view of an argument essay and capture the interdependence among argumentative components, we need to know what opinions people hold (i.e., claims), why those opinions are valid (i.e., supporting evidence), which source the evidence comes from (i.e., evidence type), and how those claims react to the debating topic (i.e., stance). In this work, we for the first time propose a challenging argument quadruplet extraction task (AQE), which can provide an all-in-one extraction of four argumentative components, i.e., claims, evidence, evidence types, and stances. To support this task, we construct a large-scale and challenging dataset. However, there is no existing method that can solve the argument quadruplet extraction. To fill this gap, we propose a novel quad-tagging augmented generative approach, which leverages a quadruplet tagging module to augment the training of the generative framework. The experimental results on our dataset demonstrate the empirical superiority of our proposed approach over several strong baselines.

pdf bib
The Dangers of trusting Stochastic Parrots: Faithfulness and Trust in Open-domain Conversational Question Answering
Sabrina Chiesurin | Dimitris Dimakopoulos | Marco Antonio Sobrevilla Cabezudo | Arash Eshghi | Ioannis Papaioannou | Verena Rieser | Ioannis Konstas

Large language models are known to produce output which sounds fluent and convincing, but is also often wrong, e.g. “unfaithful” with respect to a rationale as retrieved from a knowledge base. In this paper, we show that task-based systems which exhibit certain advanced linguistic dialog behaviors, such as lexical alignment (repeating what the user said), are in fact preferred and trusted more, whereas other phenomena, such as pronouns and ellipsis are dis-preferred. We use open-domain question answering systems as our test-bed for task based dialog generation and compare several open- and closed-book models. Our results highlight the danger of systems that appear to be trustworthy by parroting user input while providing an unfaithful response.

pdf bib
Discrete Prompt Optimization via Constrained Generation for Zero-shot Re-ranker
Sukmin Cho | Soyeong Jeong | Jeong yeon Seo | Jong Park

Re-rankers, which order retrieved documents with respect to the relevance score on the given query, have gained attention for the information retrieval (IR) task. Rather than fine-tuning the pre-trained language model (PLM), the large-scale language model (LLM) is utilized as a zero-shot re-ranker with excellent results. While LLM is highly dependent on the prompts, the impact and the optimization of the prompts for the zero-shot re-ranker are not explored yet. Along with highlighting the impact of optimization on the zero-shot re-ranker, we propose a novel discrete prompt optimization method, Constrained Prompt generation (Co-Prompt), with the metric estimating the optimum for re-ranking. Co-Prompt guides the generated texts from PLM toward optimal prompts based on the metric without parameter update. The experimental results demonstrate that Co-Prompt leads to outstanding re-ranking performance against the baselines. Also, Co-Prompt generates more interpretable prompts for humans against other prompt optimization methods.

pdf bib
Triggering Multi-Hop Reasoning for Question Answering in Language Models using Soft Prompts and Random Walks
Kanishka Misra | Cicero Nogueira dos Santos | Siamak Shakeri

Despite readily memorizing world knowledge about entities, pre-trained language models (LMs) struggle to compose together two or more facts to perform multi-hop reasoning in question-answering tasks. In this work, we propose techniques that improve upon this limitation by relying on random-walks over structured knowledge graphs. Specifically, we use soft-prompts to guide LMs to chain together their encoded knowledge by learning to map multi-hop questions to random-walk paths that lead to the answer. Applying our methods on two T5 LMs shows substantial improvements over standard tuning approaches in answering questions that require multi-hop reasoning.

pdf bib
Multimedia Generative Script Learning for Task Planning
Qingyun Wang | Manling Li | Hou Pong Chan | Lifu Huang | Julia Hockenmaier | Girish Chowdhary | Heng Ji

Goal-oriented generative script learning aims to generate subsequent steps to reach a particular goal, which is an essential task to assist robots or humans in performing stereotypical activities. An important aspect of this process is the ability to capture historical states visually, which provides detailed information that is not covered by text and will guide subsequent steps. Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 5,652 tasks and 79,089 multimedia steps. This task is challenging in three aspects: the multimedia challenge of capturing the visual states in images, the induction challenge of performing unseen tasks, and the diversity challenge of covering different information in individual steps. We propose to encode visual state changes through a selective multimedia encoder to address the multimedia challenge, transfer knowledge from previously observed tasks using a retrieval-augmented decoder to overcome the induction challenge, and further present distinct information at each step by optimizing a diversity-oriented contrastive learning objective. We define metrics to evaluate both generation and inductive quality. Experiment results demonstrate that our approach significantly outperforms strong baselines.

pdf bib
Label Agnostic Pre-training for Zero-shot Text Classification
Christopher Clarke | Yuzhao Heng | Yiping Kang | Krisztian Flautner | Lingjia Tang | Jason Mars

Conventional approaches to text classification typically assume the existence of a fixed set of predefined labels to which a given text can be classified. However, in real-world applications, there exists an infinite label space for describing a given text. In addition, depending on the aspect (sentiment, topic, etc.) and domain of the text (finance, legal, etc.), the interpretation of the label can vary greatly. This makes the task of text classification, particularly in the zero-shot scenario, extremely challenging. In this paper, we investigate the task of zero-shot text classification with the aim of improving the ability of pre-trained language models (PLMs) to generalize to both seen and unseen data across varying aspects and domains. To solve this we introduce two new simple yet effective pre-training strategies, Implicit and Explicit pre-training. These methods inject aspect-level understanding into the model at train time with the goal of conditioning the model to build task-level understanding. To evaluate this, we construct and release UTCD, a new benchmark dataset for evaluating text classification in zero-shot settings. Experimental results on UTCD show that our approach achieves improved zero-shot generalization on a suite of challenging datasets across an array of zero-shot formalizations.

pdf bib
Click: Controllable Text Generation with Sequence Likelihood Contrastive Learning
Chujie Zheng | Pei Ke | Zheng Zhang | Minlie Huang

It has always been an important yet challenging problem to control language models to avoid generating texts with undesirable attributes, such as toxic language and unnatural repetition. We introduce Leo for controllable text generation, which needs no modification to the model architecture and facilitates out-of-the-box use of trained models. It employs a contrastive loss on sequence likelihood, which fundamentally decreases the generation probability of negative samples (i.e., generations with undesirable attributes). It also adopts a novel likelihood ranking-based strategy to construct contrastive samples from model generations. On the tasks of language detoxification, sentiment steering, and repetition reduction, we show that Leo outperforms strong baselines of controllable text generation and demonstrate the superiority of Leo’s sample construction strategy.

pdf bib
Improving Embedding-based Unsupervised Keyphrase Extraction by Incorporating Structural Information
Mingyang Song | Huafeng Liu | Yi Feng | Liping Jing

Keyphrase extraction aims to extract a set of phrases with the central idea of the source document. In a structured document, there are certain locations (e.g., the title or the first sentence) where a keyphrase is most likely to appear. However, when extracting keyphrases from the document, most existing embedding-based unsupervised keyphrase extraction models ignore the indicative role of the highlights in certain locations, leading to wrong keyphrases extraction. In this paper, we propose a new Highlight-Guided Unsupervised Keyphrase Extraction model (HGUKE) to address the above issue. Specifically, HGUKE first models the phrase-document relevance via the highlights of the documents. Next, HGUKE calculates the cross-phrase relevance between all candidate phrases. Finally, HGUKE aggregates the above two relevance as the importance score of each candidate phrase to rank and extract keyphrases. The experimental results on three benchmarks demonstrate that HGUKE outperforms the state-of-the-art unsupervised keyphrase extraction baselines.

pdf bib
Towards Reasoning in Large Language Models: A Survey
Jie Huang | Kevin Chen-Chuan Chang

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

pdf bib
Transitioning from benchmarks to a real-world case of information-seeking in Scientific Publications
Chyrine Tahri | Aurore Bochnakian | Patrick Haouat | Xavier Tannier

Although recent years have been marked by incredible advances in the whole development process of NLP systems, there are still blind spots in characterizing what is still hampering real-world adoption of models in knowledge-intensive settings. In this paper, we illustrate through a real-world zero-shot text search case for information seeking in scientific papers, the masked phenomena that the current process of measuring performance might not reflect, even when benchmarks are, in appearance, faithfully representative of the task at hand. In addition to experimenting with TREC-COVID and NFCorpus, we provide an industrial, expert-carried/annotated, case of studying vitamin B’s impact on health. We thus discuss the misalignment between solely focusing on single-metric performance as a criterion for model choice and relevancy as a subjective measure for meeting a user’s need.

pdf bib
CLIPText: A New Paradigm for Zero-shot Text Classification
Libo Qin | Weiyun Wang | Qiguang Chen | Wanxiang Che

While CLIP models are useful for zero-shot vision-and-language (VL) tasks or computer vision tasks, little attention has been paid to the application of CLIP for language tasks. Intuitively, CLIP model have a rich representation pre-trained with natural language supervision, in which we argue that it is useful for language tasks. Hence, this work bridge this gap by investigating a CLIP model for zero-shot text classification. Specifically, we introduce CLIPText, a novel paradigm for zero-shot text classification, which reformulates zero-shot text classification into a text-image matching problem that CLIP can be applied to. In addition, we further incorporate prompt into CLIPText (Prompt-CLIPText) to better derive knowledge from CLIP. Experimental results on seven publicly available zero-shot text classification datasets show that both CLIPText and Prompt-CLIPText attain promising performance. Besides, extensive analysis further verifies that knowledge from CLIP can benefit zero-shot text classification task. We hope this work can attract more breakthroughs on applying VL pre-trained models for language tasks.

pdf bib
Rethinking Dictionaries and Glyphs for Chinese Language Pre-training
Yuxuan Wang | Jack Wang | Dongyan Zhao | Zilong Zheng

We introduce CDBert, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBert as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters’ glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e.„ Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding.

pdf bib
One Embedder, Any Task: Instruction-Finetuned Text Embeddings
Hongjin Su | Weijia Shi | Jungo Kasai | Yizhong Wang | Yushi Hu | Mari Ostendorf | Wen-tau Yih | Noah A. Smith | Luke Zettlemoyer | Tao Yu

We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets. Our model, code, and data are available at

pdf bib
Towards Speech Dialogue Translation Mediating Speakers of Different Languages
Shuichiro Shimizu | Chenhui Chu | Sheng Li | Sadao Kurohashi

We present a new task, speech dialogue translation mediating speakers of different languages. We construct the SpeechBSD dataset for the task and conduct baseline experiments. Furthermore, we consider context to be an important aspect that needs to be addressed in this task and propose two ways of utilizing context, namely monolingual context and bilingual context. We conduct cascaded speech translation experiments using Whisper and mBART, and show that bilingual context performs better in our settings.

pdf bib
Adaptation Approaches for Nearest Neighbor Language Models
Rishabh Bhardwaj | George Polovets | Monica Sunkara

Semi-parametric Nearest Neighbor Language Models (kNN-LMs) have produced impressive gains over purely parametric LMs, by leveraging large-scale neighborhood retrieval over external memory datastores. However, there has been little investigation into adapting such models for new domains. This work attempts to fill that gap and suggests the following approaches for adapting kNN-LMs — 1) adapting the underlying LM (using Adapters), 2) expanding neighborhood retrieval over an additional adaptation datastore, and 3) adapting the weights (scores) of retrieved neighbors using a learned Rescorer module. We study each adaptation strategy separately, as well as the combined performance improvement through ablation experiments and an extensive set of evaluations run over seven adaptation domains. Our combined adaptation approach consistently outperforms purely parametric adaptation and zero-shot (kNN-LM) baselines that construct datastores from the adaptation data. On average, we see perplexity improvements of 17.1% and 16% for these respective baselines, across domains.

pdf bib
Language Models for German Text Simplification: Overcoming Parallel Data Scarcity through Style-specific Pre-training
Miriam Anschütz | Joshua Oehms | Thomas Wimmer | Bartłomiej Jezierski | Georg Groh

Automatic text simplification systems help to reduce textual information barriers on the internet. However, for languages other than English, only few parallel data to train these systems exists. We propose a two-step approach to overcome this data scarcity issue. First, we fine-tuned language models on a corpus of German Easy Language, a specific style of German. Then, we used these models as decoders in a sequence-to-sequence simplification task. We show that the language models adapt to the style characteristics of Easy Language and output more accessible texts. Moreover, with the style-specific pre-training, we reduced the number of trainable parameters in text simplification models. Hence, less parallel data is sufficient for training. Our results indicate that pre-training on unaligned data can reduce the required parallel data while improving the performance on downstream tasks.

pdf bib
Client-Customized Adaptation for Parameter-Efficient Federated Learning
Yeachan Kim | Junho Kim | Wing-Lam Mok | Jun-Hyung Park | SangKeun Lee

Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.

pdf bib
FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery
Changlong Yu | Weiqi Wang | Xin Liu | Jiaxin Bai | Yangqiu Song | Zheng Li | Yifan Gao | Tianyu Cao | Bing Yin

Understanding users’ intentions in e-commerce platforms requires commonsense knowledge. In this paper, we present FolkScope, an intention knowledge graph construction framework, to reveal the structure of humans’ minds about purchasing items. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform information extraction. Thus, we propose a new approach that leverages the generation power of large language models (LLMs) and human-in-the-loop annotation to semi-automatically construct the knowledge graph. LLMs first generate intention assertions via e-commerce specific prompts to explain shopping behaviors, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations. Last, to structurize the assertions, we propose pattern mining and conceptualization to form more condensed and abstract knowledge. Extensive evaluations and study demonstrate that our constructed knowledge graph can well model e-commerce knowledge and have many potential applications.

pdf bib
I am PsyAM: Modeling Happiness with Cognitive Appraisal Dimensions
Xuan Liu | Kokil Jaidka

This paper proposes and evaluates PsyAM (, a framework that incorporates adaptor modules in a sequential multi-task learning setup to generate high-dimensional feature representations of hedonic well-being (momentary happiness) in terms of its psychological underpinnings. PsyAM models emotion in text through its cognitive antecedents through auxiliary models that achieve multi-task learning through novel feature fusion methods. We show that BERT-PsyAM has cross-task validity and cross-domain generalizability through experiments with emotion-related tasks – on new emotion tasks and new datasets, as well as against traditional methods and BERT baselines. We further probe the robustness of BERT-PsyAM through feature ablation studies, as well as discuss the qualitative inferences we can draw regarding the effectiveness of the framework for representing emotional states. We close with a discussion of a future agenda of psychology-inspired neural network architectures.

pdf bib
Value type: the bridge to a better DST model
Gao Qixiang | Mingyang Sun | Yutao Mou | Chen Zeng | Weiran Xu

Value type of the slots can provide lots of useful information for DST tasks. However, it has been ignored in most previous works. In this paper, we propose a new framework for DST task based on these value types. Firstly, we extract the type of token from each turn. Specifically, we divide the slots in the dataset into 9 categories according to the type of slot value, and then train a Ner model to extract the corresponding type-entity from each turn of conversation according to the token. Secondly, we improve the attention mode which is integrated into value type information between the slot and the conversation history to help each slot pay more attention to the turns that contain the same value type. Meanwhile, we introduce a sampling strategy to integrate these types into the attention formula, which decrease the error of Ner model. Finally, we conduct a comprehensive experiment on two multi-domain task-oriented conversation datasets, MultiWOZ 2.1 and MultiWOZ 2.4. The ablation experimental results show that our method is effective on both datasets, which verify the necessity of considering the type of slot value.

pdf bib
Hypothetical Training for Robust Machine Reading Comprehension of Tabular Context
Moxin Li | Wenjie Wang | Fuli Feng | Hanwang Zhang | Qifan Wang | Tat-Seng Chua

Machine Reading Comprehension (MRC) models easily learn spurious correlations from complex contexts such as tabular data. Counterfactual training—using the factual and counterfactual data by augmentation—has become a promising solution. However, it is costly to construct faithful counterfactual examples because it is tricky to maintain the consistency and dependency of the tabular data. In this paper, we take a more efficient fashion to ask hypothetical questions like “in which year would the net profit be larger if the revenue in 2019 were $38,298?”, whose effects on the answers are equivalent to those expensive counterfactual tables. We propose a hypothetical training framework that uses paired examples with different hypothetical questions to supervise the direction of model gradient towards the counterfactual answer change. The superior generalization results on tabular MRC datasets, including a newly constructed stress test and MultiHiertt, validate our effectiveness.

pdf bib
BanglaBook: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews
Mohsinul Kabir | Obayed Bin Mahfuz | Syed Rifat Raiyan | Hasan Mahmud | Md Kamrul Hasan

The analysis of consumer sentiment, as expressed through reviews, can provide a wealth of insight regarding the quality of a product. While the study of sentiment analysis has been widely explored in many popular languages, relatively less attention has been given to the Bangla language, mostly due to a lack of relevant data and cross-domain adaptability. To address this limitation, we present BanglaBook, a large-scale dataset of Bangla book reviews consisting of 158,065 samples classified into three broad categories: positive, negative, and neutral. We provide a detailed statistical analysis of the dataset and employ a range of machine learning models to establish baselines including SVM, LSTM, and Bangla-BERT. Our findings demonstrate a substantial performance advantage of pre-trained models over models that rely on manually crafted features, emphasizing the necessity for additional training resources in this domain. Additionally, we conduct an in-depth error analysis by examining sentiment unigrams, which may provide insight into common classification errors in under-resourced languages like Bangla. Our codes and data are publicly available at

pdf bib
Risks and NLP Design: A Case Study on Procedural Document QA
Nikita Haduong | Alice Gao | Noah A. Smith

As NLP systems are increasingly deployed at scale, concerns about their potential negative impacts have attracted the attention of the research community, yet discussions of risk have mostly been at an abstract level and focused on generic AI or NLP applications. We argue that clearer assessments of risks and harms to users—and concrete strategies to mitigate them—will be possible when we specialize the analysis to more concrete applications and their plausible users. As an illustration, this paper is grounded in cooking recipe procedural document question answering (ProcDocQA), where there are well-defined risks to users such as injuries or allergic reactions. Our case study shows that an existing language model, applied in “zero-shot” mode, quantitatively answers real-world questions about recipes as well or better than the humans who have answered the questions on the web. Using a novel questionnaire informed by theoretical work on AI risk, we conduct a risk-oriented error analysis that could then inform the design of a future system to be deployed with lower risk of harm and better performance.

pdf bib
The Diminishing Returns of Masked Language Models to Science
Zhi Hong | Aswathy Ajith | James Pauloski | Eamon Duede | Kyle Chard | Ian Foster

Transformer-based masked language models such as BERT, trained on general corpora, have shown impressive performance on downstream tasks. It has also been demonstrated that the downstream task performance of such models can be improved by pretraining larger models for longer on more data. In this work, we empirically evaluate the extent to which these results extend to tasks in science. We use 14 domain-specific transformer-based models (including ScholarBERT, a new 770Mparameter science-focused masked language model pretrained on up to 225B tokens) to evaluate the impact of training data, model size, pretraining and finetuning time on 12 downstream scientific tasks. Interestingly, we find that increasing model size, training data, or compute time does not always lead to significant improvements (i.e., >1% F1), if any, in scientific information extraction tasks. We offer possible explanations for this surprising result.

pdf bib
Causal Matching with Text Embeddings: A Case Study in Estimating the Causal Effects of Peer Review Policies
Raymond Zhang | Neha Nayak Kennard | Daniel Smith | Daniel McFarland | Andrew McCallum | Katherine Keith

A promising approach to estimate the causal effects of peer review policies is to analyze data from publication venues that shift policies from single-blind to double-blind from one year to the next. However, in these settings the content of the manuscript is a confounding variable—each year has a different distribution of scientific content which may naturally affect the distribution of reviewer scores. To address this textual confounding, we extend variable ratio nearest neighbor matching to incorporate text embeddings. We compare this matching method to a widely-used causal method of stratified propensity score matching and a baseline of randomly selected matches. For our case study of the ICLR conference shifting from single- to double-blind review from 2017 to 2018, we find human judges prefer manuscript matches from our method in 70% of cases. While the unadjusted estimate of the average causal effect of reviewers’ scores is -0.25, our method shifts the estimate to -0.17, a slightly smaller difference between the outcomes of single- and double-blind policies. We hope this case study enables exploration of additional text-based causal estimation methods and domains in the future.

pdf bib
Learning to Generalize for Cross-domain QA
Yingjie Niu | Linyi Yang | Ruihai Dong | Yue Zhang

There have been growing concerns regarding the out-of-domain generalization ability of natural language processing (NLP) models, particularly in question-answering (QA) tasks. Current synthesized data augmentation methods for QA are hampered by increased training costs. To address this issue, we propose a novel approach that combines prompting methods and linear probing with fine-tuning strategy, which does not entail additional cost. Our method has been theoretically and empirically shown to be effective in enhancing the generalization ability of both generative and discriminative models. Our approach outperforms state-of-the-art baselines, with an average increase in F1 score of 4.5%-7.9%. Furthermore, our method can be easily integrated into any pre-trained models and offers a promising solution to the under-explored cross-domain QA task.

pdf bib
Enhanced Chart Understanding via Visual Language Pre-training on Plot Table Pairs
Mingyang Zhou | Yi Fung | Long Chen | Christopher Thomas | Heng Ji | Shih-Fu Chang

Building cross-model intelligence that can understand charts and communicate the salient information hidden behind them is an appealing challenge in the vision and language (V+L) community. The capability to uncover the underlined table data of chart figures is a critical key to automatic chart understanding. We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs. Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP) to facilitate the model with different skills to interpret the table information. We have conducted extensive experiments on chart question answering and chart summarization to verify the effectiveness of the proposed pre-training strategies. In particular, on the ChartQA benchmark, our ChartT5 outperforms the state-of-the-art non-pretraining methods by over 8% performance gains.

pdf bib
Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Yiqun Hu | Yiyun Zhao | Jiarong Jiang | Wuwei Lan | Henghui Zhu | Anuj Chauhan | Alexander Hanbo Li | Lin Pan | Jun Wang | Chung-Wei Hang | Sheng Zhang | Jiang Guo | Mingwen Dong | Joseph Lilien | Patrick Ng | Zhiguo Wang | Vittorio Castelli | Bing Xiang

There has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed three shortcomings: illogical synthetic SQL queries from independent column sampling, arbitrary table joins, and language gaps between the synthesized SQL and natural language question (NLQ) pair. To address these issues, we propose a novel synthesis framework that imposes strong typing constraints, incorporates key relationships from schema, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated NLQ. When existing powerful text-to-SQL parsers are pretrained on our high-quality synthesized data, these models have significant accuracy boosts and achieve new state-of-the-art performance on Spider. We also demonstrate the effectiveness of our techniques with ablation studies

pdf bib
Exploring Schema Generalizability of Text-to-SQL
Jieyu Li | Lu Chen | Ruisheng Cao | Su Zhu | Hongshen Xu | Zhi Chen | Hanchong Zhang | Kai Yu

Exploring the generalizability of a text-to-SQL parser is essential for a system to automatically adapt the real-world databases. Previous investigation works mostly focus on lexical diversity, including the influence of the synonym and perturbations in both natural language questions and databases. However, the structural variability of database schema (DS), as a widely seen real-world scenario, is yet underexplored. Specifically, confronted with the same input question, the target SQL may be represented in different ways when the DS comes to a different structure. In this work, we provide in-depth discussions about the schema generalizability challenge of text-to-SQL tasks. We observe that current datasets are too templated to study schema generalization. To collect suitable test data, we propose a framework to generate novel text-to-SQL data via automatic and synchronous (DS, SQL) pair altering. When evaluating state-of-the-art text-to-SQL models on the synthetic samples, performance is significantly degraded, which demonstrates the limitation of current research regarding schema generalization.

pdf bib
Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer
Shuang Li | Xuming Hu | Aiwei Liu | Yawen Yang | Fukun Ma | Philip S. Yu | Lijie Wen

Cross-lingual natural language inference is a fundamental problem in cross-lingual language understanding. Many recent works have used prompt learning to address the lack of annotated parallel corpora in XNLI.However, these methods adopt discrete prompting by simply translating the templates to the target language and need external expert knowledge to design the templates. Besides, discrete prompts of human-designed template words are not trainable vectors and can not be migrated to target languages in the inference stage flexibly. In this paper, we propose a novel Soft prompt learning framework with the Multilingual Verbalizer (SoftMV) for XNLI. SoftMV first constructs cloze-style question with soft prompts for the input sample. Then we leverage bilingual dictionaries to generate an augmented multilingual question for the original question. SoftMV adopts a multilingual verbalizer to align the representations of original and augmented multilingual questions into a unified semantic space with consistency regularization. Experimental results on XNLI demonstrate that SoftMV can achieve state-of-the-art performance and significantly outperform the previous methods under the few-shot and full-shot cross-lingual transfer settings.

pdf bib
A Confidence-based Partial Label Learning Model for Crowd-Annotated Named Entity Recognition
Limao Xiong | Jie Zhou | Qunxi Zhu | Xiao Wang | Yuanbin Wu | Qi Zhang | Tao Gui | Xuanjing Huang | Jin Ma | Ying Shan

Existing models for named entity recognition (NER) are mainly based on large-scale labeled datasets, which always obtain using crowdsourcing. However, it is hard to obtain a unified and correct label via majority voting from multiple annotators for NER due to the large labeling space and complexity of this task. To address this problem, we aim to utilize the original multi-annotator labels directly. Particularly, we propose a CONfidence-based partial Label Learning (CONLL) method to integrate the prior confidence (given by annotators) and posterior confidences (learned by models) for crowd-annotated NER. This model learns a token- and content-dependent confidence via an Expectation–Maximization (EM) algorithm by minimizing empirical risk. The true posterior estimator and confidence estimator perform iteratively to update the true posterior and confidence respectively. We conduct extensive experimental results on both real-world and synthetic datasets, which show that our model can improve performance effectively compared with strong baselines.

pdf bib
Towards Zero-Shot Persona Dialogue Generation with In-Context Learning
Xinchao Xu | Zeyang Lei | Wenquan Wu | Zheng-Yu Niu | Hua Wu | Haifeng Wang

Much work has been done to improve persona consistency by finetuning a pretrained dialogue model on high-quality human-annoated persona datasets. However, these methods still face the challenges of high cost and poor scalability. To this end, we propose a simple-yet-effective approach to significantly improve zero-shot persona consistency via in-context learning. Specifically, we first pre-train a persona-augmented dialogue generation model and then utilize in-context prompting mechanism to realize zero-shot persona customization. Experimental results demonstrate that our method can dramatically improve persona consistency without compromising coherence and informativeness in zero-shot settings.

pdf bib
Grammar-based Decoding for Improved Compositional Generalization in Semantic Parsing
Jing Zheng | Jyh-Herng Chow | Zhongnan Shen | Peng Xu

Sequence-to-sequence (seq2seq) models have achieved great success in semantic parsing tasks, but they tend to struggle on out-of-distribution (OOD) data. Despite recent progress, robust semantic parsing on large-scale tasks with combined challenges from both compositional generalization and natural language variations remains an unsolved problem. To promote research in this area, this work presents CUDON, a large-scale dialogue dataset in Chinese language, particularly designed for evaluating compositional generalization of semantic parsing. The dataset contains about ten thousand multi-turn complex queries, and provides multiple splits with different degrees of train-test distribution divergence. We have investigated improving compositional generalization with grammar-based decodering on this dataset. With specially designed grammars leveraging program schema, we are able to substantially improve accuracy of seq2seq semantic parsers on OOD splits: A LSTM-based parser using a Context-free Grammar (CFG) achieves over 25% higher accuracy than a standard seq2seq baseline; a parser using Tree-Substitution Grammar (TSG) improves parsing speed five to seven times over the CFG parser with only a small accuracy loss. The grammar-based LSTM parsers also outperforms BART- and T5-based seq2seq parsers on the OOD splits, despite having less than one tenth of parameters and no pretraining. We also verified our approach on the SMCalflow-CS dataset, particularly, on the zero-shot learning task.

pdf bib
Exploiting Rich Textual User-Product Context for Improving Personalized Sentiment Analysis
Chenyang Lyu | Linyi Yang | Yue Zhang | Yvette Graham | Jennifer Foster

User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architectureor do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product in initializing representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on the IMDb, Yelp-2013 and Yelp-2014 English benchmarks with BERT, SpanBERT and Longformer pretrained language models show that our approach substantially outperforms previous state-of-the-art.

pdf bib
Efficient Out-of-Domain Detection for Sequence to Sequence Models
Artem Vazhentsev | Akim Tsvigun | Roman Vashurin | Sergey Petrakov | Daniil Vasilev | Maxim Panov | Alexander Panchenko | Artem Shelmanov

Sequence-to-sequence (seq2seq) models based on the Transformer architecture have become a ubiquitous tool applicable not only to classical text generation tasks such as machine translation and summarization but also to any other task where an answer can be represented in a form of a finite text fragment (e.g., question answering). However, when deploying a model in practice, we need not only high performance but also an ability to determine cases where the model is not applicable. Uncertainty estimation (UE) techniques provide a tool for identifying out-of-domain (OOD) input where the model is susceptible to errors. State-of-the-art UE methods for seq2seq models rely on computationally heavyweight and impractical deep ensembles. In this work, we perform an empirical investigation of various novel UE methods for large pre-trained seq2seq models T5 and BART on three tasks: machine translation, text summarization, and question answering. We apply computationally lightweight density-based UE methods to seq2seq models and show that they often outperform heavyweight deep ensembles on the task of OOD detection.

pdf bib
Emotion Cause Extraction on Social Media without Human Annotation
Debin Xiao | Rui Xia | Jianfei Yu

In social media, there is a vast amount of information pertaining to people’s emotions and the corresponding causes. The emotion cause extraction (ECE) from social media data is an important research area that has not been thoroughly explored due to the lack of fine-grained annotations. Early studies referred to either unsupervised rule-based methods or supervised machine learning methods using a number of manually annotated data in specific domains. However, the former suffers from limitations in extraction performance, while the latter is constrained by the availability of fine-grained annotations and struggles to generalize to diverse domains. To address these issues, this paper proposes a new ECE framework on Chinese social media that achieves high extraction performance and generalizability without relying on human annotation. Specifically, we design a more dedicated rule-based system based on constituency parsing tree to discover causal patterns in social media. This system enables us to acquire large amounts of fine-grained annotated data. Next, we train a neural model on the rule-annotated dataset with a specific training strategy to further improve the model’s generalizability. Extensive experiments demonstrate the superiority of our approach over other methods in unsupervised and weakly-supervised settings.

pdf bib
Pseudo Outlier Exposure for Out-of-Distribution Detection using Pretrained Transformers
Jaeyoung Kim | Kyuheon Jung | Dongbin Na | Sion Jang | Eunbin Park | Sungchul Choi

For real-world language applications, detecting an out-of-distribution (OOD) sample is helpful to alert users or reject such unreliable samples. However, modern over-parameterized language models often produce overconfident predictions for both in-distribution (ID) and OOD samples. In particular, language models suffer from OOD samples with a similar semantic representation to ID samples since these OOD samples lie near the ID manifold.A rejection network can be trained with ID and diverse outlier samples to detect test OOD samples, but explicitly collecting auxiliary OOD datasets brings an additional burden for data collection. In this paper, we propose a simple but effective method called Pseudo Outlier Exposure (POE) that constructs a surrogate OOD dataset by sequentially masking tokens related to ID classes. The surrogate OOD sample introduced by POE shows a similar representation to ID data, which is most effective in training a rejection network. Our method does not require any external OOD data and can be easily implemented within off-the-shelf Transformers.A comprehensive comparison with state-of-the-art algorithms demonstrates POE’s competitiveness on several text classification benchmarks.

pdf bib
Adversarial Multi-task Learning for End-to-end Metaphor Detection
Shenglong Zhang | Ying Liu

Metaphor detection (MD) suffers from limited training data. In this paper, we started with a linguistic rule called Metaphor Identification Procedure and then proposed a novel multi-task learning framework to transfer knowledge in basic sense discrimination (BSD) to MD. BSD is constructed from word sense disambiguation (WSD), which has copious amounts of data. We leverage adversarial training to align the data distributions of MD and BSD in the same feature space, so task-invariant representations can be learned. To capture fine-grained alignment patterns, we utilize the multi-mode structures of MD and BSD. Our method is totally end-to-end and can mitigate the data scarcity problem in MD. Competitive results are reported on four public datasets. Our code and datasets are available.

pdf bib
SERENGETI: Massively Multilingual Language Models for Africa
Ife Adebara | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Alcides Alcoba Inciarte

Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a set of massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research. Anonymous link

pdf bib
Prompt- and Trait Relation-aware Cross-prompt Essay Trait Scoring
Heejin Do | Yunsu Kim | Gary Geunbae Lee

Automated essay scoring (AES) aims to score essays written for a given prompt, which defines the writing topic. Most existing AES systems assume to grade essays of the same prompt as used in training and assign only a holistic score. However, such settings conflict with real-education situations; pre-graded essays for a particular prompt are lacking, and detailed trait scores of sub-rubrics are required. Thus, predicting various trait scores of unseen-prompt essays (called cross-prompt essay trait scoring) is a remaining challenge of AES. In this paper, we propose a robust model: prompt- and trait relation-aware cross-prompt essay trait scorer. We encode prompt-aware essay representation by essay-prompt attention and utilizing the topic-coherence feature extracted by the topic-modeling mechanism without access to labeled data; therefore, our model considers the prompt adherence of an essay, even in a cross-prompt setting. To facilitate multi-trait scoring, we design trait-similarity loss that encapsulates the correlations of traits. Experiments prove the efficacy of our model, showing state-of-the-art results for all prompts and traits. Significant improvements in low-resource-prompt and inferior traits further indicate our model’s strength.

pdf bib
AugESC: Dialogue Augmentation with Large Language Models for Emotional Support Conversation
Chujie Zheng | Sahand Sabour | Jiaxin Wen | Zheng Zhang | Minlie Huang

Crowdsourced dialogue corpora are usually limited in scale and topic coverage due to the expensive cost of data curation. This would hinder the generalization of downstream dialogue models to open-domain topics. In this work, we leverage large language models for dialogue augmentation in the task of emotional support conversation (ESC). By treating dialogue augmentation as a dialogue completion task, we prompt a fine-tuned language model to complete full dialogues from available dialogue posts of various topics, which are then postprocessed based on heuristics. Applying this approach, we construct AugESC, an augmented dataset for the ESC task, which largely extends the scale and topic coverage of the crowdsourced ESConv corpus. Through comprehensive human evaluation, we demonstrate that our approach is superior to strong baselines of dialogue augmentation and that AugESC has comparable dialogue quality to the crowdsourced corpus. We also conduct human interactive evaluation and prove that post-training on AugESC improves downstream dialogue models’ generalization ability to open-domain topics. These results suggest the utility of AugESC and highlight the potential of large language models in improving data-scarce dialogue generation tasks.

pdf bib
2*n is better than n2: Decomposing Event Coreference Resolution into Two Tractable Problems
Shafiuddin Rehan Ahmed | Abhijnan Nath | James H. Martin | Nikhil Krishnaswamy

Event Coreference Resolution (ECR) is the task of linking mentions of the same event either within or across documents. Most mention pairs are not coreferent, yet many that are coreferent can be identified through simple techniques such as lemma matching of the event triggers or the sentences in which they appear. Existing methods for training coreference systems sample from a largely skewed distribution, making it difficult for the algorithm to learn coreference beyond surface matching. Additionally, these methods are intractable because of the quadratic operations needed. To address these challenges, we break the problem of ECR into two parts: a) a heuristic to efficiently filter out a large number of non-coreferent pairs, and b) a training approach on a balanced set of coreferent and non-coreferent mention pairs. By following this approach, we show that we get comparable results to the state of the art on two popular ECR datasets while significantly reducing compute requirements. We also analyze the mention pairs that are “hard” to accurately classify as coreferent or non-coreferentcode repo: \mathtt{\_ce\_coref}.

pdf bib
SCCS: Semantics-Consistent Cross-domain Summarization via Optimal Transport Alignment
Jielin Qiu | Jiacheng Zhu | Mengdi Xu | Franck Dernoncourt | Trung Bui | Zhaowen Wang | Bo Li | Ding Zhao | Hailin Jin

Multimedia summarization with multimodal output (MSMO) is a recently explored application in language grounding. It plays an essential role in real-world applications, i.e., automatically generating cover images and titles for news articles or providing introductions to online videos. However, existing methods extract features from the whole video and article and use fusion methods to select the representative one, thus usually ignoring the critical structure and varying semantics with video/document. In this work, we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal transport alignment with visual and textual segmentation. Our method first decomposes both videos and articles into segments in order to capture the structural semantics, and then follows a cross-domain alignment objective with optimal transport distance, which leverages multimodal interaction to match and select the visual and textual summary. We evaluated our method on three MSMO datasets, and achieved performance improvement by 8% & 6% of textual and 6.6% &5.7% of video summarization, respectively, which demonstrated the effectiveness of our method in producing high-quality multimodal summaries.

pdf bib
General-to-Specific Transfer Labeling for Domain Adaptable Keyphrase Generation
Rui Meng | Tong Wang | Xingdi Yuan | Yingbo Zhou | Daqing He

Training keyphrase generation (KPG) models require a large amount of annotated data, which can be prohibitively expensive and often limited to specific domains. In this study, we first demonstrate that large distribution shifts among different domains severely hinder the transferability of KPG models. We then propose a three-stage pipeline, which gradually guides KPG models’ learning focus from general syntactical features to domain-related semantics, in a data-efficient manner. With domain-general phrase pre-training, we pre-train Sequence-to-Sequence models with generic phrase annotations that are widely available on the web, which enables the models to generate phrases in a wide range of domains. The resulting model is then applied in the Transfer Labeling stage to produce domain-specific pseudo keyphrases, which help adapt models to a new domain. Finally, we fine-tune the model with limited data with true labels to fully adapt it to the target domain. Our experiment results show that the proposed process can produce good quality keyphrases in new domains and achieve consistent improvements after adaptation with limited in-domain annotated data. All code and datasets are available at

pdf bib
E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition
Zhen Zhang | Mengting Hu | Shiwan Zhao | Minlie Huang | Haotian Wang | Lemao Liu | Zhirui Zhang | Zhe Liu | Bingzhe Wu

Most named entity recognition (NER) systems focus on improving model performance, ignoring the need to quantify model uncertainty, which is critical to the reliability of NER systems in open environments. Evidential deep learning (EDL) has recently been proposed as a promising solution to explicitly model predictive uncertainty for classification tasks. However, directly applying EDL to NER applications faces two challenges, i.e., the problems of sparse entities and OOV/OOD entities in NER tasks. To address these challenges, we propose a trustworthy NER framework named E-NER by introducing two uncertainty-guided loss terms to the conventional EDL, along with a series of uncertainty-guided training strategies. Experiments show that E-NER can be applied to multiple NER paradigms to obtain accurate uncertainty estimation. Furthermore, compared to state-of-the-art baselines, the proposed method achieves a better OOV/OOD detection performance and better generalization ability on OOV entities.

pdf bib
LMCap: Few-shot Multilingual Image Captioning by Retrieval Augmented Language Model Prompting
Rita Ramos | Bruno Martins | Desmond Elliott

Multilingual image captioning has recently been tackled by training with large-scale machine translated data, which is an expensive, noisy, and time-consuming process. Without requiring any multilingual caption data, we propose LMCap, an image-blind few-shot multilingual captioning model that works by prompting a language model with retrieved captions. Specifically, instead of following the standard encoder-decoder paradigm, given an image, LMCap first retrieves the captions of similar images using a multilingual CLIP encoder. These captions are then combined into a prompt for an XGLM decoder, in order to generate captions in the desired language. In other words, the generation model does not directly process the image, instead it processes retrieved captions. Experiments on the XM3600 dataset of geographically diverse images show that our model is competitive with fully-supervised multilingual captioning models, without requiring any supervised training on any captioning data.

pdf bib
Boosting Text Augmentation via Hybrid Instance Filtering Framework
Heng Yang | Ke Li

Text augmentation is an effective technique for addressing the problem of insufficient data in natural language processing. However, existing text augmentation methods tend to focus on few-shot scenarios and usually perform poorly on large public datasets. Our research indicates that existing augmentation methods often generate instances with shifted feature spaces, which leads to a drop in performance on the augmented data (for example, EDA generally loses approximately 2% in aspect-based sentiment classification). To address this problem, we propose a hybrid instance-filtering framework (BoostAug) based on pre-trained language models that can maintain a similar feature space with natural datasets. BoostAug is transferable to existing text augmentation methods (such as synonym substitution and back translation) and significantly improves the augmentation performance by 2-3% in classification accuracy. Our experimental results on three classification tasks and nine public datasets show that BoostAug addresses the performance drop problem and outperforms state-of-the-art text augmentation methods. Additionally, we release the code to help improve existing augmentation methods on large datasets.

pdf bib
Gradient-Boosted Decision Tree for Listwise Context Model in Multimodal Review Helpfulness Prediction
Thong Nguyen | Xiaobao Wu | Xinshuai Dong | Cong-Duy Nguyen | Zhen Hai | Lidong Bing | Anh Tuan Luu

Multimodal Review Helpfulness Prediction (MRHP) aims to rank product reviews based on predicted helpfulness scores and has been widely applied in e-commerce via presenting customers with useful reviews. Previous studies commonly employ fully-connected neural networks (FCNNs) as the final score predictor and pairwise loss as the training objective. However, FCNNs have been shown to perform inefficient splitting for review features, making the model difficult to clearly differentiate helpful from unhelpful reviews. Furthermore, pairwise objective, which works on review pairs, may not completely capture the MRHP goal to produce the ranking for the entire review list, and possibly induces low generalization during testing. To address these issues, we propose a listwise attention network that clearly captures the MRHP ranking context and a listwise optimization objective that enhances model generalization. We further propose gradient-boosted decision tree as the score predictor to efficaciously partition product reviews’ representations. Extensive experiments demonstrate that our method achieves state-of-the-art results and polished generalization performance on two large-scale MRHP benchmark datasets.

pdf bib
Extract and Attend: Improving Entity Translation in Neural Machine Translation
Zixin Zeng | Rui Wang | Yichong Leng | Junliang Guo | Shufang Xie | Xu Tan | Tao Qin | Tie-Yan Liu

While Neural Machine Translation (NMT) has achieved great progress in recent years, it still suffers from inaccurate translation of entities (e.g., person/organization name, location), due to the lack of entity training instances. When we humans encounter an unknown entity during translation, we usually first look up in a dictionary and then organize the entity translation together with the translations of other parts to form a smooth target sentence. Inspired by this translation process, we propose an Extract-and-Attend approach to enhance entity translation in NMT, where the translation candidates of source entities are first extracted from a dictionary and then attended to by the NMT model to generate the target sentence. Specifically, the translation candidates are extracted by first detecting the entities in a source sentence and then translating the entities through looking up in a dictionary. Then, the extracted candidates are added as a prefix of the decoder input to be attended to by the decoder when generating the target sentence through self-attention. Experiments conducted on En-Zh and En-Ru demonstrate that the proposed method is effective on improving both the translation accuracy of entities and the overall translation quality, with up to 35% reduction on entity error rate and 0.85 gain on BLEU and 13.8 gain on COMET.

pdf bib
Real-World Compositional Generalization with Disentangled Sequence-to-Sequence Learning
Hao Zheng | Mirella Lapata

Compositional generalization is a basic mechanism in human language learning, which current neural networks struggle with. A recently proposed Disentangled sequence-to-sequence model (Dangle) shows promising generalization capability by learning specialized encodings for each decoding step. We introduce two key modifications to this model which encourage more disentangled representations and improve its compute and memory efficiency, allowing us to tackle compositional generalization in a more realistic setting. Specifically, instead of adaptively re-encoding source keys and values at each time step, we disentangle their representations and only re-encode keys periodically, at some interval. Our new architecture leads to better generalization performance across existing tasks and datasets, and a new machine translation benchmark which we create by detecting naturally occurring compositional patterns in relation to a training set. We show this methodology better emulates real-world requirements than artificial challenges.

pdf bib
Cross-lingual AMR Aligner: Paying Attention to Cross-Attention
Abelardo Carlos Martínez Lorenzo | Pere Lluís Huguet Cabot | Roberto Navigli

This paper introduces a novel aligner for Abstract Meaning Representation (AMR) graphs that can scale cross-lingually, and is thus capable of aligning units and spans in sentences of different languages. Our approach leverages modern Transformer-based parsers, which inherently encode alignment information in their cross-attention weights, allowing us to extract this information during parsing. This eliminates the need for English-specific rules or the Expectation Maximization (EM) algorithm that have been used in previous approaches. In addition, we propose a guided supervised method using alignment to further enhance the performance of our aligner. We achieve state-of-the-art results in the benchmarks for AMR alignment and demonstrate our aligner’s ability to obtain them across multiple languages. Our code will be available at [](

pdf bib
Zero-Shot Text Classification via Self-Supervised Tuning
Chaoqun Liu | Wenxuan Zhang | Guizhen Chen | Xiaobao Wu | Anh Tuan Luu | Chip Hong Chang | Lidong Bing

Existing solutions to zero-shot text classification either conduct prompting with pre-trained language models, which is sensitive to the choices of templates, or rely on large-scale annotated data of relevant tasks for meta-tuning. In this work, we propose a new paradigm based on self-supervised learning to solve zero-shot text classification tasks by tuning the language models with unlabeled data, called self-supervised tuning. By exploring the inherent structure of free texts, we propose a new learning objective called first sentence prediction to bridge the gap between unlabeled data and text classification tasks. After tuning the model to learn to predict the first sentence in a paragraph based on the rest, the model is able to conduct zero-shot inference on unseen tasks such as topic classification and sentiment analysis. Experimental results show that our model outperforms the state-of-the-art baselines on 7 out of 10 tasks. Moreover, the analysis reveals that our model is less sensitive to the prompt design. Our code and pre-trained models are publicly available at

pdf bib
Logical Transformers: Infusing Logical Structures into Pre-Trained Language Models
Borui Wang | Qiuyuan Huang | Budhaditya Deb | Aaron Halfaker | Liqun Shao | Daniel McDuff | Ahmed Hassan Awadallah | Dragomir Radev | Jianfeng Gao

Natural language contains rich logical structures and logical information, and correctly detecting and accurately understanding these logical structures and information underlying natural language texts is very crucial for NLP models’ performance on many important NLU and NLG tasks. Existing pre-trained language models based on the transformer architecture mostly adopt a classical design for constructing their input embeddings that ignores the logical structures underlying natural language texts, thus limiting their ability to better capture and encode key logical information in the input sequences. To overcome such limitations, in this paper we first propose a novel approach to construct logic-aware input embeddings for transformer language models through a combination of logic detection, logic mapping and hierarchical logical projections, and then develop a corresponding new modeling paradigm that can upgrade existing transformer language models into logical transformers to boost their performance on different NLU and NLG tasks. Our empirical experiments on four important and challenging NLU and NLG tasks demonstrate that our proposed logical transformer language models can achieve superior performance over their baseline transformer models through a deeper understanding of the logical structures of texts.

pdf bib
Large Language Models with Controllable Working Memory
Daliang Li | Ankit Singh Rawat | Manzil Zaheer | Xin Wang | Michal Lukasik | Andreas Veit | Felix Yu | Sanjiv Kumar

Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), partly owing to the massive amounts of world knowledge they memorize during pretraining. While many downstream applications provide the model with an informational context to aid its underlying task, how the model’s world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model’s memorized knowledge. This enables model predictions to be grounded in the context, which then facilitates updating specific model predictions without frequently retraining the model. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM models (both pretrained and finetuned) could exhibit low controllability and robustness that does not improve with increasing the model size. As a solution, we propose a simple yet effective method – knowledge aware finetuning (KAFT) – to strengthen both controllability and robustness by injecting counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.

pdf bib
A Unified Evaluation Framework for Novelty Detection and Accommodation in NLP with an Instantiation in Authorship Attribution
Neeraj Varshney | Himanshu Gupta | Eric Robertson | Bing Liu | Chitta Baral

State-of-the-art natural language processing models have been shown to achieve remarkable performance in ‘closed-world’ settings where all the labels in the evaluation set are known at training time. However, in real-world settings, ‘novel’ instances that do not belong to any known class are often observed. This renders the ability to deal with novelties crucial. To initiate a systematic research in this important area of ‘dealing with novelties’, we introduce NoveltyTask, a multi-stage task to evaluate a system’s performance on pipelined novelty ‘detection’ and ‘accommodation’ tasks. We provide mathematical formulation of NoveltyTask and instantiate it with the authorship attribution task that pertains to identifying the correct author of a given text. We use amazon reviews corpus and compile a large dataset (consisting of 250k instances across 200 authors/labels) for NoveltyTask. We conduct comprehensive experiments and explore several baseline methods for the task. Our results show that the methods achieve considerably low performance making the task challenging and leaving sufficient room for improvement. Finally, we believe our work will encourage research in this underexplored area of dealing with novelties, an important step en route to developing robust systems.

pdf bib
CDA: A Contrastive Data Augmentation Method for Alzheimer’s Disease Detection
Junwen Duan | Fangyuan Wei | Jin Liu | Hongdong Li | Tianming Liu | Jianxin Wang

Alzheimer’s Disease (AD) is a neurodegenerative disorder that significantly impacts a patient’s ability to communicate and organize language. Traditional methods for detecting AD, such as physical screening or neurological testing, can be challenging and time-consuming. Recent research has explored the use of deep learning techniques to distinguish AD patients from non-AD patients by analysing the spontaneous speech. These models, however, are limited by the availability of data. To address this, we propose a novel contrastive data augmentation method, which simulates the cognitive impairment of a patient by randomly deleting a proportion of text from the transcript to create negative samples. The corrupted samples are expected to be in worse conditions than the original by a margin. Experimental results on the benchmark ADReSS Challenge dataset demonstrate that our model achieves the best performance among language-based models.

pdf bib
Disentangling Aspect and Stance via a Siamese Autoencoder for Aspect Clustering of Vaccination Opinions
Lixing Zhu | Runcong Zhao | Gabriele Pergola | Yulan He

Mining public opinions about vaccines from social media has been increasingly relevant to analyse trends in public debates and to provide quick insights to policy-makers. However, the application of existing models has been hindered by the wide variety of users’ attitudes and the new aspects continuously arising in the public debate. Existing approaches, frequently framed via well-known tasks, such as aspect classification or text span detection, make direct usage of the supervision information constraining the models to predefined aspect classes, while still not distinguishing those aspects from users’ stances. As a result, this has significantly hindered the dynamic integration of new aspects. We thus propose a model, namely Disentangled Opinion Clustering (DOC), for vaccination opinion mining from social media. DOC is able to disentangle users’ stances from opinions via a disentangling attention mechanism and a Swapping-Autoencoder, and is designed to process unseen aspect categories via a clustering approach, leveraging clustering-friendly representations induced by out-of-the-box Sentence-BERT encodings and disentangling mechanisms. We conduct a thorough experimental assessment demonstrating the benefit of the disentangling mechanisms and cluster-based approach on both the quality of aspect clusters and the generalization across new aspect categories, outperforming existing methodologies on aspect-based opinion mining.

pdf bib
Temporal Relation Classification using Boolean Question Answering
Omer Cohen | Kfir Bar

Classifying temporal relations between a pair of events is crucial to natural language understanding and a well-known natural language processing task. Given a document and two event mentions, the task is aimed at finding which one started first. We propose an efficient approach for temporal relation classification (TRC) using a boolean question answering (QA) model which we fine-tune on questions that we carefully design based on the TRC annotation guidelines, thereby mimicking the way human annotators approach the task. Our new QA-based TRC model outperforms previous state-of-the-art results by 2.4%.

pdf bib
Are Synonym Substitution Attacks Really Synonym Substitution Attacks?
Cheng-Han Chiang | Hung-yi Lee

In this paper, we explore the following question: Are synonym substitution attacks really synonym substitution attacks (SSAs)?We approach this question by examining how SSAs replace words in the original sentence and show that there are still unresolved obstacles that make current SSAs generate invalid adversarial samples. We reveal that four widely used word substitution methods generate a large fraction of invalid substitution words that are ungrammatical or do not preserve the original sentence’s semantics. Next, we show that the semantic and grammatical constraints used in SSAs for detecting invalid word replacements are highly insufficient in detecting invalid adversarial samples.

pdf bib
DivHSK: Diverse Headline Generation using Self-Attention based Keyword Selection
Venkatesh E | Kaushal Maurya | Deepak Kumar | Maunendra Sankar Desarkar

Diverse headline generation is an NLP task where given a news article, the goal is to generate multiple headlines that are true to the content of the article but are different among themselves. This task aims to exhibit and exploit semantically similar one-to-many relationships between a source news article and multiple target headlines. Toward this, we propose a novel model called DIVHSK. It has two components:KEYSELECT for selecting the important keywords, and SEQGEN, for finally generating the multiple diverse headlines. In KEYSELECT, we cluster the self-attention heads of the last layer of the pre-trained encoder and select the most-attentive theme and general keywords from the source article. Then, cluster-specific keyword sets guide the SEQGEN, a pre-trained encoder-decoder model, to generate diverse yet semantically similar headlines. The proposed model consistently outperformed existing literature and our strong baselines and emerged as a state-of-the-art model. We have also created a high-quality multi-reference headline dataset from news articles.

pdf bib
Similarity-Based Content Scoring - A more Classroom-Suitable Alternative to Instance-Based Scoring?
Marie Bexte | Andrea Horbach | Torsten Zesch

Automatically scoring student answers is an important task that is usually solved using instance-based supervised learning. Recently, similarity-based scoring has been proposed as an alternative approach yielding similar perfor- mance. It has hypothetical advantages such as a lower need for annotated training data and better zero-shot performance, both of which are properties that would be highly beneficial when applying content scoring in a realistic classroom setting. In this paper we take a closer look at these alleged advantages by comparing different instance-based and similarity-based methods on multiple data sets in a number of learning curve experiments. We find that both the demand on data and cross-prompt performance is similar, thus not confirming the former two suggested advantages. The by default more straightforward possibility to give feedback based on a similarity-based approach may thus tip the scales in favor of it, although future work is needed to explore this advantage in practice.

pdf bib
Pragmatic Inference with a CLIP Listener for Contrastive Captioning
Jiefu Ou | Benno Krojer | Daniel Fried

We propose a simple yet effective and robust method for contrastive captioning: generating discriminative captions that distinguish target images from very similar alternative distractor images. Our approach is built on a pragmatic inference procedure that formulates captioning as a reference game between a speaker, which produces possible captions describing the target, and a listener, which selects the target given the caption. Unlike previous methods that derive both speaker and listener distributions from a single captioning model, we leverage an off-the-shelf CLIP model to parameterize the listener. Compared with captioner-only pragmatic models, our method benefits from rich vision-language alignment representations from CLIP when reasoning over distractors. Like previous methods for discriminative captioning, our method uses a hyperparameter to control the tradeoff between the informativity (how likely captions are to allow a human listener to discriminate the target image) and the fluency of the captions. However, we find that our method is substantially more robust to the value of this hyperparameter than past methods, which allows us to automatically optimize the captions for informativity — outperforming past methods for discriminative captioning by 11% to 15% accuracy in human evaluations.

pdf bib
A Statistical Exploration of Text Partition Into Constituents: The Case of the Priestly Source in the Books of Genesis and Exodus
Gideon Yoffe | Axel Bühler | Nachum Dershowitz | Thomas Romer | Eli Piasetzky | Israel Finkelstein | Barak Sober

We present a pipeline for a statistical stylometric exploration of a hypothesized partition of a text. Given a parameterization of the text, our pipeline: (1) detects literary features yielding the optimal overlap between the hypothesized and unsupervised partitions, (2) performs a hypothesis-testing analysis to quantify the statistical significance of the optimal overlap, while conserving implicit correlations between units of text that are more likely to be grouped, and (3) extracts and quantifies the importance of features most responsible for the classification, estimates their statistical stability and cluster-wise abundance. We apply our pipeline to the first two books in the Bible, where one stylistic component stands out in the eyes of biblical scholars, namely, the Priestly component. We identify and explore statistically significant stylistic differences between the Priestly and non-Priestly components.

pdf bib
A Language-First Approach for Procedure Planning
Jiateng Liu | Sha Li | Zhenhailong Wang | Manling Li | Heng Ji

Procedure planning, or the ability to predict a series of steps that can achieve a given goal conditioned on the current observation, is critical for building intelligent embodied agents that can assist users in everyday tasks. Encouraged by the recent success of language models (LMs) for zero-shot and few-shot planning, we hypothesize that LMs may be equipped with stronger priors for planning compared to their visual counterparts. To this end, we propose a language-first procedure planning framework with a modularized design: we first align the current and goal observations with corresponding steps and then use a pre-trained LM to predict the intermediate steps. Under this framework, we find that using an image captioning model for alignment can already match state-of-the-art performance and by designing a double retrieval model conditioned over current and goal observations jointly, we can achieve large improvements (19.2%-98.9% relatively higher success rate than state-of-the-art) on both COIN and CrossTask benchmarks. Our work verifies the planning ability of LMs and demonstrates how LMs can serve as a powerful “reasoning engine” even when the input is provided in another modality.

pdf bib
An Empirical Analysis of Leveraging Knowledge for Low-Resource Task-Oriented Semantic Parsing
Mayank Kulkarni | Aoxiao Zhong | Nicolas Guenon des mesnards | Sahar Movaghati | Mukund Sridhar | He Xie | Jianhua Lu

Task-oriented semantic parsing has drawn a lot of interest from the NLP community, and especially the voice assistant industry as it enables representing the meaning of user requests with arbitrarily nested semantics, including multiple intents and compound entities. SOTA models are large seq2seq transformers and require hundreds of thousands of annotated examples to be trained. However annotating such data to bootstrap new domains or languages is expensive and error-prone, especially for requests made of nested semantics. In addition large models easily break the tight latency constraints imposed in a user-facing production environment. As part of this work we explore leveraging external knowledge to improve model accuracy in low-resource and low-compute settings. We demonstrate that using knowledge-enhanced encoders inside seq2seq models does not result in performance gains by itself, but jointly learning to uncover entities in addition to the parse generation is a simple yet effective way of improving performance across the board. We show this is especially true in the low-compute scarce-data setting and for entity-rich domains, with relative gains up to 74.48% on the TOPv2 dataset.

pdf bib
TempLM: Distilling Language Models into Template-Based Generators
Tianyi Zhang | Mina Lee | Xiang Lisa Li | Ende Shen | Tatsunori Hashimoto

While pretrained language models (PLMs) have greatly improved text generation, they have also been known to produce unfaithful or inappropriate content. In contrast, classic template-based systems provide strong guarantees of faithfulness at the cost of fluency. We propose TempLM, which achieves the best of both worlds by distilling a PLM into a template-based generator. On the E2E and SynthBio data-to-text datasets, we show that TempLM is more faithful than the original PLM and is more fluent than prior template systems. Notably, on an out-of-domain evaluation, TempLM reduces a finetuned BART model’s unfaithfulness rate from 83% to 0%. In a human study, we find that TempLM’s templates substantially improve upon human-written ones in BERTScore.

pdf bib
Incorporating Graph Information in Transformer-based AMR Parsing
Pavlo Vasylenko | Pere Lluís Huguet Cabot | Abelardo Carlos Martínez Lorenzo | Roberto Navigli

Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at [](

pdf bib
Rethinking the Word-level Quality Estimation for Machine Translation from Human Judgement
Zhen Yang | Fandong Meng | Yuanmeng Yan | Jie Zhou

Word-level Quality Estimation (QE) of Machine Translation (MT) aims to detect potential translation errors in the translated sentence without reference. Typically, conventional works on word-level QE are usually designed to predict the quality of translated words in terms of the post-editing effort, where the word labels in the dataset, i.e., OK or BAD, are automatically generated by comparing words between MT sentences and the post-edited sentences through a Translation Error Rate (TER) toolkit. While the post-editing effort can be used to measure the translation quality to some extent, we find it usually conflicts with human judgment on whether the word is well or poorly translated. To investigate this conflict, we first create a golden benchmark dataset, namely HJQE (Human Judgement on Quality Estimation), where the source and MT sentences are identical to the original TER-based dataset and the expert translators directly annotate the poorly translated words on their judgments. Based on our analysis, we further propose two tag-correcting strategies which can make the TER-based artificial QE corpus closer to HJQE. We conduct substantial experiments based on the publicly available WMT En-De and En-Zh corpora. The results not only show our proposed dataset is more consistent with human judgment but also confirm the effectiveness of the proposed tag-correcting strategies.For reviewers, the corpora and codes can be found in the attached files.

pdf bib
PV2TEA: Patching Visual Modality to Textual-Established Information Extraction
Hejie Cui | Rongmei Lin | Nasser Zalmout | Chenwei Zhang | Jingbo Shang | Carl Yang | Xian Li

Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute in- formation extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established ex- tractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets1 demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.

pdf bib
Structural Contrastive Pretraining for Cross-Lingual Comprehension
Nuo Chen | Linjun Shou | Tengtao Song | Ming Gong | Jian Pei | Jianhui Chang | Daxin Jiang | Jia Li

To present, multilingual language models trained using various pre-training tasks like mask language modeling (MLM) have yielded encouraging results on a wide range of downstream tasks. Despite the promising performances, structural knowledge in cross-lingual corpus is less explored in current works, leading to the semantic misalignment. In this paper, we propose a new pre-training task named Structural Contrast Pretraining (SCP) to align the structural words in a parallel sentence, enhancing the models’ ability to comprehend cross-lingual representations. Concretely, each structural word in source and target languages is regarded as a positive pair in SCP. Since contrastive learning compares positive and negative pairs, an increase in the frequency of negative pairings could enhance the performance of the resulting model. Therefore, we further propose Cross-lingual Momentum Contrast (CL-MoCo) to increase the number of negative pairs by maintaining a large size of the queue. CL-MoCo extends the original Moco approach into cross-lingual training and jointly optimizes the source-to-target language and target-to-source language representations, resulting in a more suitable encoder for cross-lingual transfer. We conduct extensive experiments to validate the proposed approach on three cross-lingual tasks across five datasets such as MLQA, WikiAnn, etc, and results prove the effectiveness of our method.

pdf bib
Reducing Sensitivity on Speaker Names for Text Generation from Dialogues
Qi Jia | Haifeng Tang | Kenny Zhu

Changing speaker names consistently throughout a dialogue should not affect its meaning and corresponding outputs for text generation from dialogues. However, pre-trained language models, serving as the backbone for dialogue-processing tasks, have shown to be sensitive to nuances. This may result in unfairness in real-world applications. No comprehensive analysis of this problem has been done in the past. In this work, we propose to quantitatively measure a model’s sensitivity on speaker names, and comprehensively evaluate a number of known methods for reducing speaker name sensitivity, including a novel approach of our own. Extensive experiments on multiple datasets provide a benchmark for this problem and show the favorable performance of our approach in sensitivity reduction and quality of generation.

pdf bib
Topic and Style-aware Transformer for Multimodal Emotion Recognition
Shuwen Qiu | Nitesh Sekhar | Prateek Singhal

Understanding emotion expressions in multimodal signals is key for machines to have a better understanding of human communication. While language, visual and acoustic modalities can provide clues from different perspectives, the visual modality is shown to make minimal contribution to the performance in the emotion recognition field due to its high dimensionality. Therefore, we first leverage the strong multimodality backbone VATT to project the visual signal to the common space with language and acoustic signals. Also, we propose content-oriented features Topic and Speaking style on top of it to approach the subjectivity issues. Experiments conducted on the benchmark dataset MOSEI show our model can outperform SOTA results and effectively incorporate visual signals and handle subjectivity issues by serving as content “normalization”.

pdf bib
Exploiting Abstract Meaning Representation for Open-Domain Question Answering
Cunxiang Wang | Zhikun Xu | Qipeng Guo | Xiangkun Hu | Xuefeng Bai | Zheng Zhang | Yue Zhang

The Open-Domain Question Answering (ODQA) task involves retrieving and subsequently generating answers from fine-grained relevant passages within a database. Current systems leverage Pretrained Language Models (PLMs) to model the relationship between questions and passages. However, the diversity in surface form expressions can hinder the model’s ability to capture accurate correlations, especially within complex contexts. Therefore, we utilize Abstract Meaning Representation (AMR) graphs to assist the model in understanding complex semantic information. We introduce a method known as Graph-as-Token (GST) to incorporate AMRs into PLMs. Results from Natural Questions (NQ) and TriviaQA (TQ) demonstrate that our GST method can significantly improve performance, resulting in up to 2.44/3.17 Exact Match score improvements on NQ/TQ respectively. Furthermore, our method enhances robustness and outperforms alternative Graph Neural Network (GNN) methods for integrating AMRs. To the best of our knowledge, we are the first to employ semantic graphs in ODQA.

pdf bib
Nonparametric Masked Language Modeling
Sewon Min | Weijia Shi | Mike Lewis | Xilun Chen | Wen-tau Yih | Hannaneh Hajishirzi | Luke Zettlemoyer

Existing language models (LMs) predict tokens with a softmax over a finite vocabulary, which can make it difficult to predict rare tokens or phrases. We introduce NPM, the first nonparametric masked language model that replaces this softmax with a nonparametric distribution over every phrase in a reference corpus. NPM fills in the [MASK] solely from retrieving a token from a text corpus. We show that NPM can be efficiently trained with a contrastive objective and an in-batch approximation to full corpus retrieval. Zero-shot evaluation on 16 tasks including classification, fact probing and question answering demonstrates that NPM outperforms significantly larger parametric models, either with or without a retrieve-and-generate approach. It is particularly better at dealing with rare patterns (word senses or facts) and predicting rare or nearly unseen words (e.g., non-Latin script). We release the model and code at

pdf bib
Pay More Attention to Relation Exploration for Knowledge Base Question Answering
Yong Cao | Xianzhi Li | Huiwen Liu | Wen Dai | Shuai Chen | Bin Wang | Min Chen | Daniel Hershcovich

Knowledge base question answering (KBQA) is a challenging task that aims to retrieve correct answers from large-scale knowledge bases. Existing attempts primarily focus on entity representation and final answer reasoning, which results in limited supervision for this task. Moreover, the relations, which empirically determine the reasoning path selection, are not fully considered in recent advancements. In this study, we propose a novel framework, RE-KBQA, that utilizes relations in the knowledge base to enhance entity representation and introduce additional supervision. We explore guidance from relations in three aspects, including (1) distinguishing similar entities by employing a variational graph auto-encoder to learn relation importance; (2) exploring extra supervision by predicting relation distributions as soft labels with a multi-task scheme; (3) designing a relation-guided re-ranking algorithm for post-processing. Experimental results on two benchmark datasets demonstrate the effectiveness and superiority of our framework, improving the F1 score by 5.8% from 40.5 to 46.3 on CWQ and 5.7% from 62.8 to 68.5 on WebQSP, better or on par with state-of-the-art methods.

pdf bib
Speaking Multiple Languages Affects the Moral Bias of Language Models
Katharina Haemmerl | Bjoern Deiseroth | Patrick Schramowski | Jindřich Libovický | Constantin Rothkopf | Alexander Fraser | Kristian Kersting

Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MORALDIRECTION framework to multilingual models, comparing results in German, Czech, Arabic, Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions. We release our code and models.

pdf bib
Retrieving Relevant Context to Align Representations for Cross-lingual Event Detection
Chien Nguyen | Linh Ngo | Thien Nguyen

We study the problem of cross-lingual transfer learning for event detection (ED) where models trained on a source language are expected to perform well on data for a new target language. Among a few recent works for this problem, the main approaches involve representation matching (e.g., adversarial training) that aims to eliminate language-specific features from the representations to achieve the language-invariant representations. However, due to the mix of language-specific features with event-discriminative context, representation matching methods might also remove important features for event prediction, thus hindering the performance for ED. To address this issue, we introduce a novel approach for cross-lingual ED where representations are augmented with additional context (i.e., not eliminating) to bridge the gap between languages while enriching the contextual information to facilitate ED. At the core of our method involves a retrieval model that retrieves relevant sentences in the target language for an input sentence to compute augmentation representations. Experiments on three languages demonstrate the state-of-the-art performance of our model for cross-lingual ED.

pdf bib
NormNet: Normalize Noun Phrases for More Robust NLP
Minlong Peng | Mingming Sun

A critical limitation of deep NLP models is their over-fitting over spurious features. Previous work has proposed several approaches to debunk such features and reduce their impact on the learned models. In this work, a normalization strategy is proposed to eliminate the false features caused by the textual surfaces of noun phrases. The motivation for this strategy is that noun phrases often play the role of slots in textual expressions and their exact forms are often not that important for performing the final task. As an intuitive example, consider the expression ”x like eating y". There are a huge number of suitable instantiations for x and y in the locale. However, humans can already infer the sentiment polarity of x toward y without knowing their exact forms.Based on this intuition, we introduce NormNet, a pretrained language model based network, to implement the normalization strategy. NormNet learns to replace as many noun phrases in the input sentence as possible with pre-defined base forms. The output of NormNet is then fed as input to a prompt-based learning model to perform label prediction. To evaluate the effectiveness of our strategy, we conducted experimental studies on several tasks, including aspect sentiment classification (ASC), semantic text similarity (STS), and natural language inference (NLI). The experimental results confirm the effectiveness of our strategy.

pdf bib
Cross Encoding as Augmentation: Towards Effective Educational Text Classification
Hyun Seung Lee | Seungtaek Choi | Yunsung Lee | Hyeongdon Moon | Shinhyeok Oh | Myeongho Jeong | Hyojun Go | Christian Wallraven

Text classification in education, usually called auto-tagging, is the automated process of assigning relevant tags to educational content, such as questions and textbooks. However, auto-tagging suffers from a data scarcity problem, which stems from two major challenges: 1) it possesses a large tag space and 2) it is multi-label. Though a retrieval approach is reportedly good at low-resource scenarios, there have been fewer efforts to directly address the data scarcity problem. To mitigate these issues, here we propose a novel retrieval approach CEAA that provides effective learning in educational text classification. Our main contributions are as follows: 1) we leverage transfer learning from question-answering datasets, and 2) we propose a simple but effective data augmentation method introducing cross-encoder style texts to a bi-encoder architecture for more efficient inference. An extensive set of experiments shows that our proposed method is effective in multi-label scenarios and low-resource tags compared to state-of-the-art models.

pdf bib
Adversarial Robustness of Prompt-based Few-Shot Learning for Natural Language Understanding
Venkata Prabhakara Sarath Nookala | Gaurav Verma | Subhabrata Mukherjee | Srijan Kumar

State-of-the-art few-shot learning (FSL) methods leverage prompt-based fine-tuning to obtain remarkable results for natural language understanding (NLU) tasks. While much of the prior FSL methods focus on improving downstream task performance, there is a limited understanding of the adversarial robustness of such methods. In this work, we conduct an extensive study of several state-of-the-art FSL methods to assess their robustness to adversarial perturbations. To better understand the impact of various factors towards robustness (or the lack of it), we evaluate prompt-based FSL methods against fully fine-tuned models for aspects such as the use of unlabeled data, multiple prompts, number of few-shot examples, model size and type. Our results on six GLUE tasks indicate that compared to fully fine-tuned models, vanilla FSL methods lead to a notable relative drop in task performance (i.e., are less robust) in the face of adversarial perturbations. However, using (i) unlabeled data for prompt-based FSL and (ii) multiple prompts flip the trend – the few-shot learning approaches demonstrate a lesser drop in task performance than fully fine-tuned models. We further demonstrate that increasing the number of few-shot examples and model size lead to increased adversarial robustness of vanilla FSL methods. Broadly, our work sheds light on the adversarial robustness evaluation of prompt-based FSL methods for NLU tasks.

pdf bib
This prompt is measuring <mask>: evaluating bias evaluation in language models
Seraphina Goldfarb-Tarrant | Eddie Ungless | Esma Balkir | Su Lin Blodgett

Bias research in NLP seeks to analyse models for social biases, thus helping NLP practitioners uncover, measure, and mitigate social harms. We analyse the body of work that uses prompts and templates to assess bias in language models. We draw on a measurement modelling framework to create a taxonomy of attributes that capture what a bias test aims to measure and how that measurement is carried out. By applying this taxonomy to 90 bias tests, we illustrate qualitatively and quantitatively that core aspects of bias test conceptualisations and operationalisations are frequently unstated or ambiguous, carry implicit assumptions, or be mismatched. Our analysis illuminates the scope of possible bias types the field is able to measure, and reveals types that are as yet under-researched. We offer guidance to enable the community to explore a wider section of the possible bias space, and to better close the gap between desired outcomes and experimental design, both for bias and for evaluating language models more broadly.

pdf bib
Towards Open Environment Intent Prediction
Yunhua Zhou | Jiawei Hong | Xipeng Qiu

Out-of-Domain (OOD) Intent Classification and New Intent Discovering are two basic and critical tasks in the Task-Oriented Dialogue System, which are typically treated two independent tasks. Classification focuses on identifying intents beyond the predefined set of the dialog system, but it will not further differentiate detected OOD intents in fine granularity. Discovering focuses on how to cluster unlabeled samples according to their semantic representation, which relies heavily on prior knowledge and can not provide label information for the formed clusters. To be closer to the real user-facing scenarios, we introduce a task paradigm to extend Classification with Discovering referred as Open Environment Intent Prediction, which is to make a further fine-grained discovery of OOD based on OOD Intent Classification. Using various widely-used generative models as an archetype, we propose a general scheme for Open Environment Intent Prediction. In a nutshell, we first perform intent detection to identify the In-domain (IND) samples and then generate labels for those identified as OOD. With these generated labels, we can discover new general intents and provide label information for them. We develop a suite of benchmarks on the existing intent datasets and present a simple yet effective implementation. Extensive experiments demonstrate that our method establishes substantial improvement compared to the baselines.

pdf bib
Teamwork Is Not Always Good: An Empirical Study of Classifier Drift in Class-incremental Information Extraction
Minqian Liu | Lifu Huang

Class-incremental learning (CIL) aims to develop a learning system that can continually learn new classes from a data stream without forgetting previously learned classes. When learning classes incrementally, the classifier must be constantly updated to incorporate new classes, and the drift in decision boundary may lead to severe forgetting. This fundamental challenge, however, has not yet been studied extensively, especially in the setting where no samples from old classes are stored for rehearsal. In this paper, we take a closer look at how the drift in the classifier leads to forgetting, and accordingly, design four simple yet (super-) effective solutions to alleviate the classifier drift: an Individual Classifiers with Frozen Feature Extractor (ICE) framework where we individually train a classifier for each learning session, and its three variants ICE-PL, ICE-O, and ICE-PL&O which further take the logits of previously learned classes from old sessions or a constant logit of an Other class as constraint to the learning of new classifiers. Extensive experiments and analysis on 6 class-incremental information extraction tasks demonstrate that our solutions, especially ICE-O, consistently show significant improvement over the previous state-of-the-art approaches with up to 44.7% absolute F-score gain, providing a strong baseline and insights for future research on class-incremental learning.

pdf bib
C-XNLI: Croatian Extension of XNLI Dataset
Leo Obadić | Andrej Jertec | Marko Rajnović | Branimir Dropuljić

Comprehensive multilingual evaluations have been encouraged by emerging cross-lingual benchmarks and constrained by existing parallel datasets. To partially mitigate this limitation, we extended the Cross-lingual Natural Language Inference (XNLI) corpus with Croatian. The development and test sets were translated by a professional translator, and we show that Croatian is consistent with other XNLI dubs. The train set is translated using Facebook’s 1.2B parameter m2m_100 model. We thoroughly analyze the Croatian train set and compare its quality with the existing machine-translated German set. The comparison is based on 2000 manually scored sentences per language using a variant of the Direct Assessment (DA) score commonly used at the Conference on Machine Translation (WMT). Our findings reveal that a less-resourced language like Croatian is still lacking in translation quality of longer sentences compared to German. However, both sets have a substantial amount of poor quality translations, which should be considered in translation-based training or evaluation setups.

pdf bib
AVATAR: A Parallel Corpus for Java-Python Program Translation
Wasi Uddin Ahmad | Md Golam Rahman Tushar | Saikat Chakraborty | Kai-Wei Chang

Program translation refers to migrating source code from one programming language to another. It has tremendous practical value in software development, as porting software across languages is time-consuming and costly. Automating program translation is of paramount importance in software migration, and recently researchers explored unsupervised approaches due to the unavailability of parallel corpora. However, the availability of pre-trained language models for programming languages enables supervised fine-tuning with a small number of labeled examples. Therefore, we present AVATAR, a collection of 9,515 programming problems and their solutions written in two popular languages, Java and Python. AVATAR is collected from competitive programming sites, online platforms, and open-source repositories. Furthermore, AVATAR includes unit tests for 250 examples to facilitate functional correctness evaluation. We benchmark several pre-trained language models fine-tuned on AVATAR. Experiment results show that the models lack in generating functionally accurate code.

pdf bib
On Dataset Transferability in Active Learning for Transformers
Fran Jelenić | Josip Jukić | Nina Drobac | Jan Snajder

Active learning (AL) aims to reduce labeling costs by querying the examples most beneficial for model learning. While the effectiveness of AL for fine-tuning transformer-based pre-trained language models (PLMs) has been demonstrated, it is less clear to what extent the AL gains obtained with one model transfer to others. We consider the problem of transferability of actively acquired datasets in text classification and investigate whether AL gains persist when a dataset built using AL coupled with a specific PLM is used to train a different PLM. We link the AL dataset transferability to the similarity of instances queried by the different PLMs and show that AL methods with similar acquisition sequences produce highly transferable datasets regardless of the models used. Additionally, we show that the similarity of acquisition sequences is influenced more by the choice of the AL method than the choice of the model.

pdf bib
Structured Persuasive Writing Support in Legal Education: A Model and Tool for German Legal Case Solutions
Florian Weber | Thiemo Wambsganss | Seyed Parsa Neshaei | Matthias Soellner

We present an annotation approach for capturing structured components and arguments inlegal case solutions of German students. Based on the appraisal style, which dictates the structured way of persuasive writing in German law, we propose an annotation scheme with annotation guidelines that identify structured writing in legal case solutions. We conducted an annotation study with two annotators and annotated legal case solutions to capture the structures of a persuasive legal text. Based on our dataset, we trained three transformer-based models to show that the annotated components can be successfully predicted, e.g. to provide users with writing assistance for legal texts. We evaluated a writing support system in which our models were integrated in an online experiment with law students and found positive learning success and users’ perceptions. Finally, we present our freely available corpus of 413 law student case studies to support the development of intelligent writing support systems.

pdf bib
Characterizing the Impacts of Instances on Robustness
Rui Zheng | Zhiheng Xi | Qin Liu | Wenbin Lai | Tao Gui | Qi Zhang | Xuanjing Huang | Jin Ma | Ying Shan | Weifeng Ge

Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.

pdf bib
Generate then Select: Open-ended Visual Question Answering Guided by World Knowledge
Xingyu Fu | Sheng Zhang | Gukyeong Kwon | Pramuditha Perera | Henghui Zhu | Yuhao Zhang | Alexander Hanbo Li | William Yang Wang | Zhiguo Wang | Vittorio Castelli | Patrick Ng | Dan Roth | Bing Xiang

The open-ended Visual Question Answering (VQA) task requires AI models to jointly reason over visual and natural language inputs using world knowledge. Recently, pre-trained Language Models (PLM) such as GPT-3 have been applied to the task and shown to be powerful world knowledge sources. However, these methods suffer from low knowledge coverage caused by PLM bias – the tendency to generate certain tokens over other tokens regardless of prompt changes, and high dependency on the PLM quality – only models using GPT-3 can achieve the best result. To address the aforementioned challenges, we propose RASO: a new VQA pipeline that deploys a generate-then-select strategy guided by world knowledge for the first time. Rather than following the de facto standard to train a multi-modal model that directly generates the VQA answer, {pasted macro ‘MODEL’}name first adopts PLM to generate all the possible answers, and then trains a lightweight answer selection model for the correct answer. As proved in our analysis, RASO expands the knowledge coverage from in-domain training data by a large margin. We provide extensive experimentation and show the effectiveness of our pipeline by advancing the state-of-the-art by 4.1% on OK-VQA, without additional computation cost.

pdf bib
Hence, Socrates is mortal: A Benchmark for Natural Language Syllogistic Reasoning
Yongkang Wu | Meng Han | Yutao Zhu | Lei Li | Xinyu Zhang | Ruofei Lai | Xiaoguang Li | Yuanhang Ren | Zhicheng Dou | Zhao Cao

Syllogistic reasoning, a typical form of deductive reasoning, is a critical capability widely required in natural language understanding tasks, such as text entailment and question answering. To better facilitate research on syllogistic reasoning, we develop a benchmark called SylloBase that differs from existing syllogistic datasets in three aspects: (1) Covering a complete taxonomy of syllogism reasoning patterns; (2) Containing both automatically and manually constructed samples; and (3) Involving both the generation and understanding tasks. We automatically construct 50k template-based syllogism samples by mining syllogism patterns from Wikidata and ConceptNet. To improve our dataset’s naturalness and challenge, we apply GPT-3 to paraphrase the template-based data and further manually rewrite 1,000 samples as the test set. State-of-the-art pre-trained language models can achieve the best generation ROUGE-L of 38.72 by T5 and the best multi-choice accuracy of 72.77% by RoBERTa on SylloBase, which indicates the great challenge of learning diverse syllogistic reasoning types on SylloBase. Our datasets are released at

pdf bib
Categorial grammar induction from raw data
Christian Clark | William Schuler

Grammar induction, the task of learning a set of grammatical rules from raw or minimally labeled text data, can provide clues about what kinds of syntactic structures are learnable without prior knowledge. Recent work (e.g., Kim et al., 2019; Zhu et al., 2020; Jin et al., 2021a) has achieved advances in unsupervised induction of probabilistic context-free grammars (PCFGs). However, categorial grammar induction has received less recent attention, despite allowing inducers to support a larger set of syntactic categories—due to restrictions on how categories can combine—and providing a transparent interface with compositional semantics, opening up possibilities for models that jointly learn form and meaning. Motivated by this, we propose a new model for inducing a basic (Ajdukiewicz, 1935; Bar-Hillel, 1953) categorial grammar. In contrast to earlier categorial grammar induction systems (e.g., Bisk and Hockenmaier, 2012), our model learns from raw data without any part-of-speech information. Experiments on child-directed speech show that our model attains a recall-homogeneity of 0.33 on average, which dramatically increases to 0.59 when a bias toward forward function application is added to the model.

pdf bib
Attribute Controlled Dialogue Prompting
Runcheng Liu | Ahmad Rashid | Ivan Kobyzev | Mehdi Rezagholizadeh | Pascal Poupart

Prompt-tuning has become an increasingly popular parameter-efficient method for adapting large pretrained language models to downstream tasks. However, both discrete prompting and continuous prompting assume fixed prompts for all data samples within a task, neglecting the fact that inputs vary greatly in some tasks such as open-domain dialogue generation. In this paper, we present a novel, instance-specific prompt-tuning algorithm for dialogue generation. Specifically, we generate prompts based on instance-level control code, rather than the conversation history, to explore their impact on controlled dialogue generation. Experiments on popular open-domain dialogue datasets, evaluated on both automated metrics and human evaluation, demonstrate that our method is superior to prompting baselines and comparable to fine-tuning with only 5%-6% of total parameters.

pdf bib
Open-World Factually Consistent Question Generation
Himanshu Maheshwari | Sumit Shekhar | Apoorv Saxena | Niyati Chhaya

Question generation methods based on pre-trained language models often suffer from factual inconsistencies and incorrect entities and are not answerable from the input paragraph. Domain shift – where the test data is from a different domain than the training data - further exacerbates the problem of hallucination. This is a critical issue for any natural language application doing question generation. In this work, we propose an effective data processing technique based on de-lexicalization for consistent question generation across domains. Unlike existing approaches for remedying hallucination, the proposed approach does not filter training data and is generic across question-generation models. Experimental results across six benchmark datasets show that our model is robust to domain shift and produces entity-level factually consistent questions without significant impact on traditional metrics.

pdf bib
Contrastive Learning of Sociopragmatic Meaning in Social Media
Chiyu Zhang | Muhammad Abdul-Mageed | Ganesh Jawahar

Recent progress in representation and contrastive learning in NLP has not widely considered the class of sociopragmatic meaning (i.e., meaning in interaction within different language communities). To bridge this gap, we propose a novel framework for learning task-agnostic representations transferable to a wide range of sociopragmatic tasks (e.g., emotion, hate speech, humor, sarcasm). Our framework outperforms other contrastive learning frameworks for both in-domain and out-of-domain data, across both the general and few-shot settings. For example, compared to two popular pre-trained language models, our model obtains an improvement of 11.66 average F1 on 16 datasets when fine-tuned on only 20 training samples per dataset. We also show that our framework improves uniformity and preserves the semantic structure of representations. Our code is available at:

pdf bib
Noisy Positive-Unlabeled Learning with Self-Training for Speculative Knowledge Graph Reasoning
Ruijie Wang | Baoyu Li | Yichen Lu | Dachun Sun | Jinning Li | Yuchen Yan | Shengzhong Liu | Hanghang Tong | Tarek Abdelzaher

This paper studies speculative reasoning task on real-world knowledge graphs (KG) that contain both false negative issue (i.e., potential true facts being excluded) and false positive issue (i.e., unreliable or outdated facts being included). State-of-the-art methods fall short in the speculative reasoning ability, as they assume the correctness of a fact is solely determined by its presence in KG, making them vulnerable to false negative/positive issues. The new reasoning task is formulated as a noisy Positive-Unlabeled learning problem. We propose a variational framework, namely nPUGraph, that jointly estimates the correctness of both collected and uncollected facts (which we call label posterior) and updates model parameters during training. The label posterior estimation facilitates speculative reasoning from two perspectives. First, it improves the robustness of a label posterior-aware graph encoder against false positive links. Second, it identifies missing facts to provide high-quality grounds of reasoning. They are unified in a simple yet effective self-training procedure. Empirically, extensive experiments on three benchmark KG and one Twitter dataset with various degrees of false negative/positive cases demonstrate the effectiveness of nPUGraph.

pdf bib
ACROSS: An Alignment-based Framework for Low-Resource Many-to-One Cross-Lingual Summarization
Peiyao Li | Zhengkun Zhang | Jun Wang | Liang Li | Adam Jatowt | Zhenglu Yang

This research addresses the challenges of Cross-Lingual Summarization (CLS) in low-resource scenarios and over imbalanced multilingual data. Existing CLS studies mostly resort to pipeline frameworks or multi-task methods in bilingual settings. However, they ignore the data imbalance in multilingual scenarios and do not utilize the high-resource monolingual summarization data. In this paper, we propose the Aligned CROSs-lingual Summarization (ACROSS) model to tackle these issues. Our framework aligns low-resource cross-lingual data with high-resource monolingual data via contrastive and consistency loss, which help enrich low-resource information for high-quality summaries. In addition, we introduce a data augmentation method that can select informative monolingual sentences, which facilitates a deep exploration of high-resource information and introduce new information for low-resource languages. Experiments on the CrossSum dataset show that ACROSS outperforms baseline models and obtains consistently dominant performance on 45 language pairs.

pdf bib
RFiD: Towards Rational Fusion-in-Decoder for Open-Domain Question Answering
Cunxiang Wang | Haofei Yu | Yue Zhang

Open-Domain Question Answering (ODQA) systems necessitate a reader model capable of generating answers by simultaneously referring to multiple passages. Although representative models like Fusion-in-Decoder (FiD) have been proposed to address this challenge, these systems can inadvertently rely on spurious features instead of genuine causal relationships between the question and the passages to generate answers. To counter this problem, we introduce the Rational Fusion-in-Decoder (RFiD) model. Our model leverages the encoders of FiD to differentiate between causal relationships and spurious features, subsequently guiding the decoder to generate answers informed by this discernment. Experimental results on two ODQA datasets, Natural Questions (NQ) and TriviaQA (TQ), demonstrate that our model surpasses previous methods, achieving improvements of up to 1.5 and 0.7 in Exact Match scores on NQ, and exhibits an enhanced ability to identify causal relationships.

pdf bib
Unsupervised Keyphrase Extraction by Learning Neural Keyphrase Set Function
Mingyang Song | Haiyun Jiang | Lemao Liu | Shuming Shi | Liping Jing

We create a paradigm shift concerning building unsupervised keyphrase extraction systems in this paper. Instead of modeling the relevance between an individual candidate phrase and the document as in the commonly used framework, we formulate the unsupervised keyphrase extraction task as a document-set matching problem from a set-wise perspective, in which the document and the candidate set are globally matched in the semantic space to particularly take into account the interactions among all candidate phrases. Since it is intractable to exactly extract the keyphrase set by the matching function during the inference, we propose an approximate approach, which obtains the candidate subsets via a set extractor agent learned by reinforcement learning. Exhaustive experimental results demonstrate the effectiveness of our model, which outperforms the recent state-of-the-art unsupervised keyphrase extraction baselines by a large margin.

pdf bib
Diffusion Theory as a Scalpel: Detecting and Purifying Poisonous Dimensions in Pre-trained Language Models Caused by Backdoor or Bias
Zhiyuan Zhang | Deli Chen | Hao Zhou | Fandong Meng | Jie Zhou | Xu Sun

Pre-trained Language Models (PLMs) may be poisonous with backdoors or bias injected by the suspicious attacker during the fine-tuning process. A core challenge of purifying potentially poisonous PLMs is precisely finding poisonous dimensions. To settle this issue, we propose the Fine-purifying approach, which utilizes the diffusion theory to study the dynamic process of fine-tuning for finding potentially poisonous dimensions. According to the relationship between parameter drifts and Hessians of different dimensions, we can detect poisonous dimensions with abnormal dynamics, purify them by resetting them to clean pre-trained weights, and then fine-tune the purified weights on a small clean dataset. To the best of our knowledge, we are the first to study the dynamics guided by the diffusion theory for safety or defense purposes. Experimental results validate the effectiveness of Fine-purifying even with a small clean dataset.

pdf bib
Retrieving Multimodal Prompts for Generative Visual Question Answering
Timothy Ossowski | Junjie Hu

Recent years have witnessed impressive results of pre-trained vision-language models on knowledge-intensive tasks such as visual question answering (VQA). Despite the recent advances in VQA, existing methods mainly adopt a discriminative formulation that predicts answers within a pre-defined label set, leading to easy overfitting on low-resource domains (e.g., medicine) and poor generalization under domain shift to another dataset. To tackle this limitation, we propose a novel generative model enhanced by multimodal prompt retrieval (MPR) that integrates retrieved prompts and multimodal features to generate answers in free text. Our generative model enables rapid zero-shot dataset adaptation to unseen data distributions and open-set answer labels across datasets. Our experiments on medical VQA tasks show that MPR outperforms its non-retrieval counterpart by up to 30% accuracy points in a few-shot domain adaptation setting.

pdf bib
InfoSync: Information Synchronization across Multilingual Semi-structured Tables
Siddharth Khincha | Chelsi Jain | Vivek Gupta | Tushar Kataria | Shuo Zhang

Information Synchronization of semi-structured data across languages is challenging. For example, Wikipedia tables in one language need to be synchronized with others. To address this problem, we introduce a new dataset InfoSync and a two-step method for tabular synchronization. InfoSync contains 100K entity-centric tables (Wikipedia Infoboxes) across 14 languages, of which a subset (~3.5K pairs) are manually annotated. The proposed method includes 1) Information Alignment to map rows and 2) Information Update for updating missing/outdated information for aligned tables across multilingual tables. When evaluated on InfoSync, information alignment achieves an F1 score of 87.91 (en <-> non-en). To evaluate information updation, we perform human-assisted Wikipedia edits on Infoboxes for 532 table pairs. Our approach obtains an acceptance rate of 77.28% on Wikipedia, showing the effectiveness of the proposed method.

pdf bib
T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation
Jialu Wang | Xinyue Liu | Zonglin Di | Yang Liu | Xin Wang

*Warning: This paper contains several contents that may be toxic, harmful, or offensive.*In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.

pdf bib
An Investigation of Evaluation Methods in Automatic Medical Note Generation
Asma Ben Abacha | Wen-wai Yim | George Michalopoulos | Thomas Lin

Recent studies on automatic note generation have shown that doctors can save significant amounts of time when using automatic clinical note generation (Knoll et al., 2022). Summarization models have been used for this task to generate clinical notes as summaries of doctor-patient conversations (Krishna et al., 2021; Cai et al., 2022). However, assessing which model would best serve clinicians in their daily practice is still a challenging task due to the large set of possible correct summaries, and the potential limitations of automatic evaluation metrics. In this paper we study evaluation methods and metrics for the automatic generation of clinical notes from medical conversation. In particular, we propose new task-specific metrics and we compare them to SOTA evaluation metrics in text summarization and generation, including: (i) knowledge-graph embedding-based metrics, (ii) customized model-based metrics with domain-specific weights, (iii) domain-adapted/fine-tuned metrics, and (iv) ensemble metrics. To study the correlation between the automatic metrics and manual judgments, we evaluate automatic notes/summaries by comparing the system and reference facts and computing the factual correctness, and the hallucination and omission rates for critical medical facts. This study relied on seven datasets manually annotated by domain experts. Our experiments show that automatic evaluation metrics can have substantially different behaviors on different types of clinical notes datasets. However, the results highlight one stable subset of metrics as the most correlated with human judgments with a relevant aggregation of different evaluation criteria.

pdf bib
Rethinking Translation Memory Augmented Neural Machine Translation
Hongkun Hao | Guoping Huang | Lemao Liu | Zhirui Zhang | Shuming Shi | Rui Wang

This paper rethinks translation memory augmented neural machine translation (TM-augmented NMT) from two perspectives, i.e., a probabilistic view of retrieval and the variance-bias decomposition principle. The finding demonstrates that TM-augmented NMT is good at the ability of fitting data (i.e., lower bias) but is more sensitive to the fluctuations in the training data (i.e., higher variance), which provides an explanation to a recently reported contradictory phenomenon on the same translation task: TM-augmented NMT substantially advances NMT without TM under the high resource scenario whereas it fails under the low resource scenario. Then this paper proposes a simple yet effective TM-augmented NMT model to promote the variance and address the contradictory phenomenon. Extensive experiments show that the proposed TM-augmented NMT achieves consistent gains over both conventional NMT and existing TM-augmented NMT under two variance-preferable (low resource and plug-and-play) scenarios as well as the high resource scenario.

pdf bib
Controlling Styles in Neural Machine Translation with Activation Prompt
Yifan Wang | Zewei Sun | Shanbo Cheng | Weiguo Zheng | Mingxuan Wang

Controlling styles in neural machine translation (NMT) has attracted wide attention, as it is crucial for enhancing user experience. Earlier studies on this topic typically concentrate on regulating the level of formality and achieve some progress in this area. However, they still encounter two major challenges. The first is the difficulty in style evaluation. The style comprises various aspects such as lexis, syntax, and others that provide abundant information. Nevertheless, only formality has been thoroughly investigated. The second challenge involves excessive dependence on incremental adjustments, particularly when new styles are necessary. To address both challenges, this paper presents a new benchmark and approach. A multiway stylized machine translation (MSMT) benchmark is introduced, incorporating diverse categories of styles across four linguistic domains. Then, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which does not require extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance.

pdf bib
Focusing, Bridging and Prompting for Few-shot Nested Named Entity Recognition
Yuanyuan Xu | Zeng Yang | Linhai Zhang | Deyu Zhou | Tiandeng Wu | Rong Zhou

Few-shot named entity recognition (NER), identifying named entities with a small number of labeled data, has attracted much attention. Frequently, entities are nested within each other. However, most of the existing work on few-shot NER addresses flat entities instead of nested entities. To tackle nested NER in a few-shot setting, it is crucial to utilize the limited labeled data to mine unique features of nested entities, such as the relationship between inner and outer entities and contextual position information. Therefore, in this work, we propose a novel method based on focusing, bridging and prompting for few-shot nested NER without using source domain data. Both focusing and bridging components provide accurate candidate spans for the prompting component. The prompting component leverages the unique features of nested entities to classify spans based on soft prompts and contrastive learning. Experimental results show that the proposed approach achieves state-of-the-art performance consistently on the four benchmark datasets (ACE2004, ACE2005, GENIA and KBP2017) and outperforms several competing baseline models on F1-score by 9.33% on ACE2004, 6.17% on ACE2005, 9.40% on GENIA and 5.12% on KBP2017 on the 5-shot setting.

pdf bib
Together We Make Sense–Learning Meta-Sense Embeddings
Haochen Luo | Yi Zhou | Danushka Bollegala

Sense embedding learning methods learn multiple vectors for a given ambiguous word, corresponding to its different word senses. For this purpose, different methods have been proposed in prior work on sense embedding learning that use different sense inventories, sense-tagged corpora and learning methods. However, not all existing sense embeddings cover all senses of ambiguous words equally well due to the discrepancies in their training resources. To address this problem, we propose the first-ever meta-sense embedding method – Neighbour Preserving Meta-Sense Embeddings, which learns meta-sense embeddings by combining multiple independently trained source sense embeddings such that the sense neighbourhoods computed from the source embeddings are preserved in the meta-embedding space. Our proposed method can combine source sense embeddings that cover different sets of word senses. Experimental results on Word Sense Disambiguation (WSD) and Word-in-Context (WiC) tasks show that the proposed meta-sense embedding method consistently outperforms several competitive baselines. An anonymised version of the source code implementation for our proposed method is submitted to reviewing system. Both source code and the learnt meta-sense embeddings will be publicly released upon paper acceptance.

pdf bib
Multimodal Prompt Learning for Product Title Generation with Extremely Limited Labels
Bang Yang | Fenglin Liu | Zheng Li | Qingyu Yin | Chenyu You | Bing Yin | Yuexian Zou

Generating an informative and attractive title for the product is a crucial task for e-commerce. Most existing works follow the standard multimodal natural language generation approaches, e.g., image captioning, and employ the large scale of human-labelled datasets to train desirable models. However, for novel products, especially in a different domain, there are few existing labelled data. In this paper, we propose a prompt-based approach, i.e., the Multimodal Prompt Learning framework, to accurately and efficiently generate titles for novel products with limited labels. We observe that the core challenges of novel product title generation are the understanding of novel product characteristics and the generation of titles in a novel writing style. To this end, we build a set of multimodal prompts from different modalities to preserve the corresponding characteristics and writing styles of novel products. As a result, with extremely limited labels for training, the proposed method can retrieve the multimodal prompts to generate desirable titles for novel products. The experiments and analyses are conducted on five novel product categories under both the in-domain and out-of-domain experimental settings. The results show that, with only 1% of downstream labelled data for training, our proposed approach achieves the best few-shot results and even achieves competitive results with fully-supervised methods trained on 100% of training data; With the full labelled data for training, our method achieves state-of-the-art results.

pdf bib
Large Language Models are Built-in Autoregressive Search Engines
Noah Ziems | Wenhao Yu | Zhihan Zhang | Meng Jiang

Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few Query-URL pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at

pdf bib
Beyond Triplet: Leveraging the Most Data for Multimodal Machine Translation
Yaoming Zhu | Zewei Sun | Shanbo Cheng | Luyang Huang | Liwei Wu | Mingxuan Wang

Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems focus on better access and use of visual information and tend to validate their methods on image-related datasets. However, these studies face two challenges. First, they can only utilize a limited amount of data that is composed of bilingual texts and images (referred to as “triple data”), which is scarce. Second, current benchmarks for MMT are restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and a new dataset for MMT. We propose a novel framework for MMT that addresses these challenges by utilizing large-scale non-triple data, such as monolingual image-text and parallel text-only data. Additionally, we construct a new e-commercial multimodal translation dataset, named EMMT, of which the test set is specifically designed to include ambiguous words that require visual context for accurate translation. Experiments show that our method is well-suited for real-world scenarios and can significantly improve translation performance with more non-triple data. In addition, our model also rivals or surpasses various SOTA models in conventional multimodal translation benchmarks.

pdf bib
From chocolate bunny to chocolate crocodile: Do Language Models Understand Noun Compounds?
Albert Coil | Vered Shwartz

Noun compound interpretation is the task of expressing a noun compound (e.g. chocolate bunny) in a free-text paraphrase that makes the relationship between the constituent nouns explicit (e.g. bunny-shaped chocolate). We propose modifications to the data and evaluation setup of the standard task (Hendrickx et al., 2013), and show that GPT-3 solves it almost perfectly. We then investigate the task of noun compound conceptualization, i.e. paraphrasing a novel or rare noun compound. E.g., chocolate crocodile is a crocodile-shaped chocolate. This task requires creativity, commonsense, and the ability to generalize knowledge about similar concepts. While GPT-3’s performance is not perfect, it is better than that of humans—likely thanks to its access to vast amounts of knowledge, and because conceptual processing is effortful for people (Connell and Lynott, 2012). Finally, we estimate the extent to which GPT-3 is reasoning about the world vs. parroting its training data. We find that the outputs from GPT-3 often have significant overlap with a large web corpus, but that the parroting strategy is less beneficial for novel noun compounds.

pdf bib
Measuring Intersectional Biases in Historical Documents
Nadav Borenstein | Karolina Stanczak | Thea Rolskov | Natacha Klein Käfer | Natália da Silva Perez | Isabelle Augenstein

Data-driven analyses of biases in historical texts can help illuminate the origin and development of biases prevailing in modern society. However, digitised historical documents pose a challenge for NLP practitioners as these corpora suffer from errors introduced by optical character recognition (OCR) and are written in an archaic language. In this paper, we investigate the continuities and transformations of bias in historical newspapers published in the Caribbean during the colonial era (18th to 19th centuries). Our analyses are performed along the axes of gender, race, and their intersection. We examine these biases by conducting a temporal study in which we measure the development of lexical associations using distributional semantics models and word embeddings. Further, we evaluate the effectiveness of techniques designed to process OCR-generated data and assess their stability when trained on and applied to the noisy historical newspapers. We find that there is a trade-off between the stability of the word embeddings and their compatibility with the historical dataset. We provide evidence that gender and racial biases are interdependent, and their intersection triggers distinct effects. These findings align with the theory of intersectionality, which stresses that biases affecting people with multiple marginalised identities compound to more than the sum of their constituents.

pdf bib
Incomplete Utterance Rewriting by A Two-Phase Locate-and-Fill Regime
Zitong Li | Jiawei Li | Haifeng Tang | Kenny Zhu | Ruolan Yang

Rewriting incomplete and ambiguous utterances can improve dialogue models’ understanding of the context and help them generate better results. However, the existing end-to-end models will have the problem of too large search space, resulting in poor quality of rewriting results. We propose a 2-phase rewriting framework which first predicts the empty slots in the utterance that need to be completed, and then generate the part to be filled into each positions. Our framework is simple to implement, fast to run, and achieves the state-of-the-art results on several public rewriting datasets.

pdf bib
Exploring Variation of Results from Different Experimental Conditions
Maja Popović | Mohammad Arvan | Natalie Parde | Anya Belz

It might reasonably be expected that running multiple experiments for the same task using the same data and model would yield very similar results. Recent research has, however, shown this not to be the case for many NLP experiments. In this paper, we report extensive coordinated work by two NLP groups to run the training and testing pipeline for three neural text simplification models under varying experimental conditions, including different random seeds, run-time environments, and dependency versions, yielding a large number of results for each of the three models using the same data and train/dev/test set splits. From one perspective, these results can be interpreted as shedding light on the reproducibility of evaluation results for the three NTS models, and we present an in-depth analysis of the variation observed for different combinations of experimental conditions. From another perspective, the results raise the question of whether the averaged score should be considered the ‘true’ result for each model.

pdf bib
Playing the Part of the Sharp Bully: Generating Adversarial Examples for Implicit Hate Speech Detection
Nicolas Ocampo | Elena Cabrio | Serena Villata

Research on abusive content detection on social media has primarily focused on explicit forms of hate speech (HS), that are often identifiable by recognizing hateful words and expressions. Messages containing linguistically subtle and implicit forms of hate speech still constitute an open challenge for automatic hate speech detection. In this paper, we propose a new framework for generating adversarial implicit HS short-text messages using Auto-regressive Language Models. Moreover, we propose a strategy to group the generated implicit messages in complexity levels (EASY, MEDIUM, and HARD categories) characterizing how challenging these messages are for supervised classifiers. Finally, relying on (Dinan et al., 2019; Vidgen et al., 2021), we propose a “build it, break it, fix it”, training scheme using HARD messages showing how iteratively retraining on HARD messages substantially leverages SOTA models’ performances on implicit HS benchmarks.

pdf bib
X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents
Mehrad Moradshahi | Tianhao Shen | Kalika Bali | Monojit Choudhury | Gael de Chalendar | Anmol Goel | Sungkyun Kim | Prashant Kodali | Ponnurangam Kumaraguru | Nasredine Semmar | Sina Semnani | Jiwon Seo | Vivek Seshadri | Manish Shrivastava | Michael Sun | Aditya Yadavalli | Chaobin You | Deyi Xiong | Monica Lam

Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language.X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset, code, and toolkit are released open-source.

pdf bib
Subword Segmental Machine Translation: Unifying Segmentation and Target Sentence Generation
Francois Meyer | Jan Buys

Subword segmenters like BPE operate as a preprocessing step in neural machine translation and other (conditional) language models. They are applied to datasets before training, so translation or text generation quality relies on the quality of segmentations. We propose a departure from this paradigm, called subword segmental machine translation (SSMT). SSMT unifies subword segmentation and MT in a single trainable model. It learns to segment target sentence words while jointly learning to generate target sentences. To use SSMT during inference we propose dynamic decoding, a text generation algorithm that adapts segmentations as it generates translations. Experiments across 6 translation directions show that SSMT improves chrF scores for morphologically rich agglutinative languages. Gains are strongest in the very low-resource scenario. SSMT also learns subwords that are closer to morphemes compared to baselines and proves more robust on a test set constructed for evaluating morphological compositional generalisation.

pdf bib
Measuring and Mitigating Local Instability in Deep Neural Networks
Arghya Datta | Subhrangshu Nandi | Jingcheng Xu | Greg Ver Steeg | He Xie | Anoop Kumar | Aram Galstyan

Deep Neural Networks (DNNs) are becoming integral components of real world services relied upon by millions of users. Unfortunately, architects of these systems can find it difficult to ensure reliable performance as irrelevant details like random initialization can unexpectedly change the outputs of a trained system with potentially disastrous consequences. We formulate the model stability problem by studying how the predictions of a model change, even when it is retrained on the same data, as a consequence of stochasticity in the training process. For Natural Language Understanding (NLU) tasks, we find instability in predictions for a significant fraction of queries. We formulate principled metrics, like per-sample “label entropy” across training runs or within a single training run, to quantify this phenomenon. Intriguingly, we find that unstable predictions do not appear at random, but rather appear to be clustered in data-specific ways. We study data-agnostic regularization methods to improve stability and propose new data-centric methods that exploit our local stability estimates. We find that our localized data-specific mitigation strategy dramatically outperforms data-agnostic methods, and comes within 90% of the gold standard, achieved by ensembling, at a fraction of the computational cost.

pdf bib
What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation
Wenhao Zhu | Shujian Huang | Yunzhe Lv | Xin Zheng | Jiajun Chen

kNN-MT presents a new paradigm for domain adaptation by building an external datastore, which usually saves all target language token occurrences in the parallel corpus. As a result, the constructed datastore is usually large and possibly redundant. In this paper, we investigate the interpretability issue of this approach: what knowledge does the NMT model need? We propose the notion of local correctness (LAC) as a new angle, which describes the potential translation correctness for a single entry and for a given neighborhood. Empirical study shows that our investigation successfully finds the conditions where the NMT model could easily fail and need related knowledge. Experiments on six diverse target domains and two language-pairs show that pruning according to local correctness brings a light and more explainable memory for kNN-MT domain adaptation.

pdf bib
Measuring Your ASTE Models in The Wild: A Diversified Multi-domain Dataset For Aspect Sentiment Triplet Extraction
Ting Xu | Huiyun Yang | Zhen Wu | Jiaze Chen | Fei Zhao | Xinyu Dai

Aspect Sentiment Triplet Extraction (ASTE) is widely used in various applications. However, existing ASTE datasets are limited in their ability to represent real-world scenarios, hindering the advancement of research in this area. In this paper, we introduce a new dataset, named DMASTE, which is manually annotated to better fit real-world scenarios by providing more diverse and realistic reviews for the task. The dataset includes various lengths, diverse expressions, more aspect types, and more domains than existing datasets. We conduct extensive experiments on DMASTE in multiple settings to evaluate previous ASTE approaches. Empirical results demonstrate that DMASTE is a more challenging ASTE dataset. Further analyses of in-domain and cross-domain settings provide some promising directions for future research.

pdf bib
Grounding the Lexical Substitution Task in Entailment
Talgat Omarov | Grzegorz Kondrak

Existing definitions of lexical substitutes are often vague or inconsistent with the gold annotations. We propose a new definition which is grounded in the relation of entailment; namely, that the sentence that results from the substitution should be in the relation of mutual entailment with the original sentence. We argue that the new definition is well-founded and supported by previous work on lexical entailment. We empirically validate our definition by verifying that it covers the majority of gold substitutes in existing datasets. Based on this definition, we create a new dataset from existing semantic resources. Finally, we propose a novel context augmentation method motivated by the definition, which relates the substitutes to the sense of the target word by incorporating glosses and synonyms directly into the context. Experimental results demonstrate that our augmentation approach improves the performance of lexical substitution systems on the existing benchmarks.

pdf bib
Operator Selection and Ordering in a Pipeline Approach to Efficiency Optimizations for Transformers
Ji Xin | Raphael Tang | Zhiying Jiang | Yaoliang Yu | Jimmy Lin

There exists a wide variety of efficiency methods for natural language processing (NLP) tasks, such as pruning, distillation, dynamic inference, quantization, etc. From a different perspective, we can consider an efficiency method as an operator applied on a model. Naturally, we may construct a pipeline of operators, i.e., to apply multiple efficiency methods on the model sequentially. In this paper, we study the plausibility of this idea, and more importantly, the commutativity and cumulativeness of efficiency operators. We make two interesting observations from our experiments: (1) The operators are commutative—the order of efficiency methods within the pipeline has little impact on the final results; (2) The operators are also cumulative—the final results of combining several efficiency methods can be estimated by combining the results of individual methods. These observations deepen our understanding of efficiency operators and provide useful guidelines for building them in real-world applications.

pdf bib
AraMUS: Pushing the Limits of Data and Model Scale for Arabic Natural Language Processing
Asaad Alghamdi | Xinyu Duan | Wei Jiang | Zhenhai Wang | Yimeng Wu | Qingrong Xia | Zhefeng Wang | Yi Zheng | Mehdi Rezagholizadeh | Baoxing Huai | Peilun Cheng | Abbas Ghaddar

Developing monolingual large Pre-trained Language Models (PLMs) is shown to be very successful in handling different tasks in Natural Language Processing (NLP). In this work, we present AraMUS, the largest Arabic PLM with 11B parameters trained on 529GB of high-quality Arabic textual data. AraMUS achieves state-of-the-art performances on a diverse set of Arabic classification and generative tasks. Moreover, AraMUS shows impressive few-shot learning abilities compared with the best existing Arabic PLMs.

pdf bib
Leveraging Explicit Procedural Instructions for Data-Efficient Action Prediction
Julia White | Arushi Raghuvanshi | Yada Pruksachatkun

Task-oriented dialogues often require agents to enact complex, multi-step procedures in order to meet user requests. While large language models have found success automating these dialogues in constrained environments, their widespread deployment is limited by the substantial quantities of task-specific data required for training. The following paper presents a data-efficient solution to constructing dialogue systems, leveraging explicit instructions derived from agent guidelines, such as company policies or customer service manuals. Our proposed Knowledge-Augmented Dialogue System (KADS) combines a large language model with a knowledge retrieval module that pulls documents outlining relevant procedures from a predefined set of policies, given a user-agent interaction. To train this system, we introduce a semi-supervised pre-training scheme that employs dialogue-document matching and action-oriented masked language modeling with partial parameter freezing. We evaluate the effectiveness of our approach on prominent task-oriented dialogue datasets, Action-Based Conversations Dataset and Schema-Guided Dialogue, for two dialogue tasks: action state tracking and workflow discovery. Our results demonstrate that procedural knowledge augmentation improves accuracy predicting in- and out-of-distribution actions while preserving high performance in settings with low or sparse data.

pdf bib
Quantifying Train-Evaluation Overlap with Nearest Neighbors
Gauri Kambhatla | Thuy Nguyen | Eunsol Choi

Characterizing benchmark datasets is crucial to interpreting model performance. In this work, we study train-evaluation overlap as a measure of an individual dataset’s adequacy to evaluate model generalization over a wide range of datasets. We quantify the overlap with a simple novel metric based on a nearest neighbors approach between the training and evaluation sets. We identify nearest training examples for each evaluation example by mapping instances with generic and task-specific embedding methods. Our study on eleven classification and extractive QA tasks reveals a wide range of train-evaluation overlap, and we show that the data collection method of the dataset and the difficulty of the task may play a role in the amount of overlap. Lastly, we use our nearest neighbor analysis to identify challenging or potentially mislabeled examples. Our analysis quantifies train-evaluation overlap, providing insights for constructing datasets to study generalization.

pdf bib
Unsupervised Mapping of Arguments of Deverbal Nouns to Their Corresponding Verbal Labels
Aviv Weinstein | Yoav Goldberg

Deverbal nouns are nominal forms of verbs commonly used in written English texts to describe events or actions, as well as their arguments. However, many NLP systems, and in particular pattern-based ones, neglect to handle such nominalized constructions. The solutions that do exist for handling arguments of nominalized constructions are based on semantic annotation and require semantic ontologies, making their applications restricted to a small set of nouns. We propose to adopt instead a more syntactic approach, which maps the arguments of deverbal nouns to the universal-dependency relations of the corresponding verbal construction. We present an unsupervised mechanism—based on contextualized word representations—which allows to enrich universal-dependency trees with dependency arcs denoting arguments of deverbal nouns, using the same labels as the corresponding verbal cases. By sharing the same label set as in the verbal case, patterns that were developed for verbs can be applied without modification but with high accuracy also to the nominal constructions.

pdf bib
The Decades Progress on Code-Switching Research in NLP: A Systematic Survey on Trends and Challenges
Genta Winata | Alham Fikri Aji | Zheng Xin Yong | Thamar Solorio

Code-Switching, a common phenomenon in written text and conversation, has been studied over decades by the natural language processing (NLP) research community. Initially, code-switching is intensively explored by leveraging linguistic theories and, currently, more machine-learning oriented approaches to develop models. We introduce a comprehensive systematic survey on code-switching research in natural language processing to understand the progress of the past decades and conceptualize the challenges and tasks on the code-switching topic. Finally, we summarize the trends and findings and conclude with a discussion for future direction and open questions for further investigation.

pdf bib
Learning to Predict Persona Information for Dialogue Personalization without Explicit Persona Description
Wangchunshu Zhou | Qifei Li | Chenle Li

Personalizing dialogue agents is important for dialogue systems to generate more specific,consistent, and engaging responses. However, most current dialogue personalization approaches rely on explicit persona descriptions during inference, which severely restricts its application. In this paper, we propose a novel approach that learns to predict persona information based on the dialogue history to personalize the dialogue agent without relying on any explicit persona descriptions during inference. Experimental results on the PersonaChat dataset show that the proposed method can improve the consistency of generated responses when conditioning on the predicted profile of the dialogue agent (i.e. “self persona”), and improve the engagingness of the generated responses when conditioning on the predicted persona of the dialogue partner (i.e. “their persona”). We also find that a trained persona prediction model can be successfully transferred to other datasets and help generate more relevant responses.

pdf bib
Automated Refugee Case Analysis: A NLP Pipeline for Supporting Legal Practitioners
Claire Barale | Michael Rovatsos | Nehal Bhuta

In this paper, we introduce an end-to-end pipeline for retrieving, processing, and extracting targeted information from legal cases. We investigate an under-studied legal domain with a case study on refugee law Canada. Searching case law for past similar cases is a key part of legal work for both lawyers and judges, the potential end-users of our prototype. While traditional named-entity recognition labels such as dates are meaningful information in law, we propose to extend existing models and retrieve a total of 19 categories of items from refugee cases. After creating a novel data set of cases, we perform information extraction based on state-of-the-art neural named-entity recognition (NER). We test different architectures including two transformer models, using contextual and non-contextual embeddings, and compare general purpose versus domain-specific pre-training. The results demonstrate that models pre-trained on legal data perform best despite their smaller size, suggesting that domain-matching had a larger effect than network architecture. We achieve a F1- score superior to 90% on five of the targeted categories and superior to 80% on an additional 4 categories.

pdf bib
Recurrent Attention Networks for Long-text Modeling
Xianming Li | Zongxi Li | Xiaotian Luo | Haoran Xie | Xing Lee | Yingbin Zhao | Fu Lee Wang | Qing Li

Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.

pdf bib
Exploring the Relationship between Alignment and Cross-lingual Transfer in Multilingual Transformers
Felix Gaschi | Patricio Cerda | Parisa Rastin | Yannick Toussaint

Without any explicit cross-lingual training data, multilingual language models can achieve cross-lingual transfer. One common way to improve this transfer is to perform realignment steps before fine-tuning, i.e., to train the model to build similar representations for pairs of words from translated sentences. But such realignment methods were found to not always improve results across languages and tasks, which raises the question of whether aligned representations are truly beneficial for cross-lingual transfer. We provide evidence that alignment is actually significantly correlated with cross-lingual transfer across languages, models and random seeds. We show that fine-tuning can have a significant impact on alignment, depending mainly on the downstream task and the model. Finally, we show that realignment can, in some instances, improve cross-lingual transfer, and we identify conditions in which realignment methods provide significant improvements. Namely, we find that realignment works better on tasks for which alignment is correlated with cross-lingual transfer when generalizing to a distant language and with smaller models, as well as when using a bilingual dictionary rather than FastAlign to extract realignment pairs. For example, for POS-tagging, between English and Arabic, realignment can bring a +15.8 accuracy improvement on distilmBERT, even outperforming XLM-R Large by 1.7. We thus advocate for further research on realignment methods for smaller multilingual models as an alternative to scaling.

pdf bib
Aerial Vision-and-Dialog Navigation
Yue Fan | Winson Chen | Tongzhou Jiang | Chun Zhou | Yi Zhang | Xin Wang

The ability to converse with humans and follow natural language commands is crucial for intelligent unmanned aerial vehicles (a.k.a. drones). It can relieve people’s burden of holding a controller all the time, allow multitasking, and make drone control more accessible for people with disabilities or with their hands occupied. To this end, we introduce Aerial Vision-and-Dialog Navigation (AVDN), to navigate a drone via natural language conversation. We build a drone simulator with a continuous photorealistic environment and collect a new AVDN dataset of over 3k recorded navigation trajectories with asynchronous human-human dialogs between commanders and followers. The commander provides initial navigation instruction and further guidance by request, while the follower navigates the drone in the simulator and asks questions when needed. During data collection, followers’ attention on the drone’s visual observation is also recorded. Based on the AVDN dataset, we study the tasks of aerial navigation from (full) dialog history and propose an effective Human Attention Aided Transformer model (HAA-Transformer), which learns to predict both navigation waypoints and human attention.

pdf bib
Improved Logical Reasoning of Language Models via Differentiable Symbolic Programming
Hanlin Zhang | Jiani Huang | Ziyang Li | Mayur Naik | Eric Xing

Pre-trained large language models (LMs) struggle to perform logical reasoning reliably despite advances in scale and compositionality. In this work, we tackle this challenge through the lens of symbolic programming. We propose DSR-LM, a Differentiable Symbolic Reasoning framework where pre-trained LMs govern the perception of factual knowledge, and a symbolic module performs deductive reasoning. In contrast to works that rely on hand-crafted logic rules, our differentiable symbolic reasoning framework efficiently learns weighted rules and applies semantic loss to further improve LMs. DSR-LM is scalable, interpretable, and allows easy integration of prior knowledge, thereby supporting extensive symbolic programming to robustly derive a logical conclusion. The results of our experiments suggest that DSR-LM improves the logical reasoning abilities of pre-trained language models, resulting in a significant increase in accuracy of over 20% on deductive reasoning benchmarks. Furthermore, DSR-LM outperforms a variety of competitive baselines when faced with systematic changes in sequence length.

pdf bib
B2T Connection: Serving Stability and Performance in Deep Transformers
Sho Takase | Shun Kiyono | Sosuke Kobayashi | Jun Suzuki

In the perspective of a layer normalization (LN) position, the architecture of Transformers can be categorized into two types: Post-LN and Pre-LN.Recent Transformers prefer to select Pre-LN because the training in Post-LN with deep Transformers, e.g., ten or more layers, often becomes unstable, resulting in useless models. However, in contrast, Post-LN has also consistently achieved better performance than Pre-LN in relatively shallow Transformers, e.g., six or fewer layers. This study first investigates the reason for these discrepant observations empirically and theoretically and discovers 1, the LN in Post-LN is the source of the vanishing gradient problem that mainly leads the unstable training whereas Pre-LN prevents it, and 2, Post-LN tends to preserve larger gradient norms in higher layers during the back-propagation that may lead an effective training. Exploiting the new findings, we propose a method that can equip both higher stability and effective training by a simple modification from Post-LN.We conduct experiments on a wide range of text generation tasks and demonstrate that our method outperforms Pre-LN, and stable training regardless of the shallow or deep layer settings.

pdf bib
Boosting Zero-shot Cross-lingual Retrieval by Training on Artificially Code-Switched Data
Robert Litschko | Ekaterina Artemova | Barbara Plank

Transferring information retrieval (IR) models from a high-resource language (typically English) to other languages in a zero-shot fashion has become a widely adopted approach. In this work, we show that the effectiveness of zero-shot rankers diminishes when queries and documents are present in different languages. Motivated by this, we propose to train ranking models on artificially code-switched data instead, which we generate by utilizing bilingual lexicons. To this end, we experiment with lexicons induced from (1) cross-lingual word embeddings and (2) parallel Wikipedia page titles. We use the mMARCO dataset to extensively evaluate reranking models on 36 language pairs spanning Monolingual IR (MoIR), Cross-lingual IR (CLIR), and Multilingual IR (MLIR). Our results show that code-switching can yield consistent and substantial gains of 5.1 MRR@10 in CLIR and 3.9 MRR@10 in MLIR, while maintaining stable performance in MoIR. Encouragingly, the gains are especially pronounced for distant languages (up to 2x absolute gain). We further show that our approach is robust towards the ratio of code-switched tokens and also extends to unseen languages. Our results demonstrate that training on code-switched data is a cheap and effective way of generalizing zero-shot rankers for cross-lingual and multilingual retrieval.

pdf bib
Domain-specific Attention with Distributional Signatures for Multi-Domain End-to-end Task-Oriented Dialogue
Xing Ma | Peng Zhang | Feifei Zhao

The end-to-end task-oriented dialogue system has achieved great success in recent years. Most of these dialogue systems need to accommodate multi-domain dialogue in real-world scenarios. However, due to the high cost of dialogue data annotation and the scarcity of labeled dialogue data, existing methods are difficult to extend to new domains. Therefore, it is important to use limited data to construct multi-domain dialogue systems. To solve this problem, we propose a novel domain attention module. It use the distributional signatures to construct a multi-domain dialogue system effectively with limited data, which has strong extensibility. We also define a adjacent n-gram pattern to explore potential patterns for dialogue entities. Experimental results show that our approach outperforms the baseline models on most metrics. In the few-shot scenario, we show our method get a great improvement compared with previous methods while keeping smaller model scale.

pdf bib
CKDST: Comprehensively and Effectively Distill Knowledge from Machine Translation to End-to-End Speech Translation
Yikun Lei | Zhengshan Xue | Xiaohu Zhao | Haoran Sun | Shaolin Zhu | Xiaodong Lin | Deyi Xiong

Distilling knowledge from a high-resource task, e.g., machine translation, is an effective way to alleviate the data scarcity problem of end-to-end speech translation. However, previous works simply use the classical knowledge distillation that does not allow for adequate transfer of knowledge from machine translation. In this paper, we propose a comprehensive knowledge distillation framework for speech translation, CKDST, which is capable of comprehensively and effectively distilling knowledge from machine translation to speech translation from two perspectives: cross-modal contrastive representation distillation and simultaneous decoupled knowledge distillation. In the former, we leverage a contrastive learning objective to optmize the mutual information between speech and text representations for representation distillation in the encoder. In the later, we decouple the non-target class knowledge from target class knowledge for logits distillation in the decoder. Experiments on the MuST-C benchmark dataset demonstrate that our CKDST substantially improves the baseline by 1.2 BLEU on average in all translation directions, and outperforms previous state-of-the-art end-to-end and cascaded speech translation models.

pdf bib
Follow the leader(board) with confidence: Estimating p-values from a single test set with item and response variance
Shira Wein | Christopher Homan | Lora Aroyo | Chris Welty

Among the problems with leaderboard culture in NLP has been the widespread lack of confidence estimation in reported results. In this work, we present a framework and simulator for estimating p-values for comparisons between the results of two systems, in order to understand the confidence that one is actually better (i.e. ranked higher) than the other. What has made this difficult in the past is that each system must itself be evaluated by comparison to a gold standard. We define a null hypothesis that each system’s metric scores are drawn from the same distribution, using variance found naturally (though rarely reported) in test set items and individual labels on an item (responses) to produce the metric distributions. We create a test set that evenly mixes the responses of the two systems under the assumption the null hypothesis is true. Exploring how to best estimate the true p-value from a single test set under different metrics, tests, and sampling methods, we find that the presence of response variance (from multiple raters or multiple model versions) has a profound impact on p-value estimates for model comparison, and that choice of metric and sampling method is critical to providing statistical guarantees on model comparisons.

pdf bib
Parallel Data Helps Neural Entity Coreference Resolution
Gongbo Tang | Christian Hardmeier

Coreference resolution is the task of finding expressions that refer to the same entity in a text. Coreference models are generally trained on monolingual annotated data but annotating coreference is expensive and challenging. Hardmeier et al. (2013) have shown that parallel data contains latent anaphoric knowledge, but it has not been explored in end-to-end neural models yet. In this paper, we propose a simple yet effective model to exploit coreference knowledge from parallel data. In addition to the conventional modules learning coreference from annotations, we introduce an unsupervised module to capture cross-lingual coreference knowledge. Our proposed cross-lingual model achieves consistent improvements, up to 1.74 percentage points, on the OntoNotes 5.0 English dataset using 9 different synthetic parallel datasets. These experimental results confirm that parallel data can provide additional coreference knowledge which is beneficial to coreference resolution tasks.

pdf bib
Towards Open-Domain Twitter User Profile Inference
Haoyang Wen | Zhenxin Xiao | Eduard Hovy | Alexander Hauptmann

Twitter user profile inference utilizes information from Twitter to predict user attributes (e.g., occupation, location), which is controversial because of its usefulness for downstream applications and its potential to reveal users’ privacy. Therefore, it is important for researchers to determine the extent of profiling in a safe environment to facilitate proper use and make the public aware of the potential risks. Contrary to existing approaches on limited attributes, we explore open-domain Twitter user profile inference. We conduct a case study where we collect publicly available WikiData public figure profiles and use diverse WikiData predicates for profile inference. After removing sensitive attributes, our data contains over 150K public figure profiles from WikiData, over 50 different attribute predicates, and over 700K attribute values. We further propose a prompt-based generation method, which can infer values that are implicitly mentioned in the Twitter information. Experimental results show that the generation-based approach can infer more comprehensive user profiles than baseline extraction-based methods, but limitations still remain to be applied for real-world use. We also enclose a detailed ethical statement for our data, potential benefits and risks from this work, and our efforts to mitigate the risks.

pdf bib
Eliciting Affective Events from Language Models by Multiple View Co-prompting
Yuan Zhuang | Ellen Riloff

Prior research on affective event classification showed that exploiting weakly labeled data for training can improve model performance. In this work, we propose a simpler and more effective approach for generating training data by automatically acquiring and labeling affective events with Multiple View Co-prompting, which leverages two language model prompts that provide independent views of an event. The approach starts with a modest amount of gold data and prompts pre-trained language models to generate new events. Next, information about the probable affective polarity of each event is collected from two complementary language model prompts and jointly used to assign polarity labels. Experimental results on two datasets show that the newly acquired events improve a state-of-the-art affective event classifier. We also present analyses which show that using multiple views produces polarity labels of higher quality than either view on its own.

pdf bib
ZeroAE: Pre-trained Language Model based Autoencoder for Transductive Zero-shot Text Classification
Kaihao Guo | Hang Yu | Cong Liao | Jianguo Li | Haipeng Zhang

Many text classification tasks require handling unseen domains with plenty of unlabeled data, thus giving rise to the self-adaption or the so-called transductive zero-shot learning (TZSL) problem. However, current methods based solely on encoders or decoders overlook the possibility that these two modules may promote each other. As a first effort to bridge this gap, we propose an autoencoder named ZeroAE. Specifically, the text is encoded with two separate BERT-based encoders into two disentangled spaces, i.e., label-relevant (for classification) and label-irrelevant respectively. The two latent spaces are then decoded by prompting GPT-2 to recover the text as well as to further generate text with labels in the unseen domains to train the encoder in turn. To better exploit the unlabeled data, a novel indirect uncertainty-aware sampling (IUAS) approach is proposed to train ZeroAE. Extensive experiments show that ZeroAE largely surpasses the SOTA methods by 15.93% and 8.70% on average respectively in the label-partially-unseen and label-fully-unseen scenario. Notably, the label-fully-unseen ZeroAE even possesses superior performance to the label-partially-unseen SOTA methods.

pdf bib
PRAM: An End-to-end Prototype-based Representation Alignment Model for Zero-resource Cross-lingual Named Entity Recognition
Yucheng Huang | Wenqiang Liu | Xianli Zhang | Jun Lang | Tieliang Gong | Chen Li

Zero-resource cross-lingual named entity recognition (ZRCL-NER) aims to leverage rich labeled source language data to address the NER problem in the zero-resource target language. Existing methods are built either based on data transfer or representation transfer. However, the former usually leads to additional computation costs, and the latter lacks explicit optimization specific to the NER task. To overcome the above limitations, we propose a novel prototype-based representation alignment model (PRAM) for the challenging ZRCL-NER task. PRAM models the cross-lingual (CL) NER task and transfers knowledge from source languages to target languages in a unified neural network, and performs end-to-end training, avoiding additional computation costs. Moreover, PRAM borrows the CL inference ability of multilingual language models and enhances it with a novel training objective—attribution-prediction consistency (APC)—for explicitly enforcing the entity-level alignment between entity representations and predictions, as well as that across languages using prototypes as bridges. The experimental results show that PRAM significantly outperforms existing state-of-the-art methods, especially in some challenging scenarios.

pdf bib
It Takes Two to Tango: Navigating Conceptualizations of NLP Tasks and Measurements of Performance
Arjun Subramonian | Xingdi Yuan | Hal Daumé III | Su Lin Blodgett

Progress in NLP is increasingly measured through benchmarks; hence, contextualizing progress requires understanding when and why practitioners may disagree about the validity of benchmarks. We develop a taxonomy of disagreement, drawing on tools from measurement modeling, and distinguish between two types of disagreement: 1) how tasks are conceptualized and 2) how measurements of model performance are operationalized. To provide evidence for our taxonomy, we conduct a meta-analysis of relevant literature to understand how NLP tasks are conceptualized, as well as a survey of practitioners about their impressions of different factors that affect benchmark validity. Our meta-analysis and survey across eight tasks, ranging from coreference resolution to question answering, uncover that tasks are generally not clearly and consistently conceptualized and benchmarks suffer from operationalization disagreements. These findings support our proposed taxonomy of disagreement. Finally, based on our taxonomy, we present a framework for constructing benchmarks and documenting their limitations.

pdf bib
Task-adaptive Label Dependency Transfer for Few-shot Named Entity Recognition
Shan Zhang | Bin Cao | Tianming Zhang | Yuqi Liu | Jing Fan

Named Entity Recognition (NER), as a crucial subtask in natural language processing (NLP), suffers from limited labeled samples (a.k.a. few-shot). Meta-learning methods are widely used for few-shot NER, but these existing methods overlook the importance of label dependency for NER, resulting in suboptimal performance. However, applying meta-learning methods to label dependency learning faces a special challenge, that is, due to the discrepancy of label sets in different domains, the label dependencies can not be transferred across domains. In this paper, we propose the Task-adaptive Label Dependency Transfer (TLDT) method to make label dependency transferable and effectively adapt to new tasks by a few samples. TLDT improves the existing optimization-based meta-learning methods by learning general initialization and individual parameter update rule for label dependency. Extensive experiments show that TLDT achieves significant improvement over the state-of-the-art methods.

pdf bib
WYWEB: A NLP Evaluation Benchmark For Classical Chinese
Bo Zhou | Qianglong Chen | Tianyu Wang | Xiaomi Zhong | Yin Zhang

To fully evaluate the overall performance of different NLP models in a given domain, many evaluation benchmarks are proposed, such as GLUE, SuperGLUE and CLUE. The field of natural language understanding has traditionally focused on benchmarks for various tasks in languages such as Chinese, English, and multilingual, however, there has been a lack of attention given to the area of classical Chinese, also known as "wen yan wen (文言文)", which has a rich history spanning thousands of years and holds significant cultural and academic value. For the prosperity of the NLP community, in this paper, we introduce the WYWEB evaluation benchmark, which consists of nine NLP tasks in classical Chinese, implementing sentence classification, sequence labeling, reading comprehension, and machine translation. We evaluate the existing pre-trained language models, which are all struggling with this benchmark. We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on classical Chinese NLU. The github repository is

pdf bib
A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment
Jianheng Tang | Kangfei Zhao | Jia Li

Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at

pdf bib
Two Examples are Better than One: Context Regularization for Gradient-based Prompt Tuning
Hyeonmin Ha | Soyoung Jung | Jinsol Park | Minjoon Seo | Seung-won Hwang | Byung-Gon Chun

Prompting has gained tremendous attention as an efficient method for the adaptation of large-scale language models. However, prompts often act against human intuition and report unstable performances, which has motivated methods that automatically find effective prompts. One popular approach is gradient-based search, which iteratively updates a (randomly) initialized prompt towards the optimal one with the guide of gradients. We propose a novel regularization method, CoRe, for gradient-based prompt tuning techniques, which guides a prompt to produce a task context properly. CoRe realizes two regularization effects — context attuning and context filtering — that improve prediction performance in a zero-shot in-context learning setting where a model makes inferences only with the prompt tuned by CoRe, without any demonstration examples for in-context learning. Context attuning guides the context generated by the input and the tuned prompt toward embedding the appropriate context for the task. In our theoretical analysis, regularizing the context extends to improving zero-shot in-context learning performance. Context filtering steers the prompt to select only the task-related context so that context attuning solely focuses on creating and sending the right task context. We evaluate CoRe on natural language understanding datasets and two large language models, GPT2-XL and GPT-J.Our training scheme shows performance improvements up to 11.9% on GPT2-XL, and up to 6.3% on GPT-J in zero-shot settings.

pdf bib
An Investigation of Noise in Morphological Inflection
Adam Wiemerslage | Changbing Yang | Garrett Nicolai | Miikka Silfverberg | Katharina Kann

With a growing focus on morphological inflection systems for languages where high-quality data is scarce, training data noise is a serious but so far largely ignored concern. We aim at closing this gap by investigating the types of noise encountered within a pipeline for truly unsupervised morphological paradigm completion and its impact on morphological inflection systems: First, we propose an error taxonomy and annotation pipeline for inflection training data. Then, we compare the effect of different types of noise on multiple state-of-the- art inflection models. Finally, we propose a novel character-level masked language modeling (CMLM) pretraining objective and explore its impact on the models’ resistance to noise. Our experiments show that various architectures are impacted differently by separate types of noise, but encoder-decoders tend to be more robust to noise than models trained with a copy bias. CMLM pretraining helps transformers, but has lower impact on LSTMs.

pdf bib
Graph Reasoning for Question Answering with Triplet Retrieval
Shiyang Li | Yifan Gao | Haoming Jiang | Qingyu Yin | Zheng Li | Xifeng Yan | Chao Zhang | Bing Yin

Answering complex questions often requires reasoning over knowledge graphs (KGs). State-of-the-art methods often utilize entities in questions to retrieve local subgraphs, which are then fed into KG encoder, e.g. graph neural networks (GNNs), to model their local structures and integrated into language models for question answering. However, this paradigm constrains retrieved knowledge in local subgraphs and discards more diverse triplets buried in KGs that are disconnected but useful for question answering. In this paper, we propose a simple yet effective method to first retrieve the most relevant triplets from KGs and then rerank them, which are then concatenated with questions to be fed into language models. Extensive results on both CommonsenseQA and OpenbookQA datasets show that our method can outperform state-of-the-art up to 4.6% absolute accuracy.

pdf bib
End-to-End Argument Mining over Varying Rhetorical Structures
Elena Chistova

Rhetorical Structure Theory implies no single discourse interpretation of a text, and the limitations of RST parsers further exacerbate inconsistent parsing of similar structures. Therefore, it is important to take into account that the same argumentative structure can be found in semantically similar texts with varying rhetorical structures. In this work, the differences between paraphrases within the same argument scheme are evaluated from a rhetorical perspective. The study proposes a deep dependency parsing model to assess the connection between rhetorical and argument structures. The model utilizes rhetorical relations; RST structures of paraphrases serve as training data augmentations. The method allows for end-to-end argumentation analysis using a rhetorical tree instead of a word sequence. It is evaluated on the bilingual Microtexts corpus, and the first results on fully-fledged argument parsing for the Russian version of the corpus are reported. The results suggest that argument mining can benefit from multiple variants of discourse structure.

pdf bib
Unsupervised Task Graph Generation from Instructional Video Transcripts
Lajanugen Logeswaran | Sungryull Sohn | Yunseok Jang | Moontae Lee | Honglak Lee

This work explores the problem of generating task graphs of real-world activities. Different from prior formulations, we consider a setting where text transcripts of instructional videos performing a real-world activity (e.g., making coffee) are provided and the goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps. We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components to generate accurate task graphs in a completely unsupervised manner. We show that the proposed approach generates more accurate task graphs compared to a supervised learning approach on tasks from the ProceL and CrossTask datasets.

pdf bib
Exploiting Hierarchically Structured Categories in Fine-grained Chinese Named Entity Recognition
Jiuding Yang | Jinwen Luo | Weidong Guo | Di Niu | Yu Xu

Chinese Named Entity Recognition (CNER) is a widely used technology in various applications. While recent studies have focused on utilizing additional information of the Chinese language and characters to enhance CNER performance, this paper focuses on a specific aspect of CNER known as fine-grained CNER (FG-CNER). FG-CNER involves the use of hierarchical, fine-grained categories (e.g. Person-MovieStar) to label named entities. To promote research in this area, we introduce the FiNE dataset, a dataset for FG-CNER consisting of 30,000 sentences from various domains and containing 67,651 entities in 54 fine-grained flattened hierarchical categories. Additionally, we propose SoftFiNE, a novel approach for FG-CNER that utilizes a custom-designed relevance scoring function based on label structures to learn the potential relevance between different flattened hierarchical labels. Our experimental results demonstrate that the proposed SoftFiNE method outperforms the state-of-the-art baselines on the FiNE dataset. Furthermore, we conduct extensive experiments on three other datasets, including OntoNotes 4.0, Weibo, and Resume, where SoftFiNE achieved state-of-the-art performance on all three datasets.

pdf bib
Adversarial Textual Robustness on Visual Dialog
Lu Yu | Verena Rieser

Adversarial robustness evaluates the worst-case performance scenario of a machine learning model to ensure its safety and reliability. For example, cases where the user input contains a minimal change, e.g. a synonym, which causes the previously correct model to return a wrong answer. Using this scenario, this study is the first to investigate the robustness of visually grounded dialog models towards textual attacks. We first aim to understand how multimodal input components contribute to model robustness. Our results show that models which encode dialog history are more robust by providing redundant information. This is in contrast to prior work which finds that dialog history is negligible for model performance on this task. We also evaluate how to generate adversarial test examples which successfully fool the model but remain undetected by the user/software designer. Our analysis shows that the textual, as well as the visual context are important to generate plausible attacks.

pdf bib
Language Model Analysis for Ontology Subsumption Inference
Yuan He | Jiaoyan Chen | Ernesto Jimenez-Ruiz | Hang Dong | Ian Horrocks

Investigating whether pre-trained language models (LMs) can function as knowledge bases (KBs) has raised wide research interests recently. However, existing works focus on simple, triple-based, relational KBs, but omit more sophisticated, logic-based, conceptualised KBs such as OWL ontologies. To investigate an LM’s knowledge of ontologies, we propose OntoLAMA, a set of inference-based probing tasks and datasets from ontology subsumption axioms involving both atomic and complex concepts. We conduct extensive experiments on ontologies of different domains and scales, and our results demonstrate that LMs encode relatively less background knowledge of Subsumption Inference (SI) than traditional Natural Language Inference (NLI) but can improve on SI significantly when a small number of samples are given. We will open-source our code and datasets.

pdf bib
Exploring Automatically Perturbed Natural Language Explanations in Relation Extraction
Wanyun Cui | Xingran Chen

Previous research has demonstrated that natural language explanations provide valuable inductive biases that guide models, thereby improving the generalization ability and data efficiency. In this paper, we undertake a systematic examination of the effectiveness of these explanations. Remarkably, we find that corrupted explanations with diminished inductive biases can achieve competitive or superior performance compared to the original explanations. Our findings furnish novel insights into the characteristics of natural language explanations in the following ways: (1) the impact of explanations varies across different training styles and datasets, with previously believed improvements primarily observed in frozen language models. (2) While previous research has attributed the effect of explanations solely to their inductive biases, our study shows that the effect persists even when the explanations are completely corrupted. We propose that the main effect is due to the provision of additional context space. (3) Utilizing the proposed automatic perturbed context, we were able to attain comparable results to annotated explanations, but with a significant increase in computational efficiency, 20-30 times faster.

pdf bib
Varta: A Large-Scale Headline-Generation Dataset for Indic Languages
Rahul Aralikatte | Ziling Cheng | Sumanth Doddapaneni | Jackie Chi Kit Cheung

We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowledge, this is the largest collection of curated news articles for Indic languages currently available. We use the collected data in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pre-train strong language models that outperform competitive baselines in both NLU and NLG benchmarks.

pdf bib
Better Zero-Shot Reasoning with Self-Adaptive Prompting
Xingchen Wan | Ruoxi Sun | Hanjun Dai | Sercan Arik | Tomas Pfister

Modern large language models (LLMs) have demonstrated impressive capabilities at sophisticated tasks, often through step-by-step reasoning similar to humans. This is made possible by their strong few- and zero-shot abilities – they can effectively learn from a handful of handcrafted, completed responses (“in-context examples”), or are prompted to reason spontaneously through specially designed triggers. Nonetheless, some limitations have been observed. First, performance in the few-shot setting is sensitive to the choice of the examples, whose design requires significant human effort. Moreover, given the diverse downstream tasks of LLMs, it may be difficult or laborious to handcraft per-task labels. Second, while the zero-shot setting does not require handcrafting, its performance is limited due to the lack of guidance to the LLMs. To address these limitations, we propose Consistency-based Self-adaptive Prompting (COSP), a novel prompt design method for LLMs. Requiring neither handcrafted responses nor ground-truth labels, COSP selects and builds the set of examples from the LLM zero-shot outputs via carefully designed criteria combining consistency, diversity and repetition. In the zero-shot setting for three different LLMs, we show that using only LLM predictions, COSP significantly improves performance up to 15% compared to zero-shot baselines and matches or exceeds few-shot baselines at a range of reasoning tasks.

pdf bib
Multimodal Recommendation Dialog with Subjective Preference: A New Challenge and Benchmark
Yuxing Long | Binyuan Hui | Caixia Yuan | Fei Huang | Yongbin Li | Xiaojie Wang

Existing multimodal task-oriented dialog data fails to demonstrate the diverse expressions of user subjective preferences and recommendation acts in the real-life shopping scenario. This paper introduces a new dataset SURE (Multimodal Recommendation Dialog with Subjective Preference), which contains 12K shopping dialogs in complex store scenes. The data is built in two phases with human annotations to ensure quality and diversity. SURE is well-annotated with subjective preferences and recommendation acts proposed by sales experts. A comprehensive analysis is given to reveal the distinguishing features of SURE. Three benchmark tasks are then proposed on the data to evaluate the capability of multimodal recommendation agents. Basing on the SURE, we propose a baseline model, powered by a state-of-the-art multimodal model, for these tasks.

pdf bib
ANALOGICAL - A Novel Benchmark for Long Text Analogy Evaluation in Large Language Models
Thilini Wijesiriwardene | Ruwan Wickramarachchi | Bimal Gajera | Shreeyash Gowaikar | Chandan Gupta | Aman Chadha | Aishwarya Naresh Reganti | Amit Sheth | Amitava Das

Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity – (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.

pdf bib
Financial Numeric Extreme Labelling: A dataset and benchmarking
Soumya Sharma | Subhendu Khatuya | Manjunath Hegde | Afreen Shaikh | Koustuv Dasgupta | Pawan Goyal | Niloy Ganguly

The U.S. Securities and Exchange Commission (SEC) mandates all public companies to file periodic financial statements that should contain numerals annotated with a particular label from a taxonomy. In this paper, we formulate the task of automating the assignment of a label to a particular numeral span in a sentence from an extremely large label set. Towards this task, we release a dataset, Financial Numeric Extreme Labelling (FNXL), annotated with 2,794 labels. We benchmark the performance of the FNXL dataset by formulating the task as (a) a sequence labelling problem and (b) a pipeline with span extraction followed by Extreme Classification. Although the two approaches perform comparably, the pipeline solution provides a slight edge for the least frequent labels.

pdf bib
Multilingual Summarization with Factual Consistency Evaluation
Roee Aharoni | Shashi Narayan | Joshua Maynez | Jonathan Herzig | Elizabeth Clark | Mirella Lapata

Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets. Despite promising results, current models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. Several recent efforts attempt to address this by devising models that automatically detect factual inconsistencies in machine generated summaries. However, they focus exclusively on English, a language with abundant resources. In this work, we leverage factual consistency evaluation models to improve multilingual summarization. We explore two intuitive approaches to mitigate hallucinations based on the signal provided by a multilingual NLI model, namely data filtering and controlled generation. Experimental results in the 45 languages from the XLSum dataset show gains over strong baselines in both automatic and human evaluation. We release models and human judgements of summaries to foster progress towards more factually consistent multilingual summarization.

pdf bib
Enhancing Out-of-Vocabulary Estimation with Subword Attention
Raj Patel | Carlotta Domeniconi

Word embedding methods like word2vec and GloVe have been shown to learn strong representations of words. However, these methods only learn representations for words in the training corpus and therefore struggle to handle unknown and new words, known as out-of-vocabulary (OOV) words. As a result, there have been multiple attempts to learn OOV word representations in a similar fashion to how humans learn new words, using word roots/subwords and/or surrounding words. However, while most of these approaches use advanced architectures like attention on the context of the OOV word, they tend to use simple structures like ngram addition or character based convolutional neural networks (CNN) to handle processing subword information. In response to this, we propose SubAtt, a transformer based OOV estimation model that uses attention mechanisms on both the context and the subwords. In addition to attention, we also show that pretraining subword representations also leads to improvement in OOV estimation. We show SubAtt outperforms current state-of-the-art OOV estimation models.

pdf bib
Encoder and Decoder, Not One Less for Pre-trained Language Model Sponsored NMT
Sufeng Duan | Hai Zhao

Well pre-trained contextualized representations from pre-trained language model (PLM) have been shown helpful for enhancing various natural language processing tasks, surely including neural machine translation (NMT). However, existing methods either consider encoder-only enhancement or rely on specific multilingual PLMs, which leads to a much larger model or give up potentially helpful knowledge from target PLMs. In this paper, we propose a new monolingual PLM-sponsored NMT model to let both encoder and decoder enjoy PLM enhancement to alleviate such obvious inconvenience. Especially, incorporating a newly proposed frequency-weighted embedding transformation algorithm, PLM embeddings can be effectively exploited in terms of the representations of the NMT decoder. We evaluate our model on IWSLT14 En-De, De-En, WMT14 En-De, and En-Fr tasks, and the results show that our proposed PLM enhancement gives significant improvement and even helps achieve new state-of-the-art.

pdf bib
TransGEC: Improving Grammatical Error Correction with Translationese
Tao Fang | Xuebo Liu | Derek F. Wong | Runzhe Zhan | Liang Ding | Lidia S. Chao | Dacheng Tao | Min Zhang

Data augmentation is an effective way to improve model performance of grammatical error correction (GEC). This paper identifies a critical side-effect of GEC data augmentation, which is due to the style discrepancy between the data used in GEC tasks (i.e., texts produced by non-native speakers) and data augmentation (i.e., native texts). To alleviate this issue, we propose to use an alternative data source, translationese (i.e., human-translated texts), as input for GEC data augmentation, which 1) is easier to obtain and usually has better quality than non-native texts, and 2) has a more similar style to non-native texts. Experimental results on the CoNLL14 and BEA19 English, NLPCC18 Chinese, Falko-MERLIN German, and RULEC-GEC Russian GEC benchmarks show that our approach consistently improves correction accuracy over strong baselines. Further analyses reveal that our approach is helpful for overcoming mainstream correction difficulties such as the corrections of frequent words, missing words, and substitution errors. Data, code, models and scripts are freely available at

pdf bib
NewsDialogues: Towards Proactive News Grounded Conversation
Siheng Li | Yichun Yin | Cheng Yang | Wangjie Jiang | Yiwei Li | Zesen Cheng | Lifeng Shang | Xin Jiang | Qun Liu | Yujiu Yang

Hot news is one of the most popular topics in daily conversations. However, news grounded conversation has long been stymied by the lack of well-designed task definition and scarce data. In this paper, we propose a novel task, Proactive News Grounded Conversation, in which a dialogue system can proactively lead the conversation based on some key topics of the news. In addition, both information-seeking and chit-chat scenarios are included realistically, where the user may ask a series of questions about the news details or express their opinions and be eager to chat. To further develop this novel task, we collect a human-to-human Chinese dialogue dataset NewsDialogues, which includes 1K conversations with a total of 14.6K utterances and detailed annotations for target topics and knowledge spans. Furthermore, we propose a method named Predict-Generate-Rank, consisting of a generator for grounded knowledge prediction and response generation, and a ranker for the ranking of multiple responses to alleviate the exposure bias. We conduct comprehensive experiments to demonstrate the effectiveness of the proposed method and further present several key findings and challenges to prompt future research.

pdf bib
Task-aware Retrieval with Instructions
Akari Asai | Timo Schick | Patrick Lewis | Xilun Chen | Gautier Izacard | Sebastian Riedel | Hannaneh Hajishirzi | Wen-tau Yih

We study the problem of retrieval with instructions, where users provide explicit descriptions of their intent along with their queries to guide a retrieval system. Our solution is a general-purpose task-aware retrieval system, trained using multi-task instruction tuning and can follow human-written instructions to find relevant documents to a given query. We introduce the first large-scale collection of 37 retrieval datasets with instructions, BERRI, and present TART, a single multi-task retrieval system trained on BERRI with instructions that can adapt to a new task without any parameter updates. TART advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X2-Retrieval, to better reflect real-world scenarios in which diverse domains and tasks are pooled. TART significantly outperforms competitive baselines in this setup, further highlighting the effectiveness of guiding retrieval with instructions.

pdf bib
Non-Repeatable Experiments and Non-Reproducible Results: The Reproducibility Crisis in Human Evaluation in NLP
Anya Belz | Craig Thomson | Ehud Reiter | Simon Mille

Human evaluation is widely regarded as the litmus test of quality in NLP. A basic requirementof all evaluations, but in particular where they are used for meta-evaluation, is that they should support the same conclusions if repeated. However, the reproducibility of human evaluations is virtually never queried, let alone formally tested, in NLP which means that their repeatability and the reproducibility of their results is currently an open question. This focused contribution reports our review of human evaluation experiments reported in NLP papers over the past five years which we assessed in terms oftheir ability to be rerun. Overall, we estimatethat just 5% of human evaluations are repeatable in the sense that (i) there are no prohibitivebarriers to repetition, and (ii) sufficient information about experimental design is publicly available for rerunning them. Our estimate goesup to about 20% when author help is sought. We complement this investigation with a survey of results concerning the reproducibilityof human evaluations where those are repeatable in the first place. Here we find worryinglylow degrees of reproducibility, both in terms ofsimilarity of scores and of findings supportedby them. We summarise what insights can begleaned so far regarding how to make humanevaluations in NLP more repeatable and morereproducible.

pdf bib
Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models
Lingjun Zhao | Khanh Nguyen | Hal Daumé III

Recent work studies the cognitive capabilities of language models through psychological tests designed for humans. While these studies are helpful for understanding the general capabilities of these models, there is no guarantee that a model possessing sufficient capabilities to pass those tests would actually use those capabilities in performing real-life tasks. In this work, we formulate task-oriented cognitive capabilities, which are human-like cognitive capabilities that language models leverage to perform tasks. These capabilities are (i) the ability to quickly generate good candidate utterances (the search capability) (ii) the ability to predict how a listener interprets those utterances and choose the most appropriate one (the pragmatic capability). We design an evaluation scheme for comparing these capabilities of a language model with those of a human. Applying this scheme to examine various models in a navigation instruction generation problem, we find that their pragmatic capability is severely lacking. This insight leads us to augment them with better models of the listener and obtain a significant boost of 11% in success rate in guiding real humans. Our work advocates for having a principled procedure for aligning language models with humans that involves (i) formulating task-oriented capabilities, (ii) devising a method to quantify their deficiency, and (iii) iteratively improving them.

pdf bib
Robustness of Multi-Source MT to Transcription Errors
Dominik Macháček | Peter Polák | Ondřej Bojar | Raj Dabre

Automatic speech translation is sensitive to speech recognition errors, but in a multilingual scenario, the same content may be available in various languages via simultaneous interpreting, dubbing or subtitling. In this paper, we hypothesize that leveraging multiple sources will improve translation quality if the sources complement one another in terms of correct information they contain. To this end, we first show that on a 10-hour ESIC corpus, the ASR errors in the original English speech and its simultaneous interpreting into German and Czech are mutually independent. We then use two sources, English and German, in a multi-source setting for translation into Czech to establish its robustness to ASR errors. Furthermore, we observe this robustness when translating both noisy sources together in a simultaneous translation setting. Our results show that multi-source neural machine translation has the potential to be useful in a real-time simultaneous translation setting, thereby motivating further investigation in this area.

pdf bib
Not The End of Story: An Evaluation of ChatGPT-Driven Vulnerability Description Mappings
Xin Liu | Yuan Tan | Zhenghang Xiao | Jianwei Zhuge | Rui Zhou

As the number of vulnerabilities increases day by day, security management requires more and more structured data. In addition to textual descriptions of vulnerabilities, security engineers must classify and assess vulnerabilities and clarify their associated techniques. Vulnerability Description Mapping (VDM) refers to mapping vulnerabilities to Common Weakness Enumeration (CWE), Common Attack Pattern Enumeration and Classification, ATT&CK Techniques, and other classifications. Accurate VDM is necessary to reduce the pressure of security management and improve the speed of security emergency response. ChatGPT is the latest state-of-the-art closed-source conversational large language model (LLM), which performs excellently on many tasks. This paper explores the application of closed-source LLMs to real-world security management scenarios by evaluating ChatGPT’s performance on VDM tasks. The results show that although ChatGPT may be close to the level of human experts on some tasks, it still cannot replace the critical role of professional security engineers in vulnerability analysis. In a word, closed-source LLM is not the end of story.

pdf bib
Multi3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue
Nikita Moghe | Evgeniia Razumovskaia | Liane Guillou | Ivan Vulić | Anna Korhonen | Alexandra Birch

Task-oriented dialogue (ToD) systems have been widely deployed in many industries as they deliver more efficient customer support. These systems are typically constructed for a single domain or language and do not generalise well beyond this. To support work on Natural Language Understanding (NLU) in ToD across multiple languages and domains simultaneously, we constructed Multi3NLU++, a multilingual, multi-intent, multi-domain dataset. Multi3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). Because of its multi-intent property, Multi3NLU++ represents complex and natural user goals, and therefore allows us to measure the realistic performance of ToD systems in a varied set of the world’s languages. We use Multi3NLU++ to benchmark state-of-the-art multilingual models for the NLU tasks of intent detection and slot labeling for ToD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting, offering ample room for future experimentation in multi-domain multilingual ToD setups.

pdf bib
A Robust Information-Masking Approach for Domain Counterfactual Generation
Pengfei Hong | Rishabh Bhardwaj | Navonil Majumder | Somak Aditya | Soujanya Poria

Domain shift is a big challenge in NLP. Many approaches, thus, resort to learning domain-invariant features to mitigate the hurdles of domain shift during inference. Such methods, however, inexorably fail to leverage the domain-specific nuances relevant to the task at hand. To avoid such drawbacks, domain counterfactual generation has recently been proposed that aims to transform a text from the source domain to a given target domain. To achieve this, the existing method uses a frequency-based approach to identify and mask the source-domain-specific tokens in a text. A pretrained LM is then prompted to fill the masks with target-domain-specific tokens. We, however, have observed that, due to limitations of the available data, such a frequency-based method may either miss some domain-token associations or lead to some spurious domain-token associations. To this end, we additionally employ attention norm-based scores to identify additional token-domain associations from a domain classifier. To minimize spurious associations, we also devise an iterative unmasking heuristic that unmasks the masked tokens to minimize the confidence of a domain classifier in the source domain. Our experiments empirically show that the counterfactual samples sourced from our masked text lead to improved domain transfer across various classification tasks. The proposed approach outperforms the baselines on 10 out of 12 domain-counterfactual classification settings with an average of 1.7% improvement in accuracy metric.

pdf bib
Misleading Relation Classifiers by Substituting Words in Texts
Tian Jiang | Yunqi Liu | Yan Feng | Yuqing Li | Xiaohui Cui

Relation classification is to determine the semantic relationship between two entities in a given sentence. However, many relation classifiers are vulnerable to adversarial attacks, which is using adversarial examples to lead victim models to output wrong results. In this paper, we propose a simple but effective method for misleading relation classifiers. We first analyze the most important parts of speech (POSs) from the syntax and morphology perspectives, then we substitute words labeled with these POS tags in original samples with synonyms or hyponyms. Experimental results show that our method can generate adversarial texts of high quality, and most of the relationships between entities can be correctly identified in the process of human evaluation. Furthermore, the adversarial examples generated by our method possess promising transferability, and they are also helpful for improving the robustness of victim models.

pdf bib
Automatic Table Union Search with Tabular Representation Learning
Xuming Hu | Shen Wang | Xiao Qin | Chuan Lei | Zhengyuan Shen | Christos Faloutsos | Asterios Katsifodimos | George Karypis | Lijie Wen | Philip S. Yu

Given a data lake of tabular data as well as a query table, how can we retrieve all the tables in the data lake that can be unioned with the query table? Table union search constitutes an essential task in data discovery and preparation as it enables data scientists to navigate massive open data repositories. Existing methods identify uniability based on column representations (word surface forms or token embeddings) and column relation represented by column representation similarity. However, the semantic similarity obtained between column representations is often insufficient to reveal latent relational features to describe the column relation between pair of columns and not robust to the table noise. To address these issues, in this paper, we propose a multi-stage self-supervised table union search framework called AutoTUS, which represents column relation as a vector– column relational representation and learn column relational representation in a multi-stage manner that can better describe column relation for unionability prediction. In particular, the large language model powered contextualized column relation encoder is updated by adaptive clustering and pseudo label classification iteratively so that the better column relational representation can be learned. Moreover, to improve the robustness of the model against table noises, we propose table noise generator to add table noise to the training table data. Experiments on real-world datasets as well as synthetic test set augmented with table noise show that AutoTUS achieves 5.2% performance gain over the SOTA baseline.

pdf bib
Bidirectional Transformer Reranker for Grammatical Error Correction
Ying Zhang | Hidetaka Kamigaito | Manabu Okumura

Pre-trained seq2seq models have achieved state-of-the-art results in the grammatical error correction task. However, these models still suffer from a prediction bias due to their unidirectional decoding. Thus, we propose a bidirectional Transformer reranker (BTR), that re-estimates the probability of each candidate sentence generated by the pre-trained seq2seq model. The BTR preserves the seq2seq-style Transformer architecture but utilizes a BERT-style self-attention mechanism in the decoder to compute the probability of each target token by using masked language modeling to capture bidirectional representations from the target context. For guiding the reranking, the BTR adopts negative sampling in the objective function to minimize the unlikelihood. During inference, the BTR gives final results after comparing the reranked top-1 results with the original ones by an acceptance threshold. Experimental results show that, in reranking candidates from a pre-trained seq2seq model, T5-base, the BTR on top of T5-base could yield 65.47 and 71.27 F0.5 scores on the CoNLL-14 and BEA test sets, respectively, and yield 59.52 GLEU score on the JFLEG corpus, with improvements of 0.36, 0.76 and 0.48 points compared with the original T5-base. Furthermore, when reranking candidates from T5-large, the BTR on top of T5-base improved the original T5-large by 0.26 points on the BEA test set.

pdf bib
Not Enough Data to Pre-train Your Language Model? MT to the Rescue!
Gorka Urbizu | Iñaki San Vicente | Xabier Saralegi | Ander Corral

In recent years, pre-trained transformer-based language models (LM) have become a key resource for implementing most NLP tasks. However, pre-training such models demands large text collections not available in most languages. In this paper, we study the use of machine-translated corpora for pre-training LMs. We answer the following research questions: RQ1: Is MT-based data an alternative to real data for learning a LM?; RQ2: Can real data be complemented with translated data and improve the resulting LM? In order to validate these two questions, several BERT models for Basque have been trained, combining real data and synthetic data translated from Spanish.The evaluation carried out on 9 NLU tasks indicates that models trained exclusively on translated data offer competitive results. Furthermore, models trained with real data can be improved with synthetic data, although further research is needed on the matter.

pdf bib
UMSE: Unified Multi-scenario Summarization Evaluation
Shen Gao | Zhitao Yao | Chongyang Tao | Xiuying Chen | Pengjie Ren | Zhaochun Ren | Zhumin Chen

Summarization quality evaluation is a non-trivial task in text summarization. Contemporary methods can be mainly categorized into two scenarios: (1) reference-based: evaluating with human-labeled reference summary; (2) reference-free: evaluating the summary consistency of the document. Recent studies mainly focus on one of these scenarios and explore training neural models built on PLMs to align with human criteria. However, the models from different scenarios are optimized individually, which may result in sub-optimal performance since they neglect the shared knowledge across different scenarios. Besides, designing individual models for each scenario caused inconvenience to the user. Inspired by this, we propose Unified Multi-scenario Summarization Evaluation Model (UMSE). More specifically, we propose a perturbed prefix tuning method to share cross-scenario knowledge between scenarios and use a self-supervised training paradigm to optimize the model without extra human labeling. Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios. Experimental results across three typical scenarios on the benchmark dataset SummEval indicate that our UMSE can achieve comparable performance with several existing strong methods which are specifically designed for each scenario.

pdf bib
Maximum Entropy Loss, the Silver Bullet Targeting Backdoor Attacks in Pre-trained Language Models
Zhengxiao Liu | Bowen Shen | Zheng Lin | Fali Wang | Weiping Wang

Pre-trained language model (PLM) can be stealthily misled to target outputs by backdoor attacks when encountering poisoned samples, without performance degradation on clean samples. The stealthiness of backdoor attacks is commonly attained through minimal cross-entropy loss fine-tuning on a union of poisoned and clean samples. Existing defense paradigms provide a workaround by detecting and removing poisoned samples at pre-training or inference time. On the contrary, we provide a new perspective where the backdoor attack is directly reversed. Specifically, maximum entropy loss is incorporated in training to neutralize the minimal cross-entropy loss fine-tuning on poisoned data. We defend against a range of backdoor attacks on classification tasks and significantly lower the attack success rate. In extension, we explore the relationship between intended backdoor attacks and unintended dataset bias, and demonstrate the feasibility of the maximum entropy principle in de-biasing.

pdf bib
Improving Named Entity Recognition via Bridge-based Domain Adaptation
Jingyun Xu | Changmeng Zheng | Yi Cai | Tat-Seng Chua

Recent studies have shown remarkable success in cross-domain named entity recognition (cross-domain NER). Despite the promising results, existing methods mainly utilize pre-training language models like BERT to represent words. As such, the original chaotic representations may challenge them to distinguish entity types of entities, leading to entity type misclassification. To this end, we attempt to utilize contrastive learning to refine the original representations and propose a model-agnostic framework named MoCL for cross-domain NER. Additionally, we respectively combine MoCL with two distinctive cross-domain NER methods and two pre-training language models to explore its generalization ability. Empirical results on seven domains show the effectiveness and good generalization ability of MoCL.

pdf bib
SANTA: Separate Strategies for Inaccurate and Incomplete Annotation Noise in Distantly-Supervised Named Entity Recognition
Shuzheng Si | Zefan Cai | Shuang Zeng | Guoqiang Feng | Jiaxing Lin | Baobao Chang

Distantly-Supervised Named Entity Recognition effectively alleviates the burden of time-consuming and expensive annotation in the supervised setting. But the context-free matching process and the limited coverage of knowledge bases introduce inaccurate and incomplete annotation noise respectively. Previous studies either considered only incomplete one or indiscriminately handle two types of noise with the same strategy. In this paper, we argue that the different causes of two types of noise bring up the requirement of different strategies in model architecture. Therefore, we propose the SANTA to handle these two types of noise separately with (1) Memory-smoothed Focal Loss and Entity-aware KNN to relieve the entity ambiguity problem caused by inaccurate annotation, and (2) Boundary Mixup to alleviate decision boundary shifting problem caused by incomplete annotation and a noise-tolerant loss to improve the model’s robustness. Benefiting from our separate tailored strategies, we confirm in the experiment that the two types of noise are well mitigated.SANTA also achieves a new state-of-the-art on five public datasets.

pdf bib
The State of Profanity Obfuscation in Natural Language Processing Scientific Publications
Debora Nozza | Dirk Hovy

Work on hate speech has made considering rude and harmful examples in scientific publications inevitable. This situation raises various problems, such as whether or not to obscure profanities. While science must accurately disclose what it does, the unwarranted spread of hate speech can harm readers and increases its internet frequency. While maintaining publications’ professional appearance, obfuscating profanities makes it challenging to evaluate the content, especially for non-native speakers. Surveying 150 ACL papers, we discovered that obfuscation is usually used for English but not other languages, and even then, quite unevenly. We discuss the problems with obfuscation and suggest a multilingual community resource called PrOf with a Python module to standardize profanity obfuscation processes. We believe PrOf can help scientific publication policies to make hate speech work accessible and comparable, irrespective of language.

pdf bib
Teacher and Student Models of Offensive Language in Social Media
Tharindu Ranasinghe | Marcos Zampieri

State-of-the-art approaches to identifying offensive language online make use of large pre-trained transformer models. However, the inference time, disk, and memory requirements of these transformer models present challenges for their wide usage in the real world. Even the distilled transformer models remain prohibitively large for many usage scenarios. To cope with these challenges, in this paper, we propose transferring knowledge from transformer models to much smaller neural models to make predictions at the token- and at the post-level. We show that this approach leads to lightweight offensive language identification models that perform on par with large transformers but with 100 times fewer parameters and much less memory usage

pdf bib
A Simple Yet Strong Domain-Agnostic De-bias Method for Zero-Shot Sentiment Classification
Yang Zhao | Tetsuya Nasukawa | Masayasu Muraoka | Bishwaranjan Bhattacharjee

Zero-shot prompt-based learning has made much progress in sentiment analysis, and considerable effort has been dedicated to designing high-performing prompt templates. However, two problems exist; First, large language models are often biased to their pre-training data, leading to poor performance in prompt templates that models have rarely seen. Second, in order to adapt to different domains, re-designing prompt templates is usually required, which is time-consuming and inefficient. To remedy both shortcomings, we propose a simple yet strong data construction method to de-bias a given prompt template, yielding a large performance improvement in sentiment analysis tasks across different domains, pre-trained language models, and prompt templates. Also, we demonstrate the advantage of using domain-agnostic generic responses over the in-domain ground-truth data.

pdf bib
Balancing the Effect of Training Dataset Distribution of Multiple Styles for Multi-Style Text Transfer
Debarati Das | David Ma | Dongyeop Kang

Text style transfer is an exciting task within the field of natural language generation that is often plagued by the need for high-quality paired datasets. Furthermore, training a model for multi-attribute text style transfer requires datasets with sufficient support across all combinations of the considered stylistic attributes, adding to the challenges of training a style transfer model. This paper explores the impact of training data input diversity on the quality of the generated text from the multi-style transfer model. We construct a pseudo-parallel dataset by devising heuristics to adjust the style distribution in the training samples. We balance our training dataset using marginal and joint distributions to train our style transfer models. We observe that a balanced dataset produces more effective control effects over multiple styles than an imbalanced or skewed one. Through quantitative analysis, we explore the impact of multiple style distributions in training data on style-transferred output. These findings will better inform the design of style-transfer datasets.

pdf bib
A Benchmark on Extremely Weakly Supervised Text Classification: Reconcile Seed Matching and Prompting Approaches
Zihan Wang | Tianle Wang | Dheeraj Mekala | Jingbo Shang

Extremely Weakly Supervised Text Classification (XWS-TC) refers to text classification based on minimal high-level human guidance, such as a few label-indicative seed words or classification instructions. There are two mainstream approaches for XWS-TC, however, never being rigorously compared: (1) training classifiers based on pseudo-labels generated by (softly) matching seed words (Seed) and (2) prompting (and calibrating) language models using classification instruction (and raw texts) to decode label words (Prompt). This paper presents the first XWS-TC benchmark to compare the two approaches on fair grounds, where the datasets, supervisions, and hyperparameter choices are standardized across methods. Our benchmarking results suggest that (1) Both Seed and Prompt approaches are competitive and there is no clear winner; (2) Seed is empirically more tolerant than Prompt to human guidance (e.g., seed words, classification instructions, and label words) changes; (3) Seed is empirically more selective than Prompt to the pre-trained language models; (4) Recent Seed and Prompt methods have close connections and a clustering post-processing step based on raw in-domain texts is a strong performance booster to both. We hope this benchmark serves as a guideline in selecting XWS-TC methods in different scenarios and stimulate interest in developing guidance- and model-robust XWS-TC methods.

pdf bib
Ambiguity Meets Uncertainty: Investigating Uncertainty Estimation for Word Sense Disambiguation
Zhu Liu | Ying Liu

Word sense disambiguation (WSD), which aims to determine an appropriate sense for a target word given its context, is crucial for natural language understanding. Existing supervised methods treat WSD as a classification task and have achieved remarkable performance. However, they ignore uncertainty estimation (UE) in the real-world setting, where the data is always noisy and out of distribution. This paper extensively studies UE on the benchmark designed for WSD. Specifically, we first compare four uncertainty scores for a state-of-the-art WSD model and verify that the conventional predictive probabilities obtained at the end of the model are inadequate to quantify uncertainty. Then, we examine the capability of capturing data and model uncertainties by the model with the selected UE score on well-designed test scenarios and discover that the model reflects data uncertainty satisfactorily but underestimates model uncertainty. Furthermore, we explore numerous lexical properties that intrinsically affect data uncertainty and provide a detailed analysis of four critical aspects: the syntactic category, morphology, sense granularity, and semantic relations.

pdf bib
Zemi: Learning Zero-Shot Semi-Parametric Language Models from Multiple Tasks
Zhenhailong Wang | Xiaoman Pan | Dian Yu | Dong Yu | Jianshu Chen | Heng Ji

Although large language models have exhibited impressive zero-shot ability, the huge model size generally incurs high cost. Recently, semi-parametric language models, which augment a smaller language model with retrieved related background knowledge, alleviate the need for storing everything into the model parameters. Although existing semi-parametric language models have demonstrated promising language modeling capabilities, it remains unclear whether they can exhibit competitive zero-shot abilities as their fully-parametric counterparts. In this work, we introduce Zemi, a semi-parametric language model for zero-shot task generalization. To our best knowledge, this is the first semi-parametric language model that can demonstrate strong zero-shot performance on a wide range of held-out unseen tasks. We train Zemi with semi-parametric multitask training, which shows significant improvement compared with the parametric multitask training as proposed by T0. Specifically, during both training and inference, Zemi is equipped with a retrieval system based on the unlabeled pretraining corpus of our backbone model. To address the unique challenges from large-scale retrieval, we further propose a novel retrieval-augmentation fusion module that can effectively incorporate noisy retrieved documents. Finally, we show detailed analysis and ablation studies on the key ingredients towards building effective zero-shot semi-parametric language models. Notably, our proposed Zemi_Large model outperforms T0-3B by 16% across seven diverse evaluation tasks while being 3.8x smaller in scale.

pdf bib
Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers
Damai Dai | Yutao Sun | Li Dong | Yaru Hao | Shuming Ma | Zhifang Sui | Furu Wei

Large pretrained language models have shown surprising in-context learning (ICL) ability. With a few demonstration input-label pairs, they can predict the label for an unseen input without parameter updates. Despite the great success in performance, its working mechanism still remains an open question. In this paper, we explain language models as meta-optimizers and understand in-context learning as implicit finetuning. Theoretically, we figure out that Transformer attention has a dual form of gradient descent. On top of it, we understand ICL as follows: GPT first produces meta-gradients according to the demonstration examples, and then these meta-gradients are applied to the original GPT to build an ICL model. We comprehensively compare the behaviors of in-context learning and explicit finetuning on real tasks to provide empirical evidence that supports our understanding. Experimental results show that in-context learning behaves similarly to explicit finetuning from multiple perspectives. Inspired by the dual form between Transformer attention and gradient descent, we design a momentum-based attention by analogy with gradient descent with momentum. The improved performance over vanilla attention further supports our understanding from another perspective, and more importantly, shows the potential to utilize our understanding for future model design. The code is available at

pdf bib
Dramatic Conversation Disentanglement
Kent Chang | Danica Chen | David Bamman

We present a new dataset for studying conversation disentanglement in movies and TV series. While previous work has focused on conversation disentanglement in IRC chatroom dialogues, movies and TV shows provide a space for studying complex pragmatic patterns of floor and topic change in face-to-face multi-party interactions. In this work, we draw on theoretical research in sociolinguistics, sociology, and film studies to operationalize a conversational thread (including the notion of a floor change) in dramatic texts, and use that definition to annotate a dataset of 10,033 dialogue turns (comprising 2,209 threads) from 831 movies. We compare the performance of several disentanglement models on this dramatic dataset, and apply the best-performing model to disentangle 808 movies. We see that, contrary to expectation, average thread lengths do not decrease significantly over the past 40 years, and characters portrayed by actors who are women, while underrepresented, initiate more new conversational threads relative to their speaking time.

pdf bib
Injecting Comparison Skills in Task-Oriented Dialogue Systems for Database Search Results Disambiguation
Yongil Kim | Yerin Hwang | Joongbo Shin | Hyunkyung Bae | Kyomin Jung

In task-oriented dialogue (TOD) systems designed to aid users accomplish specific goals in one or more domains, the agent retrieves entities that satisfy user constraints from the database. However, when multiple database search results exist, an ambiguity occurs regarding which results to select and present to the user. Existing TOD systems handle this ambiguity by randomly selecting one or few results and presenting their names to the user. However, in a real scenario, users do not always accept a randomly recommended entity, and users should have access to more comprehensive information about the search results. To address this limitation, we propose a novel task called Comparison-Based database search Ambiguity handling (CBA), which handles ambiguity in database search results by comparing the properties of multiple entities to enable users to choose according to their preferences. Accordingly, we introduce a new framework for automatically collecting high-quality dialogue data along with the Disambiguating Schema-guided Dialogue (DSD) dataset, an augmented version of the SGD dataset. Experimental studies on the DSD dataset demonstrate that training baseline models with the dataset effectively address the CBA task. Our dataset and code will be publicized.

pdf bib
Emergent Modularity in Pre-trained Transformers
Zhengyan Zhang | Zhiyuan Zeng | Yankai Lin | Chaojun Xiao | Xiaozhi Wang | Xu Han | Zhiyuan Liu | Ruobing Xie | Maosong Sun | Jie Zhou

This work examines the presence of modularity in pre-trained Transformers, a feature commonly found in human brains and thought to be vital for general intelligence. In analogy to human brains, we consider two main characteristics of modularity: (1) functional specialization of neurons: we evaluate whether each neuron is mainly specialized in a certain function, and find that the answer is yes. (2) function-based neuron grouping: we explore to find a structure that groups neurons into modules by function, and each module works for its corresponding function. Given the enormous amount of possible structures, we focus on Mixture-of-Experts as a promising candidate, which partitions neurons into experts and usually activates different experts for different inputs. Experimental results show that there are functional experts, where clustered are the neurons specialized in a certain function. Moreover, perturbing the activations of functional experts significantly affects the corresponding function. Finally, we study how modularity emerges during pre-training, and find that the modular structure is stabilized at the early stage, which is faster than neuron stabilization. It suggests that Transformer first constructs the modular structure and then learns fine-grained neuron functions. Our code and data are available at

pdf bib
Universal Information Extraction with Meta-Pretrained Self-Retrieval
Xin Cong | Bowen Yu | Mengcheng Fang | Tingwen Liu | Haiyang Yu | Zhongkai Hu | Fei Huang | Yongbin Li | Bin Wang

Universal Information Extraction (Universal IE) aims to solve different extraction tasks in a uniform text-to-structure generation manner. Such a generation procedure tends to struggle when there exist complex information structures to be extracted. Retrieving knowledge from external knowledge bases may help models to overcome this problem but it is impossible to construct a knowledge base suitable for various IE tasks. Inspired by the fact that large amount of knowledge are stored in the pretrained language models (PLM) and can be retrieved explicitly, in this paper, we propose MetaRetriever to retrieve task-specific knowledge from PLMs to enhance universal IE. As different IE tasks need different knowledge, we further propose a Meta-Pretraining Algorithm which allows MetaRetriever to quicktly achieve maximum task-specific retrieval performance when fine-tuning on downstream IE tasks. Experimental results show that MetaRetriever achieves the new state-of-the-art on 4 IE tasks, 12 datasets under fully-supervised, low-resource and few-shot scenarios.

pdf bib
SETI: Systematicity Evaluation of Textual Inference
Xiyan Fu | Anette Frank

We propose SETI (Systematicity Evaluation of Textual Inference), a novel and comprehensive benchmark designed for evaluating pre-trained language models (PLMs) for their systematicity capabilities in the domain of textual inference. Specifically, SETI offers three different NLI tasks and corresponding datasets to evaluate various types of systematicity in reasoning processes. In order to solve these tasks, models are required to perform compositional inference based on known primitive constituents. We conduct experiments of SETI on six widely used PLMs. Results show that various PLMs are able to solve unseen compositional inferences when having encountered the knowledge of how to combine primitives, with good performance. However, they are considerably limited when this knowledge is unknown to the model (40-100 % points decrease). Furthermore, we find that PLMs are able to improve dramatically once exposed to crucial compositional knowledge in minimalistic shots. These findings position SETI as the first benchmark for measuring the future progress of PLMs in achieving systematicity generalization in the textual inference.

pdf bib
Coarse-to-fine Few-shot Learning for Named Entity Recognition
Ruotian Ma | Zhang Lin | Xuanting Chen | Xin Zhou | Junzhe Wang | Tao Gui | Qi Zhang | Xiang Gao | Yun Wen Chen

Recently, Few-shot Named Entity Recognition has received wide attention with the growing need for NER models to learn new classes with minimized annotation costs. However, one common yet understudied situation is to transfer a model trained with coarse-grained classes to recognize fine-grained classes, such as separating a product category into sub-classes. We find that existing few-shot NER solutions are not suitable for such a situation since they do not consider the sub-class discrimination during coarse training and various granularity of new classes during few-shot learning. In this work, we introduce the Coarse-to-fine Few-shot NER (C2FNER) task and propose an effective solution. Specifically, during coarse training, we propose a cluster-based prototype margin loss to learn group-wise discriminative representations, so as to benefit fine-grained learning. Targeting various granularity of new classes, we separate the coarse classes into extra-fine clusters and propose a novel prototype retrieval and bootstrapping algorithm to retrieve representative clusters for each fine class. We then adopt a mixture prototype loss to efficiently learn the representations of fine classes. We conduct experiments on both in-domain and cross-domain C2FNER settings with various target granularity, and the proposed method shows superior performance over the baseline methods.

pdf bib
Self-Evolution Learning for Discriminative Language Model Pretraining
Qihuang Zhong | Liang Ding | Juhua Liu | Bo Du | Dacheng Tao

Masked language modeling, widely used in discriminative language model (e.g., BERT) pretraining, commonly adopts a random masking strategy. However, random masking does not consider the importance of the different words in the sentence meaning, where some of them are more worthy to be predicted. Therefore, various masking strategies (e.g., entity-level masking) are proposed, but most of them require expensive prior knowledge and generally train from scratch without reusing existing model weights. In this paper, we present Self-Evolution learning (SE), a simple and effective token masking and learning method to fully and wisely exploit the knowledge from data. SE focuses on learning the informative yet under-explored tokens and adaptively regularizes the training by introducing a novel Token-specific Label Smoothing approach. Experiments on 10 tasks show that our SE brings consistent and significant improvements (+1.43 2.12 average scores) upon different PLMs. In-depth analyses demonstrate that SE improves linguistic knowledge learning and generalization.

pdf bib
QueryForm: A Simple Zero-shot Form Entity Query Framework
Zifeng Wang | Zizhao Zhang | Jacob Devlin | Chen-Yu Lee | Guolong Su | Hao Zhang | Jennifer Dy | Vincent Perot | Tomas Pfister

Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6% 10.1%) and the Payment (+3.2% 9.5%) zero-shot benchmark, with a smaller model size and no additional image input.

pdf bib
Search-Oriented Conversational Query Editing
Kelong Mao | Zhicheng Dou | Bang Liu | Hongjin Qian | Fengran Mo | Xiangli Wu | Xiaohua Cheng | Zhao Cao

Conversational query rewriting (CQR) realizes conversational search by reformulating the search dialogue into a standalone rewrite. However, existing CQR models either are not learned toward improving the downstream search performance or inefficiently generate the rewrite token-by-token from scratch while neglecting the fact that the search dialogue often has a large overlap with the rewrite. In this paper, we propose EdiRCS, a new text editing-based CQR model tailored for conversational search. In EdiRCS, most of the rewrite tokens are selected from the dialogue in a non-autoregressive fashion and only a few new tokens are generated to supplement the final rewrite, which makes EdiRCS highly efficient. In particular, the learning of EdiRCS is augmented with two search-oriented objectives, including contrastive ranking augmentation and contextualization knowledge transfer, which effectively improve it to select and generate more useful tokens from the view of retrieval. We show that EdiRCS outperforms state-of-the-art CQR models on three conversational search benchmarks while having low rewriting latency, and is robust to out-of-domain search dialogues and long dialogue contexts.

pdf bib
TAPIR: Learning Adaptive Revision for Incremental Natural Language Understanding with a Two-Pass Model
Patrick Kahardipraja | Brielen Madureira | David Schlangen

Language is by its very nature incremental in how it is produced and processed. This property can be exploited by NLP systems to produce fast responses, which has been shown to be beneficial for real-time interactive applications. Recent neural network-based approaches for incremental processing mainly use RNNs or Transformers. RNNs are fast but monotonic (cannot correct earlier output, which can be necessary in incremental processing). Transformers, on the other hand, consume whole sequences, and hence are by nature non-incremental. A restart-incremental interface that repeatedly passes longer input prefixes can be used to obtain partial outputs, while providing the ability to revise. However, this method becomes costly as the sentence grows longer. In this work, we propose the Two-pass model for AdaPtIve Revision (TAPIR) and introduce a method to obtain an incremental supervision signal for learning an adaptive revision policy. Experimental results on sequence labelling show that our model has better incremental performance and faster inference speed compared to restart-incremental Transformers, while showing little degradation on full sequences.

pdf bib
Speaking the Language of Your Listener: Audience-Aware Adaptation via Plug-and-Play Theory of Mind
Ece Takmaz | Nicolo’ Brandizzi | Mario Giulianelli | Sandro Pezzelle | Raquel Fernandez

Dialogue participants may have varying levels of knowledge about the topic under discussion. In such cases, it is essential for speakers to adapt their utterances by taking their audience into account. Yet, it is an open question how such adaptation can be modelled in computational agents. In this paper, we model a visually grounded referential game between a knowledgeable speaker and a listener with more limited visual and linguistic experience. Inspired by psycholinguistic theories, we endow our speaker with the ability to adapt its referring expressions via a simulation module that monitors the effectiveness of planned utterances from the listener’s perspective. We propose an adaptation mechanism building on plug-and-play approaches to controlled language generation, where utterance generation is steered on the fly by the simulator without finetuning the speaker’s underlying language model. Our results and analyses show that our approach is effective: the speaker’s utterances become closer to the listener’s domain of expertise, which leads to higher communicative success.

pdf bib
A Semi-Autoregressive Graph Generative Model for Dependency Graph Parsing
Ye Ma | Mingming Sun | Ping Li

Recent years have witnessed the impressive progress in Neural Dependency Parsing. According to the different factorization approaches to the graph joint probabilities, existing parsers can be roughly divided into autoregressive and non-autoregressive patterns. The former means that the graph should be factorized into multiple sequentially dependent components, then it can be built up component by component. And the latter assumes these components to be independent so that they can be outputted in a one-shot manner. However, when treating the directed edge as an explicit dependency relationship, we discover that there is a mixture of independent and interdependent components in the dependency graph, signifying that both aforementioned models fail to precisely capture the explicit dependencies among nodes and edges. Based on this property, we design a Semi-Autoregressive Dependency Parser to generate dependency graphs via adding node groups and edge groups autoregressively while pouring out all group elements in parallel. The model gains a trade-off between non-autoregression and autoregression, which respectively suffer from the lack of target inter-dependencies and the uncertainty of graph generation orders. The experiments show the proposed parser outperforms strong baselines on Enhanced Universal Dependencies of multiple languages, especially achieving 4% average promotion at graph-level accuracy. Also, the performances of model variations show the importance of specific parts.

pdf bib
AMR-TST: Abstract Meaning Representation-based Text Style Transfer
Kaize Shi | Xueyao Sun | Li He | Dingxian Wang | Qing Li | Guandong Xu

Abstract Meaning Representation (AMR) is a semantic representation that can enhance natural language generation (NLG) by providing a logical semantic input. In this paper, we propose the AMR-TST, an AMR-based text style transfer (TST) technique. The AMR-TST converts the source text to an AMR graph and generates the transferred text based on the AMR graph modified by a TST policy named style rewriting. Our method combines both the explainability and diversity of explicit and implicit TST methods. The experiments show that the proposed method achieves state-of-the-art results compared with other baseline models in automatic and human evaluations. The generated transferred text in qualitative evaluation proves the AMR-TST have significant advantages in keeping semantic features and reducing hallucinations. To the best of our knowledge, this work is the first to apply the AMR method focusing on node-level features to the TST task.

pdf bib
Understanding the Cooking Process with English Recipe Text
Yi Fan | Anthony Hunter

Translating procedural text, like recipes, into a graphical representation can be important for visualizing the text, and can offer a machine-readable formalism for use in software. There are proposals for translating recipes into a flow graph representation, where each node represents an ingredient, action, location, or equipment, and each arc between the nodes denotes the steps of the recipe. However, these proposals have had performance problems with both named entity recognition and relationship extraction. To address these problems, we propose a novel framework comprising two modules to construct a flow graph from the input recipe. The first module identifies the named entities in the input recipe text using BERT, Bi-LSTM and CRF, and the second module uses BERT to predict the relationships between the entities. We evaluate our framework on the English recipe flow graph corpus. Our framework can predict the edge label and achieve the overall F1 score of 92.2, while the baseline F1 score is 43.3 without the edge label predicted.

pdf bib
Follow the Wisdom of the Crowd: Effective Text Generation via Minimum Bayes Risk Decoding
Mirac Suzgun | Luke Melas-Kyriazi | Dan Jurafsky

In open-ended natural-language generation, existing text decoding methods typically struggle to produce text which is both diverse and high-quality. Greedy and beam search are known to suffer from text degeneration and linguistic diversity issues, while temperature, top-k, and nucleus sampling yield diverse but often lower-quality outputs. In this work, we build upon Minimum Bayes Risk Decoding (MBRD), a family of decoding methods based on Bayesian risk minimization, to address this diversity-quality trade-off. Inspired by the principle of the wisdom of the crowd, MBRD seeks to select a candidate from a pool of candidates that has the least expected risk under a generative model according to a given utility function. The crowd of candidates serves as an approximation for the distribution over human-generated references. We show that MBRD generalizes numerous decoding methods, including majority voting, and can be used as a drop-in replacement for existing sampling methods. Across a wide range of tasks—such as summarization, data-to-text, translation, and textual style transfer—MBRD yields 3-7 ROUGE and BLEU point improvements, including state-of-the-art results on WebNLG and WMT’16.

pdf bib
RobustQA: Benchmarking the Robustness of Domain Adaptation for Open-Domain Question Answering
Rujun Han | Peng Qi | Yuhao Zhang | Lan Liu | Juliette Burger | William Yang Wang | Zhiheng Huang | Bing Xiang | Dan Roth

Open-domain question answering (ODQA) is a crucial task in natural language processing. A typical ODQA system relies on a retriever module to select relevant contexts from a large corpus for a downstream reading comprehension model. Existing ODQA datasets consist mainly of Wikipedia corpus, and are insufficient to study models’ generalizability across diverse domains as models are trained and evaluated on the same genre of data. We propose **RobustQA**, a novel benchmark consisting of datasets from 8 different domains, which facilitates the evaluation of ODQA’s domain robustness. To build **RobustQA**, we annotate QA pairs in retrieval datasets with rigorous quality control. We further examine improving QA performances by incorporating unsupervised learning methods with target-domain corpus and adopting large generative language models. These methods can effectively improve model performances on **RobustQA**. However, experimental results demonstrate a significant gap from in-domain training, suggesting that **RobustQA** is a challenging benchmark to evaluate ODQA domain robustness.

pdf bib
SenteCon: Leveraging Lexicons to Learn Human-Interpretable Language Representations
Victoria Lin | Louis-Philippe Morency

Although deep language representations have become the dominant form of language featurization in recent years, in many settings it is important to understand a model’s decision-making process. This necessitates not only an interpretable model but also interpretable features. In particular, language must be featurized in a way that is interpretable while still characterizing the original text well. We present SenteCon, a method for introducing human interpretability in deep language representations. Given a passage of text, SenteCon encodes the text as a layer of interpretable categories in which each dimension corresponds to the relevance of a specific category. Our empirical evaluations indicate that encoding language with SenteCon provides high-level interpretability at little to no cost to predictive performance on downstream tasks. Moreover, we find that SenteCon outperforms existing interpretable language representations with respect to both its downstream performance and its agreement with human characterizations of the text.

pdf bib
Reinforcement Learning for Topic Models
Jeremy Costello | Marek Reformat

We apply reinforcement learning techniques to topic modeling by replacing the variational autoencoder in ProdLDA with a continuous action space reinforcement learning policy. We train the system with a policy gradient algorithm REINFORCE. Additionally, we introduced several modifications: modernize the neural network architecture, weight the ELBO loss, use contextual embeddings, and monitor the learning process via computing topic diversity and coherence for each training step. Experiments areperformed on 11 data sets. Our unsupervised model outperforms all other unsupervised models and performs on par with or better than most models using supervised labeling. Our model is outperformed on certain data sets by a model using supervised labeling and contrastive learning. We have also conducted an ablation study to provide empirical evidence of performance improvements from changes we made to ProdLDA and found that the reinforcement learning formulation boosts performance. We open-source our code implementation.

pdf bib
Contextualized Soft Prompts for Extraction of Event Arguments
Chien Nguyen | Hieu Man | Thien Nguyen

Event argument extraction (EAE) is a sub-task of event extraction where the goal is to identify roles of entity mentions for events in text. The current state-of-the-art approaches for this problem explore prompt-based methods to prompt pre-trained language models for arguments over input context. However, existing prompt-based methods mainly rely on discrete and manually-designed prompts that cannot exploit specific context for each example to improve customization for optimal performance. In addition, the discrete nature of current prompts prevents the incorporation of relevant context from multiple external documents to enrich prompts for EAE. To this end, we propose a novel prompt-based method for EAE that introduces soft prompts to facilitate the encoding of individual example context and multiple relevant documents to boost EAE. We extensively evaluate the proposed method on benchmark datasets for EAE to demonstrate its benefits with state-of-the-art performance.

pdf bib
TextVerifier: Robustness Verification for Textual Classifiers with Certifiable Guarantees
Siqi Sun | Wenjie Ruan

When textual classifiers are deployed in safety-critical workflows, they must withstand the onslaught of AI-enabled model confusion caused by adversarial examples with minor alterations. In this paper, the main objective is to provide a formal verification framework, called TextVerifier, with certifiable guarantees on deep neural networks in natural language processing against word-level alteration attacks. We aim to provide an approximation of the maximal safe radius by deriving provable bounds both mathematically and automatically, where a minimum word-level L_0 distance is quantified as a guarantee for the classification invariance of victim models. Here, we illustrate three strengths of our strategy: i) certifiable guarantee: effective verification with convergence to ensure approximation of maximal safe radius with tight bounds ultimately; ii) high-efficiency: it yields an efficient speed edge by a novel parallelization strategy that can process a set of candidate texts simultaneously on GPUs; and iii) reliable anytime estimation: the verification can return intermediate bounds, and robustness estimates that are gradually, but strictly, improved as the computation proceeds. Furthermore, experiments are conducted on text classification on four datasets over three victim models to demonstrate the validity of tightening bounds. Our tool TextVerifier is available at

pdf bib
OASum: Large-Scale Open Domain Aspect-based Summarization
Xianjun Yang | Kaiqiang Song | Sangwoo Cho | Xiaoyang Wang | Xiaoman Pan | Linda Petzold | Dong Yu

Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users’ interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, on a relatively small scale, or contains only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OASum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.

pdf bib
On the Limitations of Simulating Active Learning
Katerina Margatina | Nikolaos Aletras

Active learning (AL) is a human-and-model-in-the-loop paradigm that iteratively selects informative unlabeled data for human annotation, aiming to improve data efficiency over random sampling. However, performing AL experiments with human annotations on-the-fly is a laborious and expensive process, thus unrealistic for academic research. An easy fix to this impediment is to simulate AL, by treating an already labeled and publicly available dataset as the pool of unlabeled data. In this position paper, we first survey recent literature and highlight the challenges across all different steps within the AL loop. We further unveil neglected caveats in the experimental setup that can significantly affect the quality of AL research. We continue with an exploration of how the simulation setting can govern empirical findings, arguing that it might be one of the answers behind the ever posed question “Why do Active Learning algorithms sometimes fail to outperform random sampling?”. We argue that evaluating AL algorithms on available labeled datasets might provide a lower bound as to their effectiveness in real data. We believe it is essential to collectively shape the best practices for AL research, especially now that the stellar engineering advances (e.g. ChatGPT) shift the research focus to data-driven approaches. To this end, we present guidelines for future work, hoping that by bringing these limitations to the community’s attention, we can explore ways to address them.

pdf bib
Towards Alleviating the Object Bias in Prompt Tuning-based Factual Knowledge Extraction
Yuhang Wang | Dongyuan Lu | Chao Kong | Jitao Sang

Many works employed prompt tuning methods to automatically optimize prompt queries and extract the factual knowledge stored in Pre-trained Language Models. In this paper, we observe that the optimized prompts, including discrete prompts and continuous prompts, exhibit undesirable object bias. To handle this problem, we propose a novel prompt tuning method called MeCoD consisting of three modules: Prompt Encoder, Object Equalization and Biased Object Obstruction. Experimental results show that MeCoD can significantly reduce the object bias and at the same time improve accuracy of factual knowledge extraction.

pdf bib
vONTSS: vMF based semi-supervised neural topic modeling with optimal transport
Weijie Xu | Xiaoyu Jiang | Srinivasan Sengamedu Hanumantha Rao | Francis Iannacci | Jinjin Zhao

Recently, Neural Topic Models (NTM), inspired by variational autoencoders, have attracted a lot of research interest; however, these methods have limited applications in the real world due to the challenge of incorporating human knowledge. This work presents a semi-supervised neural topic modeling method, vONTSS, which uses von Mises-Fisher (vMF) based variational autoencoders and optimal transport. When a few keywords per topic are provided, vONTSS in the semi-supervised setting generates potential topics and optimizes topic-keyword quality and topic classification. Experiments show that vONTSS outperforms existing semi-supervised topic modeling methods in classification accuracy and diversity. vONTSS also supports unsupervised topic modeling. Quantitative and qualitative experiments show that vONTSS in the unsupervised setting outperforms recent NTMs on multiple aspects: vONTSS discovers highly clustered and coherent topics on benchmark datasets. It is also much faster than the state-of-the-art weakly supervised text classification method while achieving similar classification performance. We further prove the equivalence of optimal transport loss and cross-entropy loss at the global minimum.

pdf bib
Bias Beyond English: Counterfactual Tests for Bias in Sentiment Analysis in Four Languages
Seraphina Goldfarb-Tarrant | Adam Lopez | Roi Blanco | Diego Marcheggiani

Sentiment analysis (SA) systems are used in many products and hundreds of languages. Gender and racial biases are well-studied in English SA systems, but understudied in other languages, with few resources for such studies. To remedy this, we build a counterfactual evaluation corpus for gender and racial/migrant bias in four languages. We demonstrate its usefulness by answering a simple but important question that an engineer might need to answer when deploying a system: What biases do systems import from pre-trained models when compared to a baseline with no pre-training? Our evaluation corpus, by virtue of being counterfactual, not only reveals which models have less bias, but also pinpoints changes in model bias behaviour, which enables more targeted mitigation strategies. We release our code and evaluation corpora to facilitate future research.

pdf bib
Complementary Explanations for Effective In-Context Learning
Xi Ye | Srinivasan Iyer | Asli Celikyilmaz | Veselin Stoyanov | Greg Durrett | Ramakanth Pasunuru

Large language models (LLMs) have exhibited remarkable capabilities in learning from expla- nations in prompts, but there has been limited understanding of exactly how these explana- tions function or why they are effective. This work aims to better understand the mechanisms by which explanations are used for in-context learning. We first study the impact of two dif- ferent factors on the performance of prompts with explanations: the computation trace (the way the solution is decomposed) and the natural language used to express the prompt. By per- turbing explanations on three controlled tasks, we show that both factors contribute to the ef- fectiveness of explanations. We further study how to form maximally effective sets of expla- nations for solving a given test query. We find that LLMs can benefit from the complemen- tarity of the explanation set: diverse reasoning skills shown by different exemplars can lead to better performance. Therefore, we propose a maximal marginal relevance-based exemplar selection approach for constructing exemplar sets that are both relevant as well as comple- mentary, which successfully improves the in- context learning performance across three real- world tasks on multiple LLMs.

pdf bib
MISMATCH: Fine-grained Evaluation of Machine-generated Text with Mismatch Error Types
Keerthiram Murugesan | Sarathkrishna Swaminathan | Soham Dan | Subhajit Chaudhury | Chulaka Gunasekara | Maxwell Crouse | Diwakar Mahajan | Ibrahim Abdelaziz | Achille Fokoue | Pavan Kapanipathi | Salim Roukos | Alexander Gray

With the growing interest in large language models, the need for evaluating the quality of machine text compared to reference (typically human-generated) text has become focal attention. Most recent works focus either on task-specific evaluation metrics or study the properties of machine-generated text captured by the existing metrics. In this work, we propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts. Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types such as spatial/geographic errors, entity errors, etc, to guide the model for better prediction of human judgments. We propose a neural framework for evaluating machine texts that uses these mismatch error types as auxiliary tasks and re-purposes the existing single-number evaluation metrics as additional scalar features, in addition to textual features extracted from the machine and reference texts. Our experiments reveal key insights about the existing metrics via the mismatch errors. We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation.

pdf bib
RHO: Reducing Hallucination in Open-domain Dialogues with Knowledge Grounding
Ziwei Ji | Zihan Liu | Nayeon Lee | Tiezheng Yu | Bryan Wilie | Min Zeng | Pascale Fung

Dialogue systems can leverage large pre-trained language models and knowledge to generate fluent and informative responses. However, these models are still prone to produce hallucinated responses not supported by the input source, which greatly hinders their application. The heterogeneity between external knowledge and dialogue context challenges representation learning and source integration, which further contributes to unfaithfulness. To handle this challenge and generate more faithful responses, this paper presents RHO (ρ) utilizing the representations of linked entities and relation predicates from a knowledge graph (KG). We propose (1) local knowledge grounding to combine textual embeddings with the corresponding KG embeddings; and (2) global knowledge grounding to equip RHO with multi-hop reasoning abilities via the attention mechanism. In addition, we devise a response re-ranking technique based on walks over KG sub-graphs for better conversational reasoning. Experimental results on OpenDialKG (Moon et al., 2019) show that our approach significantly outperforms state-of-the-art methods on both automatic and human evaluation by a large margin, especially in hallucination reduction (17.54% in FeQA (Durmus et al., 2020)).

pdf bib
Transformer Language Models Handle Word Frequency in Prediction Head
Goro Kobayashi | Tatsuki Kuribayashi | Sho Yokoi | Kentaro Inui

Prediction head is a crucial component of Transformer language models. Despite its direct impact on prediction, this component has often been overlooked in analyzing Transformers.In this study, we investigate the inner workings of the prediction head, specifically focusing on bias parameters. Our experiments with BERT and GPT-2 models reveal that the biases in their word prediction heads play a significant role in the models’ ability to reflect word frequency in a corpus, aligning with the logit adjustment method commonly used in long-tailed learning. We also quantify the effect of controlling the biases in practical auto-regressive text generation scenarios;under a particular setting, more diverse text can be generated without compromising text quality.

pdf bib
Prompted LLMs as Chatbot Modules for Long Open-domain Conversation
Gibbeum Lee | Volker Hartmann | Jongho Park | Dimitris Papailiopoulos | Kangwook Lee

In this paper, we propose MPC (Modular Prompted Chatbot), a new approach for creating high-quality conversational agents without the need for fine-tuning. Our method utilizes pre-trained large language models (LLMs) as individual modules for long-term consistency and flexibility, by using techniques such as few-shot prompting, chain-of-thought (CoT), and external memory. Our human evaluation results show that MPC is on par with fine-tuned chatbot models in open-domain conversations, making it an effective solution for creating consistent and engaging chatbots.

pdf bib
Prompt to be Consistent is Better than Self-Consistent? Few-Shot and Zero-Shot Fact Verification with Pre-trained Language Models
Fengzhu Zeng | Wei Gao

Few-shot or zero-shot fact verification only relies on a few or no labeled training examples. In this paper, we propose a novel method called ProToCo, to Prompt pre-trained language models (PLMs) To be Consistent, for improving the factuality assessment capability of PLMs in the few-shot and zero-shot settings. Given a claim-evidence pair, ProToCo generates multiple variants of the claim with different relations and frames a simple consistency mechanism as constraints for making compatible predictions across these variants. We update PLMs by using parameter-efficient fine-tuning (PEFT), leading to more accurate predictions in few-shot and zero-shot fact verification tasks. Our experiments on three public verification datasets show that ProToCo significantly outperforms state-of-the-art few-shot fact verification baselines. With a small number of unlabeled instances, ProToCo also outperforms the strong zero-shot learner T0 on zero-shot verification. Compared to large PLMs using in-context learning (ICL) method, ProToCo outperforms OPT-30B and the Self-Consistency-enabled OPT-6.7B model in both few- and zero-shot settings.

pdf bib
Model Analysis & Evaluation for Ambiguous Question Answering
Konstantinos Papakostas | Irene Papadopoulou

Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers’ quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code.

pdf bib
Debiasing should be Good and Bad: Measuring the Consistency of Debiasing Techniques in Language Models
Robert Morabito | Jad Kabbara | Ali Emami

Debiasing methods that seek to mitigate the tendency of Language Models (LMs) to occasionally output toxic or inappropriate text have recently gained traction. In this paper, we propose a standardized protocol which distinguishes methods that yield not only desirable results, but are also consistent with their mechanisms and specifications. For example, we ask, given a debiasing method that is developed to reduce toxicity in LMs, if the definition of toxicity used by the debiasing method is reversed, would the debiasing results also be reversed? We used such considerations to devise three criteria for our new protocol: Specification Polarity, Specification Importance, and Domain Transferability. As a case study, we apply our protocol to a popular debiasing method, Self-Debiasing, and compare it to one we propose, called Instructive Debiasing, and demonstrate that consistency is as important an aspect to debiasing viability as is simply a desirable result. We show that our protocol provides essential insights into the generalizability and interpretability of debiasing methods that may otherwise go overlooked.

pdf bib
Critic-Guided Decoding for Controlled Text Generation
Minbeom Kim | Hwanhee Lee | Kang Min Yoo | Joonsuk Park | Hwaran Lee | Kyomin Jung

Steering language generation towards objectives or away from undesired content has been a long-standing goal in utilizing language models (LM). Recent work has demonstrated reinforcement learning and weighted decoding as effective approaches to achieve a higher level of language control and quality with pros and cons. In this work, we propose a novel critic decoding method for controlled language generation (CriticControl) that combines the strengths of reinforcement learning and weighted decoding. Specifically, we adopt the actor-critic framework and train an LM-steering critic from reward models. Similar to weighted decoding, our method freezes the language model and manipulates the output token distribution using a critic to improve training efficiency and stability. Evaluation of our method on three controlled generation tasks, topic control, sentiment control, and detoxification, shows that our approach generates more coherent and well-controlled texts than previous methods. In addition, CriticControl demonstrates superior generalization ability in zero-shot settings. Human evaluation studies also corroborate our findings.

pdf bib
MedNgage: A Dataset for Understanding Engagement in Patient-Nurse Conversations
Yan Wang | Heidi Donovan | Sabit Hassan | Malihe Alikhani

Patients who effectively manage their symptoms often demonstrate higher levels of engagement in conversations and interventions with healthcare practitioners. This engagement is multifaceted, encompassing cognitive and social dimensions. Consequently, it is crucial for AI systems to understand the engagement in natural conversations between patients and practitioners to better contribute toward patient care. In this paper, we present a novel dataset (MedNgage), which consists of patient-nurse conversations about cancer symptom management. We manually annotate the dataset with a novel framework of categories of patient engagement from two different angles, namely: i) socio-affective engagement (3.1K spans), and ii) cognitive engagement (1.8K spans). Through statistical analysis of the data that is annotated using our framework, we show a positive correlation between patient symptom management outcomes and their engagement in conversations. Additionally, we demonstrate that pre-trained transformer models fine-tuned on our dataset can reliably predict engagement categories in patient-nurse conversations. Lastly, we use LIME (Ribeiro et al., 2016) to analyze the underlying challenges of the tasks that state-of-the-art transformer models encounter. The de-identified data is available for research purposes upon request.

pdf bib
SEAG: Structure-Aware Event Causality Generation
Zhengwei Tao | Zhi Jin | Xiaoying Bai | Haiyan Zhao | Chengfeng Dou | Yongqiang Zhao | Fang Wang | Chongyang Tao

Extracting event causality underlies a broad spectrum of natural language processing applications. Cutting-edge methods break this task into Event Detection and Event Causality Identification. Although the pipelined solutions succeed in achieving acceptable results, the inherent nature of separating the task incurs limitations. On the one hand, it suffers from the lack of cross-task dependencies and may cause error propagation. On the other hand, it predicts events and relations separately, undermining the integrity of the event causality graph (ECG). To address such issues, in this paper, we propose an approach for Structure-Aware Event Causality Generation (SEAG). With a graph linearization module, we generate the ECG structure in a way of text2text generation based on a pre-trained language model. To foster the structural representation of the ECG, we introduce the novel Causality Structural Discrimination training paradigm in which we perform structural discriminative training alongside auto-regressive generation enabling the model to distinguish from constructed incorrect ECGs. We conduct experiments on three datasets. The experimental results demonstrate the effectiveness of structural event causality generation and the causality structural discrimination training.

pdf bib
Large Language Models Can be Lazy Learners: Analyze Shortcuts in In-Context Learning
Ruixiang Tang | Dehan Kong | Longtao Huang | Hui Xue

Large language models (LLMs) have recently shown great potential for in-context learning, where LLMs learn a new task simply by conditioning on a few input-label pairs (prompts). Despite their potential, our understanding of the factors influencing end-task performance and the robustness of in-context learning remains limited. This paper aims to bridge this knowledge gap by investigating the reliance of LLMs on shortcuts or spurious correlations within prompts. Through comprehensive experiments on classification and extraction tasks, we reveal that LLMs are “lazy learners” that tend to exploit such shortcuts. Additionally, we uncover a surprising finding that larger models are more likely to utilize shortcuts in prompts during inference. Our findings provide a new perspective on evaluating robustness in in-context learning and pose new challenges for detecting and mitigating the use of shortcuts in prompts.

pdf bib
A Two-Stage Decoder for Efficient ICD Coding
Thanh-Tung Nguyen | Viktor Schlegel | Abhinav Ramesh Kashyap | Stefan Winkler

Clinical notes in healthcare facilities are tagged with the International Classification of Diseases (ICD) code; a list of classification codes for medical diagnoses and procedures. ICD coding is a challenging multilabel text classification problem due to noisy clinical document inputs and long-tailed label distribution. Recent automated ICD coding efforts improve performance by encoding medical notes and codes with additional data and knowledge bases. However, most of them do not reflect how human coders generate the code: first, the coders select general code categories and then look for specific subcategories that are relevant to a patient’s condition. Inspired by this, we propose a two-stage decoding mechanism to predict ICD codes. Our model uses the hierarchical properties of the codes to split the prediction into two steps: At first, we predict the parent code and then predict the child code based on the previous prediction. Experiments on the public MIMIC-III data set have shown that our model performs well in single-model settings without external data or knowledge.

pdf bib
Asymmetric feature interaction for interpreting model predictions
Xiaolei Lu | Jianghong Ma | Haode Zhang

In natural language processing (NLP), deep neural networks (DNNs) could model complex interactions between context and have achieved impressive results on a range of NLP tasks. Prior works on feature interaction attribution mainly focus on studying symmetric interaction that only explains the additional influence of a set of words in combination, which fails to capture asymmetric influence that contributes to model prediction. In this work, we propose an asymmetric feature interaction attribution explanation model that aims to explore asymmetric higher-order feature interactions in the inference of deep neural NLP models. By representing our explanation with an directed interaction graph, we experimentally demonstrate interpretability of the graph to discover asymmetric feature interactions. Experimental results on two sentiment classification datasets show the superiority of our model against the state-of-the-art feature interaction attribution methods in identifying influential features for model predictions.

pdf bib
Disagreement Matters: Preserving Label Diversity by Jointly Modeling Item and Annotator Label Distributions with DisCo
Tharindu Cyril Weerasooriya | Alexander Ororbia | Raj Bhensadadia | Ashiqur KhudaBukhsh | Christopher Homan

Annotator disagreement is common whenever human judgment is needed for supervised learning. It is conventional to assume that one label per item represents ground truth. However, this obscures minority opinions, if present. We regard “ground truth” as the distribution of all labels that a population of annotators could produce, if asked (and of which we only have a small sample). We next introduce DisCo (Distribution from Context), a simple neural model that learns to predict this distribution. The model takes annotator-item pairs, rather than items alone, as input, and performs inference by aggregating over all annotators. Despite its simplicity, our experiments show that, on six benchmark datasets, our model is competitive with, and frequently outperforms, other, more complex models that either do not model specific annotators or were not designed for label distribution learning.

pdf bib
Domain Aligned Prefix Averaging for Domain Generalization in Abstractive Summarization
Pranav Nair | Sukomal Pal | Pradeepika Verma

Domain generalization is hitherto an underexplored area applied in abstractive summarization. Moreover, most existing works on domain generalization have sophisticated training algorithms. In this paper, we propose a lightweight, weight averaging based, Domain Aligned Prefix Averaging approach to domain generalization for abstractive summarization. Given a number of source domains, our method first trains a prefix for each one of them. These source prefixes generate summaries for a small number of target domain documents. The similarity of the generated summaries to their corresponding source documents is used for calculating weights required to average source prefixes. In DAPA, prefix tuning allows for lightweight finetuning, and weight averaging allows for the computationally efficient addition of new source domains. When evaluated on four diverse summarization domains, DAPA shows comparable or better performance against the baselines demonstrating the effectiveness of its prefix averaging scheme.

pdf bib
ClaimDiff: Comparing and Contrasting Claims on Contentious Issues
Miyoung Ko | Ingyu Seong | Hwaran Lee | Joonsuk Park | Minsuk Chang | Minjoon Seo

With the growing importance of detecting misinformation, many studies have focused on verifying factual claims by retrieving evidence. However, canonical fact verification tasks do not apply to catching subtle differences in factually consistent claims, which might still bias the readers, especially on contentious political or economic issues. Our underlying assumption is that among the trusted sources, one’s argument is not necessarily more true than the other, requiring comparison rather than verification. In this study, we propose ClaimDIff, a novel dataset that primarily focuses on comparing the nuance between claim pairs. In ClaimDiff, we provide human-labeled 2,941 claim pairs from 268 news articles. We observe that while humans are capable of detecting the nuances between claims, strong baselines struggle to detect them, showing over a 19% absolute gap with the humans. We hope this initial study could help readers to gain an unbiased grasp of contentious issues through machine-aided comparison.

pdf bib
Unsupervised Paraphrasing of Multiword Expressions
Takashi Wada | Yuji Matsumoto | Timothy Baldwin | Jey Han Lau

We propose an unsupervised approach to paraphrasing multiword expressions (MWEs) in context. Our model employs only monolingual corpus data and pre-trained language models (without fine-tuning), and does not make use of any external resources such as dictionaries. We evaluate our method on the SemEval 2022 idiomatic semantic text similarity task, and show that it outperforms all unsupervised systems and rivals supervised systems.

pdf bib
G-Tuning: Improving Generalization of Pre-trained Language Models with Generative Adversarial Network
Rongxiang Weng | Wen Sen Cheng | Min Zhang

The generalization ability of pre-trained language models (Plms) in downstream tasks is heavily influenced by fine-tuning. The objective of fine-tuning is to transform the latent representation of Plms from a universal space to a target space, allowing the model to be applied to downstream tasks with the capability of generalizing to unseen samples. However, the effect of Plms will be diminished when the training data coverage is insufficient, in which fine-tuning is inadequate to learn the complete mapping. In this study, we propose a new fine-tuning framework, referred to as G-Tuning, that aims to preserve the generalization ability of Plms in downstream tasks. Specifically, we integrate a generative adversarial network into the fine-tuning process to aid in the transformation of the latent representation in the entire space. Empirical evaluations on the GLUE benchmark, as well as two additional demanding scenarios involving domain and language generalization, demonstrate that G-Tuning can accurately map the universal representation to the target space, thus effectively enhancing the generalization performance of Plms across various downstream tasks.

pdf bib
Unified Language Representation for Question Answering over Text, Tables, and Images
Bowen Yu | Cheng Fu | Haiyang Yu | Fei Huang | Yongbin Li

When trying to answer complex questions, people often rely on multiple sources of information, such as visual, textual, and tabular data. Previous approaches to this problem have focused on designing input features or model structure in the multi-modal space, which is inflexible for cross-modal reasoning or data-efficient training. In this paper, we call for an alternative paradigm, which transforms the images and tables into unified language representations, so that we can simplify the task into a simpler textual QA problem that can be solved using three steps: retrieval, ranking, and generation, all within a language space. This idea takes advantage of the power of pre-trained language models and is implemented in a framework called Solar. Our experimental results show that Solar outperforms all existing methods by 10.6-32.3 pts on two datasets, MultimodalQA and MMCoQA, across ten different metrics. Additionally, Solar achieves the best performance on the WebQA leaderboard.

pdf bib
A Set Prediction Network For Extractive Summarization
Xiaoxia Cheng | Yongliang Shen | Weiming Lu

Extractive summarization focuses on extracting salient sentences from the source document and incorporating them in the summary without changing their wording or structure. The naive approach for extractive summarization is sentence classification, which makes independent binary decisions for each sentence, resulting in the model cannot detect the dependencies between sentences in the summary. Recent approaches introduce an autoregressive decoder to detect redundancy relationship between sentences by step-by-step sentence selection, but bring train-inference gap. To address these issues, we formulate extractive summarization as a salient sentence set recognition task. To solve the sentence set recognition task, we propose a set prediction network (SetSum), which sets up a fixed set of learnable queries to extract the entire sentence set of the summary, while capturing the dependencies between them.Different from previous methods with an auto-regressive decoder, we employ a non-autoregressive decoder to predict the sentences within the summary in parallel during both the training and inference process, which eliminates the train-inference gap. Experimental results on both single-document and multi-document extracted summary datasets show that our approach outperforms previous state-of-the-art models.

pdf bib
Geo-Seq2seq: Twitter User Geolocation on Noisy Data through Sequence to Sequence Learning
Jingyu Zhang | Alexandra DeLucia | Chenyu Zhang | Mark Dredze

Location information can support social media analyses by providing geographic context. Some of the most accurate and popular Twitter geolocation systems rely on rule-based methods that examine the user-provided profile location, which fail to handle informal or noisy location names. We propose Geo-Seq2seq, a sequence-to-sequence (seq2seq) model for Twitter user geolocation that rewrites noisy, multilingual user-provided location strings into structured English location names. We train our system on tens of millions of multilingual location string and geotagged-tweet pairs. Compared to leading methods, our model vastly increases coverage (i.e., the number of users we can geolocate) while achieving comparable or superior accuracy. Our error analysis reveals that constrained decoding helps the model produce valid locations according to a location database. Finally, we measure biases across language, country of origin, and time to evaluate fairness, and find that while our model can generalize well to unseen temporal data, performance does vary by language and country.

pdf bib
Predicting Numerals in Text Using Nearest Neighbor Language Models
Taku Sakamoto | Akiko Aizawa

Commonsense about quantitative properties is essential for a deep understanding of texts containing numerals. However, naive language models (LMs) treat numerals as string tokens; therefore, they lack an understanding of the magnitudes of numerals, resulting in a difficulty in acquiring the commonsense. In this study, we apply the k-nearest neighbor LM (kNN-LM) to the masked numeral prediction (MNP) task, which measures the quantitative commonsense of LMs.kNN-LM extends pre-trained neural LMs with the k-nearest neighbor (kNN) search.Since it can utilize patterns that appear in the datastore for prediction, we expect an improvement in numeral prediction accuracy, which is associated with a high rate of occurrence of out-of-vocabulary (OOV) words.Through experiments, we verified that the retrieval-based method is effective for fine-grained predictions of numerals from context, especially for the OOV numerals.We also compared two different context spans for context representations to improve the accuracy of kNN search by using only the words that are closely related to the masked numeral: the mask and its surrounding words, and the mask and its subsequent words.Our results reveal that using only the embeddings of mask tokens for numerals in kNN search is the most effective approach for realizing MNP tasks.

pdf bib
HonestBait: Forward References for Attractive but Faithful Headline Generation
Chih Yao Chen | Dennis Wu | Lun-Wei Ku

Current methods for generating attractive headlines often learn directly from data, which bases attractiveness on the number of user clicks and views. Although clicks or views do reflect user interest, they can fail to reveal how much interest is raised by the writing style and how much is due to the event or topic itself. Also, such approaches can lead to harmful inventions by over-exaggerating the content, aggravating the spread of false information. In this work, we propose HonestBait, a novel framework for solving these issues from another aspect: generating headlines using forward references (FRs), a writing technique often used for clickbait. A self-verification process is included during training to avoid spurious inventions. We begin with a preliminary user study to understand how FRs affect user interest, after which we present PANCO, an innovative dataset containing pairs of fake news with verified news for attractive but faithful news headline generation. Auto matic metrics and human evaluations show that our framework yields more attractive results (+11.25% compared to human-written verified news headlines) while maintaining high veracity, which helps promote real information to fight against fake news.

pdf bib
Few Shot Rationale Generation using Self-Training with Dual Teachers
Aditya Srikanth Veerubhotla | Lahari Poddar | Jun Yin | György Szarvas | Sharanya Eswaran

Self-rationalizing models that also generate a free-text explanation for their predicted labels are an important tool to build trustworthy AI applications. Since generating explanations for annotated labels is a laborious and costly process, recent models rely on large pretrained language models (PLMs) as their backbone and few-shot learning. In this work we explore a self-training approach leveraging both labeled and unlabeled data to further improve few-shot models, under the assumption that neither human written rationales nor annotated task labels are available at scale. We introduce a novel dual-teacher learning framework, which learns two specialized teacher models for task prediction and rationalization using self-training and distills their knowledge into a multi-tasking student model that can jointly generate the task label and rationale. Furthermore, we formulate a new loss function, Masked Label Regularization(MLR) which promotes explanations to be strongly conditioned on predicted labels. Evaluation on three public datasets demonstrate that the proposed methods are effective in modeling task labels and generating faithful rationales.

pdf bib
Towards Accurate Translation via Semantically Appropriate Application of Lexical Constraints
Yujin Baek | Koanho Lee | Dayeon Ki | Cheonbok Park | Hyoung-Gyu Lee | Jaegul Choo

Lexically-constrained NMT (LNMT) aims to incorporate user-provided terminology into translations. Despite its practical advantages, existing work has not evaluated LNMT models under challenging real-world conditions. In this paper, we focus on two important but understudied issues that lie in the current evaluation process of LNMT studies. The model needs to cope with challenging lexical constraints that are “homographs” or “unseen” during training. To this end, we first design a homograph disambiguation module to differentiate the meanings of homographs. Moreover, we propose PLUMCOT which integrates contextually rich information about unseen lexical constraints from pre-trained language models and strengthens a copy mechanism of the pointer network via direct supervision of a copying score. We also release HOLLY, an evaluation benchmark for assessing the ability of model to cope with “homographic” and “unseen” lexical constraints. Experiments on HOLLY and the previous test setup show the effectiveness of our method. The effects of PLUMCOT are shown to be remarkable in “unseen” constraints. Our dataset is available at

pdf bib
NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in Natural Language Processing
Tingting Wu | Xiao Ding | Minji Tang | Hao Zhang | Bing Qin | Ting Liu

Large-scale datasets in the real world inevitably involve label noise. Deep models can gradually overfit noisy labels and thus degrade model generalization. To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance. Due to the lack of suitable datasets, previous studies have frequently employed synthetic label noise to mimic real-world label noise. However, synthetic noise is not instance-dependent, making this approximation not always effective in practice. Recent research has proposed benchmarks for learning with real-world noisy labels. However, the noise sources within may be single or fuzzy, making benchmarks different from data with heterogeneous label noises in the real world. To tackle these issues, we contribute NoisywikiHow, the largest NLP benchmark built with minimal supervision. Specifically, inspired by human cognition, we explicitly construct multiple sources of label noise to imitate human errors throughout the annotation, replicating real-world noise, whose corruption is affected by both ground-truth labels and instances. Moreover, we provide a variety of noise levels to support controlled experiments on noisy data, enabling us to evaluate LNL methods systematically and comprehensively. After that, we conduct extensive multi-dimensional experiments on a broad range of LNL methods, obtaining new and intriguing findings.

pdf bib
Sampling Better Negatives for Distantly Supervised Named Entity Recognition
Lu Xu | Lidong Bing | Wei Lu

Distantly supervised named entity recognition (DS-NER) has been proposed to exploit the automatically labeled training data instead of human annotations. The distantly annotated datasets are often noisy and contain a considerable number of false negatives. The recent approach uses a weighted sampling approach to select a subset of negative samples for training. However, it requires a good classifier to assign weights to the negative samples. In this paper, we propose a simple and straightforward approach for selecting the top negative samples that have high similarities with all the positive samples for training. Our method achieves consistent performance improvements on four distantly supervised NER datasets. Our analysis also shows that it is critical to differentiate the true negatives from the false negatives.

pdf bib
Prototype-Based Interpretability for Legal Citation Prediction
Chu Fei Luo | Rohan Bhambhoria | Samuel Dahan | Xiaodan Zhu

Deep learning has made significant progress in the past decade, and demonstrates potential to solve problems with extensive social impact. In high-stakes decision making areas such as law, experts often require interpretability for automatic systems to be utilized in practical settings. In this work, we attempt to address these requirements applied to the important problem of legal citation prediction (LCP). We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions. After initial experimental results, we refine the target citation predictions with the feedback of legal experts. Additionally, we introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers. Our study builds on and leverages the state-of-the-art language processing models for law, while addressing vital considerations for high-stakes tasks with practical societal impact.

pdf bib
LMs stand their Ground: Investigating the Effect of Embodiment in Figurative Language Interpretation by Language Models
Philipp Wicke

Figurative language is a challenge for language models since its interpretation is based on the use of words in a way that deviates from their conventional order and meaning. Yet, humans can easily understand and interpret metaphors, similes or idioms as they can be derived from embodied metaphors. Language is a proxy for embodiment and if a metaphor is conventional and lexicalised, it becomes easier for a system without a body to make sense of embodied concepts. Yet, the intricate relation between embodiment and features such as concreteness or age of acquisition has not been studied in the context of figurative language interpretation concerning language models. Hence, the presented study shows how larger language models perform better at interpreting metaphoric sentences when the action of the metaphorical sentence is more embodied. The analysis rules out multicollinearity with other features (e.g. word length or concreteness) and provides initial evidence that larger language models conceptualise embodied concepts to a degree that facilitates figurative language understanding.

pdf bib
Making Better Use of Training Corpus: Retrieval-based Aspect Sentiment Triplet Extraction via Label Interpolation
Guoxin Yu | Lemao Liu | Haiyun Jiang | Shuming Shi | Xiang Ao

In this paper, we aim to adapt the idea of retrieval-based neural approaches to the Aspect Sentiment Triplet Extraction (ASTE) task. Different from previous studies retrieving semantic similar neighbors, the ASTE task has its specialized challenges when adapting, i.e., the purpose includes predicting the sentiment polarity and it is usually aspect-dependent. Semantic similar neighbors with different polarities will be infeasible even counterproductive. To tackle this issue, we propose a retrieval-based neural ASTE approach, named RLI (Retrieval-based Aspect Sentiment Triplet Extraction via Label Interpolation), which exploits the label information of neighbors. Given an aspect-opinion term pair, we retrieve semantic similar triplets from the training corpus and interpolate their label information into the augmented representation of the target pair. The retriever is jointly trained with the whole ASTE framework, and neighbors with both similar semantics and sentiments can be recalled with the aid of this distant supervision. In addition, we design a simple yet effective pre-train method for the retriever that implicitly encodes the label similarities. Extensive experiments and analysis on two widely-used benchmarks show that the proposed model establishes a new state-of-the-art on ASTE.

pdf bib
Multi-Domain Dialogue State Tracking with Disentangled Domain-Slot Attention
Longfei Yang | Jiyi Li | Sheng Li | Takahiro Shinozaki

As the core of task-oriented dialogue systems, dialogue state tracking (DST) is designed to track the dialogue state through the conversation between users and systems. Multi-domain DST has been an important challenge in which the dialogue states across multiple domains need to consider. In recent mainstream approaches, each domain and slot are aggregated and regarded as a single query feeding into attention with the dialogue history to obtain domain-slot specific representations. In this work, we propose disentangled domain-slot attention for multi-domain dialogue state tracking. The proposed approach disentangles the domain-slot specific information extraction in a flexible and context-dependent manner by separating the query about domains and slots in the attention component. Through a series of experiments on MultiWOZ 2.0 and MultiWOZ 2.4 datasets, we demonstrate that our proposed approach outperforms the standard multi-head attention with aggregated domain-slot query.

pdf bib
Improved Visual Story Generation with Adaptive Context Modeling
Zhangyin Feng | Yuchen Ren | Xinmiao Yu | Xiaocheng Feng | Duyu Tang | Shuming Shi | Bing Qin

Diffusion models developed on top of powerful text-to-image generation models like Stable Diffusion achieve remarkable success in visual story generation. However, the best-performing approach considers historically generated results as flattened memory cells, ignoring the fact that not all preceding images contribute equally to the generation of the characters and scenes at the current stage. To address this, we present a simple method that improves the leading system with adaptive context modeling, which is not only incorporated in the encoder but also adopted as additional guidance in the sampling stage to boost the global consistency of the generated story. We evaluate our model on PororoSV and FlintstonesSV datasets and show that our approach achieves state-of-the-art FID scores on both story visualization and continuation scenarios. We conduct detailed model analysis and show that our model excels at generating semantically consistent images for stories.

pdf bib
Question-Interlocutor Scope Realized Graph Modeling over Key Utterances for Dialogue Reading Comprehension
Jiangnan Li | Mo Yu | Fandong Meng | Zheng Lin | Peng Fu | Weiping Wang | Jie Zhou

We focus on dialogue reading comprehension (DRC) that extracts answers from dialogues. Compared to standard RC tasks, DRC has raised challenges because of the complex speaker information and noisy dialogue context. Essentially, the challenges come from the speaker-centric nature of dialogue utterances — an utterance is usually insufficient in its surface form, but requires to incorporate the role of its speaker and the dialogue context to fill the latent pragmatic and intention information. We propose to deal with these problems in two folds. First, we propose a new key-utterances-extracting method, which can realize more answer-contained utterances. Second, based on the extracted utterances, we then propose a Question-Interlocutor Scope Realized Graph (QuISG). QuISG involves the question and question-mentioning speaker as nodes. To realize interlocutor scopes, utterances are connected with corresponding speakers in the dialogue. Experiments on the benchmarks show that our method achieves state-of-the-art performance against previous works.

pdf bib
Speech-to-Speech Translation for a Real-world Unwritten Language
Peng-Jen Chen | Kevin Tran | Yilin Yang | Jingfei Du | Justine Kao | Yu-An Chung | Paden Tomasello | Paul-Ambroise Duquenne | Holger Schwenk | Hongyu Gong | Hirofumi Inaguma | Sravya Popuri | Changhan Wang | Juan Pino | Wei-Ning Hsu | Ann Lee

We study speech-to-speech translation (S2ST) that translates speech from one language into another language and focuses on building systems to support languages without standard text writing systems. We use English-Taiwanese Hokkien as a case study, and present an end-to-end solution from training data collection, modeling choices to benchmark dataset release. First, we present efforts on creating human annotated data, automatically mining data from large unlabeled speech datasets, and adopting pseudo-labeling to produce weakly supervised data. On the modeling, we take advantage of recent advances in applying self-supervised discrete representations as target for prediction in S2ST and show the effectiveness of leveraging additional text supervision from Mandarin, a language similar to Hokkien, in model training. Finally, we release an S2ST benchmark set to facilitate future research in this field.

pdf bib
Code Execution with Pre-trained Language Models
Chenxiao Liu | Shuai Lu | Weizhu Chen | Daxin Jiang | Alexey Svyatkovskiy | Shengyu Fu | Neel Sundaresan | Nan Duan

Code execution is a fundamental aspect of programming language semantics that reflects the exact behavior of the code. However, most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures. In this paper, we investigate how well pre-trained models can understand and perform code execution. We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution, which challenges existing models such as Codex. We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension. We evaluate CodeExecutor on code execution and show its promising performance and limitations. We also demonstrate its potential benefits for code intelligence tasks such as zero-shot code-to-code search and text-to-code generation. Our analysis provides insights into the learning and generalization abilities of pre-trained models for code execution.

pdf bib
BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from Pretrained Language Models
Shibo Hao | Bowen Tan | Kaiwen Tang | Bin Ni | Xiyan Shao | Hengzhe Zhang | Eric Xing | Zhiting Hu

It is crucial to automatically construct knowledge graphs (KGs) of diverse new relations to support knowledge discovery and broad applications. Previous KG construction methods, based on either crowdsourcing or text mining, are often limited to a small predefined set of relations due to manual cost or restrictions in text corpus. Recent research proposed to use pretrained language models (LMs) as implicit knowledge bases that accept knowledge queries with prompts. Yet, the implicit knowledge lacks many desirable properties of a full-scale symbolic KG, such as easy access, navigation, editing, and quality assurance. In this paper, we propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs. With minimal input of a relation definition (a prompt and a few shot of example entity pairs), the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge of the desired relation. We develop an effective search-and-rescore mechanism for improved efficiency and accuracy. We deploy the approach to harvest KGs of over 400 new relations, from LMs of varying capacities such as RoBERTaNet. Extensive human and automatic evaluations show our approach manages to extract diverse accurate knowledge, including tuples of complex relations (e.g., “A is capable of but not good at B”). The resulting KGs as a symbolic interpretation of the source LMs also reveal new insights into the LMs’ knowledge capacities.

pdf bib
Sequential Path Signature Networks for Personalised Longitudinal Language Modeling
Talia Tseriotou | Adam Tsakalidis | Peter Foster | Terence Lyons | Maria Liakata

Longitudinal user modeling can provide a strong signal for various downstream tasks. Despite the rapid progress in representation learning, dynamic aspects of modelling individuals’ language have only been sparsely addressed. We present a novel extension of neural sequential models using the notion of path signatures from rough path theory, which constitute graduated summaries of continuous paths and have the ability to capture non-linearities in trajectories. By combining path signatures of users’ history with contextual neural representations and recursive neural networks we can produce compact time-sensitive user representations. Given the magnitude of mental health conditions with symptoms manifesting in language, we show the applicability of our approach on the task of identifying changes in individuals’ mood by analysing their online textual content. By directly integrating signature transforms of users’ history in the model architecture we jointly address the two most important aspects of the task, namely sequentiality and temporality. Our approach achieves state-of-the-art performance on macro-average F1 score on the two available datasets for the task, outperforming or performing on-par with state-of-the-art models utilising only historical posts and even outperforming prior models which also have access to future posts of users.

pdf bib
A Multi-modal Debiasing Model with Dynamical Constraint for Robust Visual Question Answering
Yu Li | Bojie Hu | Fengshuo Zhang | Yahan Yu | Jian Liu | Yufeng Chen | Jinan Xu

Recent studies have pointed out that many well-developed Visual Question Answering (VQA) systems suffer from bias problem. Despite the remarkable performance gained on In-Distribution (ID) datasets, the VQA model might merely capture the superficial correlation from question to answer rather than showing real reasoning abilities. Therefore, when switching to Out-of-Distribution (OOD) dataset, whose test distribution is unknown or even reversed with the training set, significant drops might be demonstrated. Although efforts have been devoted to easing the negative bias effect brought by language prior and analysing its inherent cause, they are still limited by the following two aspects. First, most current debiasing methods achieve promising OOD generalization ability with a major sacrifice of the ID performance. Second, existing researches are restricted by exploiting comprehensive biases, since weakening the language bias is mainly focused, while only a few works consider vision bias. In this paper, we investigate a straightforward way to mitigate bias problem for VQA task. Specifically, we reduce bias effect by subtracting bias score from standard VQA base score. Based on such a direct strategy, we design two bias learning branches to detect more bias information, which are combined with a dynamical constraint loss to alleviate the problem of over-correction and insufficient debiasing effect. We evaluate our method on the challenging VQA v2.0 and VQA-CP V2,0 datasets and the proposed method achievessignificant improvement.

pdf bib
Trigger-Argument based Explanation for Event Detection
Yong Guan | Jiaoyan Chen | Freddy Lecue | Jeff Pan | Juanzi Li | Ru Li

Event Detection (ED) is a critical task that aims to identify events of certain types in plain text. Neural models have achieved great success on ED, thus coming with a desire for higher interpretability. Existing works mainly exploit words or phrases of the input text to explain models’ inner mechanisms. However, for ED, the event structure, comprising of an event trigger and a set of arguments, are more enlightening clues to explain model behaviors. To this end, we propose a Trigger-Argument based Explanation method (TAE), which can utilize event structure knowledge to uncover a faithful interpretation for the existing ED models at neuron level. Specifically, we design group, sparsity, support mechanisms to construct the event structure from structuralization, compactness, and faithfulness perspectives. We evaluate our model on the large-scale MAVEN and the widely-used ACE 2005 datasets, and observe that TAE is able to reveal the process by which the model predicts. Experimental results also demonstrate that TAE can not only improve the interpretability on standard evaluation metrics, but also effectively facilitate the human understanding.

pdf bib
Interactive Concept Learning for Uncovering Latent Themes in Large Text Collections
Maria Leonor Pacheco | Tunazzina Islam | Lyle Ungar | Ming Yin | Dan Goldwasser

Experts across diverse disciplines are often interested in making sense of large text collections. Traditionally, this challenge is approached either by noisy unsupervised techniques such as topic models, or by following a manual theme discovery process. In this paper, we expand the definition of a theme to account for more than just a word distribution, and include generalized concepts deemed relevant by domain experts. Then, we propose an interactive framework that receives and encodes expert feedback at different levels of abstraction. Our framework strikes a balance between automation and manual coding, allowing experts to maintain control of their study while reducing the manual effort required.

pdf bib
NormMark: A Weakly Supervised Markov Model for Socio-cultural Norm Discovery
Farhad Moghimifar | Shilin Qu | Tongtong Wu | Yuan-Fang Li | Gholamreza Haffari

Norms, which are culturally accepted guidelines for behaviours, can be integrated into conversational models to generate utterances that are appropriate for the socio-cultural context. Existing methods for norm recognition tend to focus only on surface-level features of dialogues and do not take into account the interactions within a conversation. To address this issue, we propose NormMark, a probabilistic generative Markov model to carry the latent features throughout a dialogue. These features are captured by discrete and continuous latent variables conditioned on the conversation history, and improve the model’s ability in norm recognition. The model is trainable on weakly annotated data using the variational technique. On a dataset with limited norm annotations, we show that our approach achieves higher F1 score, outperforming current state-of-the-art methods, including GPT3.

pdf bib
VoteTRANS: Detecting Adversarial Text without Training by Voting on Hard Labels of Transformations
Hoang-Quoc Nguyen-Son | Seira Hidano | Kazuhide Fukushima | Shinsaku Kiyomoto | Isao Echizen

Adversarial attacks reveal serious flaws in deep learning models. More dangerously, these attacks preserve the original meaning and escape human recognition. Existing methods for detecting these attacks need to be trained using original/adversarial data. In this paper, we propose detection without training by voting on hard labels from predictions of transformations, namely, VoteTRANS. Specifically, VoteTRANS detects adversarial text by comparing the hard labels of input text and its transformation. The evaluation demonstrates that VoteTRANS effectively detects adversarial text across various state-of-the-art attacks, models, and datasets.

pdf bib
Fusion or Defusion? Flexible Vision-and-Language Pre-Training
Rongyi Sun | Ziran Li | Yifeng Ding | Qifan Wang | Jingang Wang | Haitao Zheng | Wei Wu | Yunsen Xian

Existing approaches in the vision-and-language pre-training (VLP) paradigm mainly deploy either fusion-based encoders or dual-encoders, failing to achieve both effectiveness and efficiency in downstream multimodal tasks. In this paper, we build a flexible VLP model by incorporating cross-modal fusions into a dual-encoder architecture, where the introduced fusion modules can be easily decoupled from the dual encoder so as to switch the model to a fusion-free one. To better absorb cross-modal features from the fusion modules, we design a cross-modal knowledge transfer strategy along with other comprehensive pre-training tasks to guide the training process, which can further strengthen both the fusion-based and fusion-free representation learning. Extensive experiments conducted on various downstream vision-language tasks show that our proposed model is well-equipped with effectiveness as well as efficiency, demonstrating a superior performance compared with other strong VLP models.

pdf bib
COCKATIEL: COntinuous Concept ranKed ATtribution with Interpretable ELements for explaining neural net classifiers on NLP
Fanny Jourdan | Agustin Picard | Thomas Fel | Laurent Risser | Jean-Michel Loubes | Nicholas Asher

Transformer architectures are complex and their use in NLP, while it has engendered many successes, makes their interpretability or explainability challenging. Recent debates have shown that attention maps and attribution methods are unreliable (Pruthi et al., 2019; Brunner et al., 2019). In this paper, we present some of their limitations and introduce COCKATIEL, which successfully addresses some of them. COCKATIEL is a novel, post-hoc, concept-based, model-agnostic XAI technique that generates meaningful explanations from the last layer of a neural net model trained on an NLP classification task by using Non-Negative Matrix Factorization (NMF) to discover the concepts the model leverages to make predictions and by exploiting a Sensitivity Analysis to estimate accurately the importance of each of these concepts for the model. It does so without compromising the accuracy of the underlying model or requiring a new one to be trained. We conduct experiments in single and multi-aspect sentiment analysis tasks and we show COCKATIEL’s superior ability to discover concepts that align with humans’ on Transformer models without any supervision, we objectively verify the faithfulness of its explanations through fidelity metrics, and we showcase its ability to provide meaningful explanations in two different datasets. Our code is freely available:

pdf bib
Code-Switched Text Synthesis in Unseen Language Pairs
I-Hung Hsu | Avik Ray | Shubham Garg | Nanyun Peng | Jing Huang

Existing efforts on text synthesis for code-switching mostly require training on code-switched texts in the target language pairs, limiting the deployment of the models to cases lacking code-switched data. In this work, we study the problem of synthesizing code-switched texts for language pairs absent from the training data. We introduce GLOSS, a model built on top of a pre-trained multilingual machine translation model (PMMTM) with an additional code-switching module. This module, either an adapter or extra prefixes, learns code-switching patterns from code-switched data during training, while the primary component of GLOSS, i.e., the PMMTM, is frozen. The design of only adjusting the code-switching module prevents our model from overfitting to the constrained training data for code-switching. Hence, GLOSS exhibits the ability to generalize and synthesize code-switched texts across a broader spectrum of language pairs. Additionally, we develop a self-training algorithm on target language pairs further to enhance the reliability of GLOSS. Automatic evaluations on four language pairs show that GLOSS achieves at least 55% relative BLEU and METEOR scores improvements compared to strong baselines. Human evaluations on two language pairs further validate the success of GLOSS.

pdf bib
Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning
Justus-Jonas Erker | Stefan Schaffer | Gerasimos Spanakis

Inspired by the curvature of space-time, we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.

pdf bib
Data-Efficient French Language Modeling with CamemBERTa
Wissam Antoun | Benoît Sagot | Djamé Seddah

Recent advances in NLP have significantly improved the performance of language models on a variety of tasks. While these advances are largely driven by the availability of large amounts of data and computational power, they also benefit from the development of better training methods and architectures. In this paper, we introduce CamemBERTa, a French DeBERTa model that builds upon the DeBERTaV3 architecture and training objective. We evaluate our model’s performance on a variety of French downstream tasks and datasets, including question answering, part-of-speech tagging, dependency parsing, named entity recognition, and the FLUE benchmark, and compare against CamemBERT, the state-of-the-art monolingual model for French. Our results show that, given the same amount of training tokens, our model outperforms BERT-based models trained with MLM on most tasks. Furthermore, our new model reaches similar or superior performance on downstream tasks compared to CamemBERT, despite being trained on only 30% of its total number of input tokens. In addition to our experimental results, we also publicly release the weights and code implementation of CamemBERTa, making it the first publicly available DeBERTaV3 model outside of the original paper and the first openly available implementation of a DeBERTaV3 training objective.

pdf bib
Coupling Large Language Models with Logic Programming for Robust and General Reasoning from Text
Zhun Yang | Adam Ishay | Joohyung Lee

While large language models (LLMs), such as GPT-3, appear to be robust and general, their reasoning ability is not at a level to compete with the best models trained for specific natural language reasoning problems. In this study, we observe that a large language model can serve as a highly effective few-shot semantic parser. It can convert natural language sentences into a logical form that serves as input for answer set programs, a logic-based declarative knowledge representation formalism. The combination results in a robust and general system that can handle multiple question-answering tasks without requiring retraining for each new task. It only needs a few examples to guide the LLM’s adaptation to a specific task, along with reusable ASP knowledge modules that can be applied to multiple tasks. We demonstrate that this method achieves state-of-the-art performance on several NLP benchmarks, including bAbI, StepGame, CLUTRR, and gSCAN. Additionally, it successfully tackles robot planning tasks that an LLM alone fails to solve.

pdf bib
Evaluating the Factual Consistency of Large Language Models Through News Summarization
Derek Tam | Anisha Mascarenhas | Shiyue Zhang | Sarah Kwan | Mohit Bansal | Colin Raffel

While large language models (LLMs) have proven to be effective on a large variety of tasks, they are also known to hallucinate information. To measure whether an LLM prefers factually consistent continuations of its input, we propose a new benchmark called FIB (Factual Inconsistency Benchmark) that focuses on the task of summarization. Specifically, our benchmark involves comparing the scores an LLM assigns to a factually consistent versus a factually inconsistent summary for an input news article. For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent. To generate summaries that are factually inconsistent, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent. A model’s factual consistency is then measured according to its accuracy, i.e. the proportion of documents where it assigns a higher score to the factually consistent summary. To validate the usefulness of {pasted macro ‘BENCHMARK’}, we evaluate 23 large language models ranging from 1B to 176B parameters from six different model families including BLOOM and OPT. We find that existing LLMs generally assign a higher score to factually consistent summaries than to factually inconsistent summaries. However, if the factually inconsistent summaries occur verbatim in the document, then LLMs assign a higher score to these factually inconsistent summaries than factually consistent summaries. We validate design choices in our benchmark including the scoring method and source of distractor summaries.

pdf bib
Text Generation Model Enhanced with Semantic Information in Aspect Category Sentiment Analysis
Tu Tran | Kiyoaki Shirai | Natthawut Kertkeidkachorn

Aspect Category Sentiment Analysis (ACSA) is one of the main subtasks of sentiment analysis, which aims at predicting polarity over a given aspect category. Recently, generative methods emerge as an efficient way to utilize a pre-trained language model for solving ACSA. However, those methods fail to model relations of target words and opinion words in a sentence including multiple aspects. To tackle this problem, this paper proposes a method to incorporate Abstract Meaning Representation (AMR), which describes semantic representation of a sentence as a directed graph, into a text generation model. Furthermore, two regularizers are designed to guide cross attention weights allocation over AMR graphs. One is the identical regularizer that constrains attention weights of aligned nodes, the other is the entropy regularizer that helps the decoder generate tokens by heavily considering only a few related nodes in the AMR graph. Experimental results on three datasets show that the proposed method outperforms state-of-the-art methods, proving the effectiveness of our model.

pdf bib
Mind the Biases: Quantifying Cognitive Biases in Language Model Prompting
Ruixi Lin | Hwee Tou Ng

We advocate the importance of exposing uncertainty on results of language model prompting which display bias modes resembling cognitive biases, and propose to help users grasp the level of uncertainty via simple quantifying metrics. Cognitive biases in the human decision making process can lead to flawed responses when we are under uncertainty. Not surprisingly, we have seen biases in language models resembling cognitive biases as a result of training on biased textual data, raising dangers in downstream tasks that are centered around people’s lives if users trust their results too much. In this work, we reveal two bias modes leveraging cognitive biases when we prompt BERT, accompanied by two bias metrics. On a drug-drug interaction extraction task, our bias measurements reveal an error pattern similar to the availability bias when the labels for training prompts are imbalanced, and show that a toning-down transformation of the drug-drug description in a prompt can elicit a bias similar to the framing effect, warning users to distrust when prompting language models for answers.

pdf bib
CodePrompt: Task-Agnostic Prefix Tuning for Program and Language Generation
YunSeok Choi | Jee-Hyong Lee

In order to solve the inefficient parameter update and storage issues of fine-tuning in Natural Language Generation (NLG) tasks, prompt-tuning methods have emerged as lightweight alternatives. Furthermore, efforts to reduce the gap between pre-training and fine-tuning have shown successful results in low-resource settings. As large Pre-trained Language Models (PLMs) for Program and Language Generation (PLG) tasks are constantly being developed, prompt tuning methods are necessary for the tasks. However, due to the gap between pre-training and fine-tuning different from PLMs for natural language, a prompt tuning method that reflects the traits of PLM for program language is needed. In this paper, we propose a Task-Agnostic prompt tuning method for the PLG tasks, CodePrompt, that combines Input-Dependent Prompt Template (to bridge the gap between pre-training and fine-tuning of PLMs for program and language) and Corpus-Specific Prefix Tuning (to update the parameters of PLMs for program and language efficiently).Also, we propose a method to provide richer prefix word information for limited prefix lengths. We prove that our method is effective in three PLG tasks, not only in the full-data setting but also in the low-resource setting and cross-domain setting.

pdf bib
Honey, I Shrunk the Language: Language Model Behavior at Reduced Scale.
Vijeta Deshpande | Dan Pechi | Shree Thatte | Vladislav Lialin | Anna Rumshisky

In recent years, language models have drastically grown in size, and the abilities of these models have been shown to improve with scale. The majority of recent scaling laws studies focused on high-compute high-parameter count settings, leaving the question of when these abilities begin to emerge largely unanswered. In this paper, we investigate whether the effects of pre-training can be observed when the problem size is reduced, modeling a smaller, reduced-vocabulary language. We show the benefits of pre-training with masked language modeling (MLM) objective in models as small as 1.25M parameters, and establish a strong correlation between pre-training perplexity and downstream performance (GLUE benchmark). We examine downscaling effects, extending scaling laws to models as small as ~1M parameters. At this scale, we observe a break of the power law for compute-optimal models and show that the MLM loss does not scale smoothly with compute-cost (FLOPs) below 2.2 × 1015 FLOPs. We also find that adding layers does not always benefit downstream performance.Our filtered pre-training data, reduced English vocabulary, and code are available at

pdf bib
Communication Efficient Federated Learning for Multilingual Neural Machine Translation with Adapter
Yi Liu | Xiaohan Bi | Lei Li | Sishuo Chen | Wenkai Yang | Xu Sun

Federated Multilingual Neural Machine Translation (Fed-MNMT) has emerged as a promising paradigm for institutions with limited language resources. This approach allows multiple institutions to act as clients and train a unified model through model synchronization, rather than collecting sensitive data for centralized training. This significantly reduces the cost of corpus collection and preserves data privacy. However, as pre-trained language models (PLMs) continue to increase in size, the communication cost for transmitting parameters during synchronization has become a training speed bottleneck. In this paper, we propose a communication-efficient Fed-MNMT framework that addresses this issue by keeping PLMs frozen and only transferring lightweight adapter modules between clients. Since different language pairs exhibit substantial discrepancies in data distributions, adapter parameters of clients may conflict with each other. To tackle this, we explore various clustering strategies to group parameters for integration and mitigate the negative effects of conflicting parameters. Experimental results demonstrate that our framework reduces communication cost by over 98% while achieving similar or even better performance compared to competitive baselines. Further analysis reveals that clustering strategies effectively solve the problem of linguistic discrepancy and pruning adapter modules further improves communication efficiency.

pdf bib
Cross-task Knowledge Transfer for Extremely Weakly Supervised Text Classification
Seongmin Park | Kyungho Kim | Jihwa Lee

Text classification with extremely weak supervision (EWS) imposes stricter supervision constraints compared to regular weakly supervise classification. Absolutely no labeled training samples or hand-crafted rules specific to the evaluation data are allowed. Such restrictions limit state-of-the-art EWS classification methods to indirect weak labeling techniques that assign unnatural label uncertainty estimates. We present PLAT, a framework that creates weak labels by leveraging recent developments in zero-shot text classification. PLAT employs models trained for sub-tasks other than classification to label documents. Most importantly, PLAT refrains from assigning overly confident weak labels and improves soft-label training performance for downstream classifiers. Classifiers trained with PLAT significantly outperform those trained on weak labels generated by the previous state-of-the-art in extremely weakly supervised text classification.

pdf bib
GVdoc - Graph-based Visual DOcument Classification
Fnu Mohbat | Mohammed J Zaki | Catherine Finegan-Dollak | Ashish Verma

The robustness of a model for real-world deployment is decided by how well it performs on unseen data and distinguishes between in-domain and out-of-domain samples. Visual document classifiers have shown impressive performance on in-distribution test sets. However, they tend to have a hard time correctly classifying and differentiating out-of-distribution examples. Image-based classifiers lack the text component, whereas multi-modality transformer-based models face the token serialization problem in visual documents due to their diverse layouts. They also require a lot of computing power during inference, making them impractical for many real-world applications. We propose, GVdoc, a graph-based document classification model that addresses both of these challenges. Our approach generates a document graph based on its layout, and then trains a graph neural network to learn node and graph embeddings. Through experiments, we show that our model, even with fewer parameters, outperforms state-of-the-art models on out-of-distribution data while retaining comparable performance on the in-distribution test set.

pdf bib
A Sequence-to-Sequence&Set Model for Text-to-Table Generation
Tong Li | Zhihao Wang | Liangying Shao | Xuling Zheng | Xiaoli Wang | Jinsong Su

Recently, the text-to-table generation task has attracted increasing attention due to its wide applications. In this aspect, the dominant model formalizes this task as a sequence-to-sequence generation task and serializes each table into a token sequence during training by concatenating all rows in a top-down order. However, it suffers from two serious defects: 1) the predefined order introduces a wrong bias during training, which highly penalizes shifts in the order between rows; 2) the error propagation problem becomes serious when the model outputs a long token sequence. In this paper, we first conduct a preliminary study to demonstrate the generation of most rows is order-insensitive. Furthermore, we propose a novel sequence-to-sequence&set text-to-table generation model. Specifically, in addition to a text encoder encoding the input text, our model is equipped with a table header generator to first output a table header, i.e., the first row of the table, in the manner of sequence generation. Then we use a table body generator with learnable row embeddings and column embeddings to generate a set of table body rows in parallel. Particularly, to deal with the issue that there is no correspondence between each generated table body row and target during training, we propose a target assignment strategy based on the bipartite matching between the first cells of generated table body rows and targets. Experiment results show that our model significantly surpasses the baselines, achieving state-of-the-art performance on commonly-used datasets.

pdf bib
Automatic Readability Assessment for Closely Related Languages
Joseph Marvin Imperial | Ekaterina Kochmar

In recent years, the main focus of research on automatic readability assessment (ARA) has shifted towards using expensive deep learning-based methods with the primary goal of increasing models’ accuracy. This, however, is rarely applicable for low-resource languages where traditional handcrafted features are still widely used due to the lack of existing NLP tools to extract deeper linguistic representations. In this work, we take a step back from the technical component and focus on how linguistic aspects such as mutual intelligibility or degree of language relatedness can improve ARA in a low-resource setting. We collect short stories written in three languages in the Philippines—Tagalog, Bikol, and Cebuano—to train readability assessment models and explore the interaction of data and features in various cross-lingual setups. Our results show that the inclusion of CrossNGO, a novel specialized feature exploiting n-gram overlap applied to languages with high mutual intelligibility, significantly improves the performance of ARA models compared to the use of off-the-shelf large multilingual language models alone. Consequently, when both linguistic representations are combined, we achieve state-of-the-art results for Tagalog and Cebuano, and baseline scores for ARA in Bikol.

pdf bib
Towards Robust Ranker for Text Retrieval
Yucheng Zhou | Tao Shen | Xiubo Geng | Chongyang Tao | Can Xu | Guodong Long | Binxing Jiao | Daxin Jiang

A neural ranker plays an indispensable role in the de facto ‘retrieval & rerank’ pipeline, but its training still lags behind due to the weak negative mining during contrastive learning. Compared to retrievers boosted by self-adversarial (i.e., in-distribution) negative mining, the ranker’s heavy structure suffers from query-document combinatorial explosions, so it can only resort to the negative sampled by the fast yet out-of-distribution retriever. Thereby, the moderate negatives compose ineffective contrastive learning samples, becoming the main barrier to learning a robust ranker. To alleviate this, we propose a multi-adversarial training strategy that leverages multiple retrievers as generators to challenge a ranker, where i) diverse hard negatives from a joint distribution are prone to fool the ranker for more effective adversarial learning and ii) involving extensive out-of-distribution label noises renders the ranker against each noise distribution, leading to more challenging and robust contrastive learning. To evaluate our robust ranker (dubbed R2anker), we conduct experiments in various settings on the passage retrieval benchmarks, including BM25-reranking, full-ranking, retriever distillation, etc. The empirical results verify the new state-of-the-art effectiveness of our model.

pdf bib
Semi-Supervised Domain Adaptation for Emotion-Related Tasks
Mahshid Hosseini | Cornelia Caragea

Semi-supervised domain adaptation (SSDA) adopts a model trained from a label-rich source domain to a new but related domain with a few labels of target data. It is shown that, in an SSDA setting, a simple combination of domain adaptation (DA) with semi-supervised learning (SSL) techniques often fails to effectively utilize the target supervision and cannot address distribution shifts across different domains due to the training data bias toward the source-labeled samples. In this paper, inspired by the co-learning of multiple classifiers for the computer vision tasks, we propose to decompose the SSDA framework for emotion-related tasks into two subcomponents of unsupervised domain adaptation (UDA) from the source to the target domain and semi-supervised learning (SSL) in the target domain where the two models iteratively teach each other by interchanging their high confident predictions. We further propose a novel data cartography-based regularization technique for pseudo-label denoising that employs training dynamics to further hone our models’ performance. We publicly release our code.

pdf bib
Boosting Distress Support Dialogue Responses with Motivational Interviewing Strategy
Anuradha Welivita | Pearl Pu

AI-driven chatbots have become an emerging solution to address psychological distress. Due to the lack of psychotherapeutic data, researchers use dialogues scraped from online peer support forums to train them. But since the responses in such platforms are not given by professionals, they contain both conforming and non-conforming responses. In this work, we attempt to recognize these conforming and non-conforming response types present in online distress-support dialogues using labels adapted from a well-established behavioral coding scheme named Motivational Interviewing Treatment Integrity (MITI) code and show how some response types could be rephrased into a more MI adherent form that can, in turn, enable chatbot responses to be more compliant with the MI strategy. As a proof of concept, we build several rephrasers by fine-tuning Blender and GPT3 to rephrase MI non-adherent Advise without permission responses into Advise with permission. We show how this can be achieved with the construction of pseudo-parallel corpora avoiding costs for human labor. Through automatic and human evaluation we show that in the presence of less training data, techniques such as prompting and data augmentation can be used to produce substantially good rephrasings that reflect the intended style and preserve the content of the original text.

pdf bib
ECOLA: Enhancing Temporal Knowledge Embeddings with Contextualized Language Representations
Zhen Han | Ruotong Liao | Jindong Gu | Yao Zhang | Zifeng Ding | Yujia Gu | Heinz Koeppl | Hinrich Schütze | Volker Tresp

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts. However, existing enhancement approaches cannot apply to temporal knowledge graphs (tKGs), which contain time-dependent event knowledge with complex temporal dynamics. Specifically, existing enhancement approaches often assume knowledge embedding is time-independent. In contrast, the entity embedding in tKG models usually evolves, which poses the challenge of aligning temporally relevant texts with entities. To this end, we propose to study enhancing temporal knowledge embedding with textual data in this paper. As an approach to this task, we propose Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations (ECOLA), which takes the temporal aspect into account and injects textual information into temporal knowledge embedding. To evaluate ECOLA, we introduce three new datasets for training and evaluating ECOLA. Extensive experiments show that ECOLA significantly enhances temporal KG embedding models with up to 287% relative improvements regarding Hits@1 on the link prediction task. The code and models are publicly available on

pdf bib
Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models
Somayeh Ghanbarzadeh | Yan Huang | Hamid Palangi | Radames Cruz Moreno | Hamed Khanpour

Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs’ performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks’ datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning’s training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs’ performance on downstream tasks solely using the downstream tasks’ dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.

pdf bib
TextObfuscator: Making Pre-trained Language Model a Privacy Protector via Obfuscating Word Representations
Xin Zhou | Yi Lu | Ruotian Ma | Tao Gui | Yuran Wang | Yong Ding | Yibo Zhang | Qi Zhang | Xuanjing Huang

In real-world applications, pre-trained language models are typically deployed on the cloud, allowing clients to upload data and perform compute-intensive inference remotely. To avoid sharing sensitive data directly with service providers, clients can upload numerical representations rather than plain text to the cloud. However, recent text reconstruction techniques have demonstrated that it is possible to transform representations into original words, suggesting that privacy risk remains. In this paper, we propose TextObfuscator, a novel framework for protecting inference privacy by applying random perturbations to clustered representations. The random perturbations make the representations indistinguishable from surrounding clustered representations, thus obscuring word information while retaining the original word functionality. To achieve this, we utilize prototypes to learn clustered representation, where tokens of similar functionality are encouraged to be closer to the same prototype during training. Additionally, we design different methods to find prototypes for token-level and sentence-level tasks, which can improve performance by incorporating semantic and task information. Experimental results on token and sentence classification tasks show that TextObfuscator achieves improvement over compared methods without increasing inference cost.

pdf bib
Mini-Model Adaptation: Efficiently Extending Pretrained Models to New Languages via Aligned Shallow Training
Kelly Marchisio | Patrick Lewis | Yihong Chen | Mikel Artetxe

Prior work shows that it is possible to expand pretrained Masked Language Models (MLMs) to new languages by learning a new set of embeddings, while keeping the transformer body frozen. Despite learning a small subset of parameters, this approach is not compute-efficient, as training the new embeddings requires a full forward and backward pass over the entire model. We propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model’s parameters. New language-specific embeddings can then be efficiently trained over the mini-model and plugged into the aligned large model for rapid cross-lingual transfer. We explore two approaches to learn mini-models: MINIJOINT, which jointly pretrains the primary model and the mini-model using a single transformer with a secondary MLM head at a middle layer; and MINIPOST, where we start from a regular pretrained model, build a mini-model by extracting and freezing a few layers, and learn a small number of parameters on top. Experiments on XNLI, MLQA and PAWS-X show that mini-model adaptation matches the performance of the standard approach using up to 2.3x less compute on average.

pdf bib
DSP: Discriminative Soft Prompts for Zero-Shot Entity and Relation Extraction
Bo Lv | Xin Liu | Shaojie Dai | Nayu Liu | Fan Yang | Ping Luo | Yue Yu

Prompt-based methods have shown their efficacy in transferring general knowledge within pre-trained language models (PLMs) for low-resource scenarios. Typically, prompt-based methods convert downstream tasks to cloze-style problems and map all labels to verbalizers.However, when applied to zero-shot entity and relation extraction, vanilla prompt-based methods may struggle with the limited coverage of verbalizers to labels and the slow inference speed. In this work, we propose a novel Discriminate Soft Prompts (DSP) approach to take advantage of the prompt-based methods to strengthen the transmission of general knowledge. Specifically, we develop a discriminative prompt method, which reformulates zero-shot tasks into token discrimination tasks without having to construct verbalizers.Furthermore, to improve the inference speed of the prompt-based methods, we design a soft prompt co-reference strategy, which leverages soft prompts to approximately refer to the vector representation of text tokens. The experimental results show that, our model outperforms baselines on two zero-shot entity recognition datasets with higher inference speed, and obtains a 7.5% average relation F1-score improvement over previous state-of-the-art models on Wiki-ZSL and FewRel.

pdf bib
Exploring Robust Overfitting for Pre-trained Language Models
Bin Zhu | Yanghui Rao

We identify the robust overfitting issue for pre-trained language models by showing that the robust test loss increases as the epoch grows. Through comprehensive exploration of the robust loss on the training set, we attribute robust overfitting to the model’s memorization of the adversarial training data. We attempt to mitigate robust overfitting by combining regularization methods with adversarial training. Following the philosophy that prevents the model from memorizing the adversarial data, we find that flooding, a regularization method with loss scaling, can mitigate robust overfitting for pre-trained language models. Eventually, we investigate the effect of flooding levels and evaluate the models’ adversarial robustness under textual attacks. Extensive experiments demonstrate that our methods can mitigate robust overfitting upon three top adversarial training methods and further promote adversarial robustness.

pdf bib
Improving Cross-task Generalization of Unified Table-to-text Models with Compositional Task Configurations
Jifan Chen | Yuhao Zhang | Lan Liu | Rui Dong | Xinchi Chen | Patrick Ng | William Yang Wang | Zhiheng Huang

There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022).However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model’s ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.

pdf bib
D-CALM: A Dynamic Clustering-based Active Learning Approach for Mitigating Bias
Sabit Hassan | Malihe Alikhani

Despite recent advancements, NLP models continue to be vulnerable to bias. This bias often originates from the uneven distribution of real-world data and can propagate through the annotation process. Escalated integration of these models in our lives calls for methods to mitigate bias without overbearing annotation costs. While active learning (AL) has shown promise in training models with a small amount of annotated data, AL’s reliance on the model’s behavior for selective sampling can lead to an accumulation of unwanted bias rather than bias mitigation. However, infusing clustering with AL can overcome the bias issue of both AL and traditional annotation methods while exploiting AL’s annotation efficiency. In this paper, we propose a novel adaptive clustering-based active learning algorithm, D-CALM, that dynamically adjusts clustering and annotation efforts in response to an estimated classifier error-rate. Experiments on eight datasets for a diverse set of text classification tasks, including emotion, hatespeech, dialog act, and book type detection, demonstrate that our proposed algorithm significantly outperforms baseline AL approaches with both pretrained transformers and traditional Support Vector Machines. D-CALM showcases robustness against different measures of information gain and, as evident from our analysis of label and error distribution, can significantly reduce unwanted model bias.

pdf bib
Language Anisotropic Cross-Lingual Model Editing
Yang Xu | Yutai Hou | Wanxiang Che | Min Zhang

Multilingual pre-trained language models can learn task-specific abilities or memorize facts across multiple languages but inevitably make undesired predictions with specific inputs. Under similar observation, model editing aims to post-hoc calibrate a model targeted to specific inputs with keeping the model’s raw behavior. However, existing work only studies the monolingual scenario, which lacks the cross-lingual transferability to perform editing simultaneously across languages. In this work, we focus on cross-lingual model editing. Firstly, we define the cross-lingual model editing task and corresponding metrics, where an edit in one language propagates to the others. Next, we propose a framework to naturally adapt monolingual model editing approaches to the cross-lingual scenario using parallel corpus. Further, we propose language anisotropic editing to improve cross-lingual editing by amplifying different subsets of parameters for each language. On the newly defined cross-lingual model editing task, we empirically demonstrate the failure of monolingual baselines in propagating the edit to multiple languages and the effectiveness of the proposed language anisotropic model editing. Our code is publicly available at

pdf bib
Diverse Retrieval-Augmented In-Context Learning for Dialogue State Tracking
Brendan King | Jeffrey Flanigan

There has been significant interest in zero and few-shot learning for dialogue state tracking (DST) due to the high cost of collecting and annotating task-oriented dialogues. Recent work has demonstrated that in-context learning requires very little data and zero parameter updates, and even outperforms trained methods in the few-shot setting. We propose RefPyDST, which advances the state of the art with three advancements to in-context learning for DST.First, we formulate DST as a Python programming task, explicitly modeling language coreference as variable reference in Python. Second, since in-context learning depends highly on the context examples, we propose a method to retrieve a diverse set of relevant examples to improve performance. Finally, we introduce a novel re-weighting method during decoding that takes into account probabilities of competing surface forms, and produces a more accurate dialogue state prediction. We evaluate our approach using MultiWOZ and achieve state-of-the-art multi-domain joint-goal accuracy in zero and few-shot settings.

pdf bib
Pre-Trained Language-Meaning Models for Multilingual Parsing and Generation
Chunliu Wang | Huiyuan Lai | Malvina Nissim | Johan Bos

Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results.

pdf bib
Multi-modal Sarcasm Generation: Dataset and Solution
Wenye Zhao | Qingbao Huang | Dongsheng Xu | Peizhi Zhao

As an interesting and challenging task, sarcasm generation has attracted widespread attention. Although very recent studies have made promising progress, none of them considers generating a sarcastic description for a given image - as what people are doing on Twitter. In this paper, we present a Multi-modal Sarcasm Generation (MSG) task: Given an image with hashtags that provide the sarcastic target, MSG aims to generate sarcastic descriptions like humans. Different from textual sarcasm generation, MSG is more challenging as it is difficult to accurately capture the key information from images, hashtags, and OCR tokens and exploit multi-modal incongruity to generate sarcastic descriptions. To support the research on MSG, we develop MuSG, a new dataset with 5000 images and related Twitter text. We also propose a multi-modal Transformer-based method as a solution to this MSG task. The input features are embedded in the common space and passed through the multi-modal Transformer layers to generate the sarcastic descriptions by the auto-regressive paradigm. Both automatic and manual evaluations demonstrate the superiority of our method. The dataset and code will be available soon.

pdf bib
Rethinking Semi-supervised Learning with Language Models
Zhengxiang Shi | Francesco Tonolini | Nikolaos Aletras | Emine Yilmaz | Gabriella Kazai | Yunlong Jiao

Semi-supervised learning (SSL) is a popular setting aiming to effectively utilize unlabelled data to improve model performance in downstream natural language processing (NLP) tasks. Currently, there are two popular approaches to make use of the unlabelled data: Self-training (ST) and Task-adaptive pre-training (TAPT). ST uses a teacher model to assign pseudo-labels to the unlabelled data, while TAPT continues pre-training on the unlabelled data before fine-tuning. To the best of our knowledge, the effectiveness of TAPT in SSL tasks has not been systematically studied, and no previous work has directly compared TAPT and ST in terms of their ability to utilize the pool of unlabelled data. In this paper, we provide an extensive empirical study comparing five state-of-the-art ST approaches and TAPT across various NLP tasks and data sizes, including in- and out-of domain settings. Surprisingly, we find that TAPT is a strong and more robust SSL learner, even when using just a few hundred unlabelled samples or in the presence of domain shifts, compared to more sophisticated ST approaches, and tends to bring greater improvements in SSL than in fully-supervised settings. Our further analysis demonstrates the risks of using ST approaches when the size of labelled or unlabelled data is small or when domain shifts exist, and highlights TAPT as a potential solution.

pdf bib
Retrieval-Based Transformer for Table Augmentation
Michael Glass | Xueqing Wu | Ankita Rajaram Naik | Gaetano Rossiello | Alfio Gliozzo

Data preparation, also called data wrangling, is considered one of the most expensive and time-consuming steps when performing analytics or building machine learning models. Preparing data typically involves collecting and merging data from complex heterogeneous, and often large-scale data sources, such as data lakes. In this paper, we introduce a novel approach toward automatic data wrangling in an attempt to alleviate the effort of end-users, e.g. data analysts, in structuring dynamic views from data lakes in the form of tabular data. Given a corpus of tables, we propose a retrieval augmented transformer model that is self-trained for the table augmentation tasks of row/column population and data imputation. Our self-learning strategy consists in randomly ablating tables from the corpus and training the retrieval-based model with the objective of reconstructing the partial tables given as input with the original values or headers. We adopt this strategy to first train the dense neural retrieval model encoding portions of tables to vectors, and then the end-to-end model trained to perform table augmentation tasks. We test on EntiTables, the standard benchmark for table augmentation, as well as introduce a new benchmark to advance further research: WebTables. Our model consistently and substantially outperforms both supervised statistical methods and the current state-of-the-art transformer-based models.

pdf bib
ECG-QALM: Entity-Controlled Synthetic Text Generation using Contextual Q&A for NER
Karan Aggarwal | Henry Jin | Aitzaz Ahmad

Named Entity Recognition (NER) state-of-the-art methods requires high-quality labeled datasets. Issues such as scarcity of labeled data, under-representation of entities, and privacy concerns with using sensitive data for training, can be significant barriers. Generating synthetic data to train models is a promising solution to mitigate these problems. We propose ECG-QALM, a contextual question and answering approach using pre-trained language models to synthetically generate entity-controlled text. Generated text is then used to augment small labeled datasets for downstream NER tasks. We evaluate our method on two publicly available datasets. We find ECG-QALM is capable of producing full text samples with desired entities appearing in a controllable way, while retaining sentence coherence closest to the real world data. Evaluations on NER tasks show significant improvements (75% - 140%) in low-labeled data regimes.

pdf bib
Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages
Tomasz Limisiewicz | Jiří Balhar | David Mareček

Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers.Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training.

pdf bib
The Whole Truth and Nothing But the Truth: Faithful and Controllable Dialogue Response Generation with Dataflow Transduction and Constrained Decoding
Hao Fang | Anusha Balakrishnan | Harsh Jhamtani | John Bufe | Jean Crawford | Jayant Krishnamurthy | Adam Pauls | Jason Eisner | Jacob Andreas | Dan Klein

In a real-world dialogue system, generated text must be truthful and informative while remaining fluent and adhering to a prescribed style. Satisfying these constraints simultaneously isdifficult for the two predominant paradigms in language generation: neural language modeling and rule-based generation. We describe a hybrid architecture for dialogue response generation that combines the strengths of both paradigms. The first component of this architecture is a rule-based content selection model defined using a new formal framework called dataflow transduction, which uses declarative rules to transduce a dialogue agent’s actions and their results (represented as dataflow graphs) into context-free grammars representing the space of contextually acceptable responses. The second component is a constrained decoding procedure that uses these grammars to constrain the output of a neural language model, which selects fluent utterances. Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.

pdf bib
Know What I don’t Know: Handling Ambiguous and Unknown Questions for Text-to-SQL
Bing Wang | Yan Gao | Zhoujun Li | Jian-Guang Lou

The task of text-to-SQL aims to convert a natural language question into its corresponding SQL query within the context of relational tables. Existing text-to-SQL parsers generate a plausible SQL query for an arbitrary user question, thereby failing to correctly handle problematic user questions. To formalize this problem, we conduct a preliminary study on the observed ambiguous and unanswerable cases in text-to-SQL and summarize them into 6 feature categories. Correspondingly, we identify the causes behind each category and propose requirements for handling ambiguous and unanswerable questions. Following this study, we propose a simple yet effective counterfactual example generation approach that automatically produces ambiguous and unanswerable text-to-SQL examples. Furthermore, we propose a weakly supervised DTE (Detecting-Then-Explaining) model for error detection, localization, and explanation. Experimental results show that our model achieves the best result on both real-world examples and generated examples compared with various baselines. We release our data and code at:

pdf bib
Rethinking Document-Level Relation Extraction: A Reality Check
Jing Li | Yequan Wang | Shuai Zhang | Min Zhang

Recently, numerous efforts have continued to push up performance boundaries of document-level relation extraction (DocRE) and have claimed significant progress in DocRE. In this paper, we do not aim at proposing a novel model for DocRE. Instead, we take a closer look at the field to see if these performance gains are actually true. By taking a comprehensive literature review and a thorough examination of popular DocRE datasets, we find that these performance gains are achieved upon a strong or even untenable assumption in common: all named entities are perfectly localized, normalized, and typed in advance. Next, we construct four types of entity mention attacks to examine the robustness of typical DocRE models by behavioral probing. We also have a close check on model usability in a more realistic setting. Our findings reveal that most of current DocRE models are vulnerable to entity mention attacks and difficult to be deployed in real-world end-user NLP applications. Our study calls more attentions for future research to stop simplifying problem setups, and to model DocRE in the wild rather than in an unrealistic Utopian world.

pdf bib
Optimizing Test-Time Query Representations for Dense Retrieval
Mujeen Sung | Jungsoo Park | Jaewoo Kang | Danqi Chen | Jinhyuk Lee

Recent developments of dense retrieval rely on quality representations of queries and contexts from pre-trained query and context encoders. In this paper, we introduce TOUR (Test-Time Optimization of Query Representations), which further optimizes instance-level query representations guided by signals from test-time retrieval results. We leverage a cross-encoder re-ranker to provide fine-grained pseudo labels over retrieval results and iteratively optimize query representations with gradient descent. Our theoretical analysis reveals that TOUR can be viewed as a generalization of the classical Rocchio algorithm for pseudo relevance feedback, and we present two variants that leverage pseudo-labels as hard binary or soft continuous labels. We first apply TOUR on phrase retrieval with our proposed phrase re-ranker, and also evaluate its effectiveness on passage retrieval with an off-the-shelf re-ranker. TOUR greatly improves end-to-end open-domain question answering accuracy, as well as passage retrieval performance. TOUR also consistently improves direct re-ranking by up to 2.0% while running 1.3–2.4x faster with an efficient implementation.

pdf bib
A Customized Text Sanitization Mechanism with Differential Privacy
Sai Chen | Fengran Mo | Yanhao Wang | Cen Chen | Jian-Yun Nie | Chengyu Wang | Jamie Cui

As privacy issues are receiving increasing attention within the Natural Language Processing (NLP) community, numerous methods have been proposed to sanitize texts subject to differential privacy. However, the state-of-the-art text sanitization mechanisms based on a relaxed notion of metric local differential privacy (MLDP) do not apply to non-metric semantic similarity measures and cannot achieve good privacy-utility trade-offs. To address these limitations, we propose a novel Customized Text sanitization (CusText) mechanism based on the original 𝜖-differential privacy (DP) definition, which is compatible with any similarity measure.Moreover, CusText assigns each input token a customized output set to provide more advanced privacy protection at the token level.Extensive experiments on several benchmark datasets show that CusText achieves a better trade-off between privacy and utility than existing mechanisms.The code is available at

pdf bib
LABO: Towards Learning Optimal Label Regularization via Bi-level Optimization
Peng Lu | Ahmad Rashid | Ivan Kobyzev | Mehdi Rezagholizadeh | Phillippe Langlais

Regularization techniques are crucial to improving the generalization performance and training efficiency of deep neural networks. Many deep learning algorithms rely on weight decay, dropout, batch/layer normalization to converge faster and generalize. Label Smoothing (LS) is another simple, versatile and efficient regularization which can be applied to various supervised classification tasks. Conventional LS, however, regardless of the training instance assumes that each non-target class is equally likely. In this work, we present a general framework for training with label regularization, which includes conventional LS but can also model instance-specific variants. Based on this formulation, we propose an efficient way of learning LAbel regularization by devising a Bi-level Optimization (LABO) problem. We derive a deterministic and interpretable solution of the inner loop as the optimal label smoothing without the need to store the parameters or the output of a trained model. Finally, we conduct extensive experiments and demonstrate our LABO consistently yields improvement over conventional label regularization on various fields, including seven machine translation and three image classification tasks across various neural network architectures while maintaining training efficiency.

pdf bib
Frustratingly Easy Label Projection for Cross-lingual Transfer
Yang Chen | Chao Jiang | Alan Ritter | Wei Xu

Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.

pdf bib
Enhancing Hierarchical Text Classification through Knowledge Graph Integration
Ye Liu | Kai Zhang | Zhenya Huang | Kehang Wang | Yanghai Zhang | Qi Liu | Enhong Chen

Hierarchical Text Classification (HTC) is an essential and challenging subtask of multi-label text classification with a taxonomic hierarchy. Recent advances in deep learning and pre-trained language models have led to significant breakthroughs in the HTC problem. However, despite their effectiveness, these methods are often restricted by a lack of domain knowledge, which leads them to make mistakes in a variety of situations. Generally, when manually classifying a specific document to the taxonomic hierarchy, experts make inference based on their prior knowledge and experience. For machines to achieve this capability, we propose a novel Knowledge-enabled Hierarchical Text Classification model (K-HTC), which incorporates knowledge graphs into HTC. Specifically, K-HTC innovatively integrates knowledge into both the text representation and hierarchical label learning process, addressing the knowledge limitations of traditional methods. Additionally, a novel knowledge-aware contrastive learning strategy is proposed to further exploit the information inherent in the data. Extensive experiments on two publicly available HTC datasets show the efficacy of our proposed method, and indicate the necessity of incorporating knowledge graphs in HTC tasks.

pdf bib
How Many Answers Should I Give? An Empirical Study of Multi-Answer Reading Comprehension
Chen Zhang | Jiuheng Lin | Xiao Liu | Yuxuan Lai | Yansong Feng | Dongyan Zhao

The multi-answer phenomenon, where a question may have multiple answers scattered in the document, can be well handled by humans but is challenging enough for machine reading comprehension (MRC) systems. Despite recent progress in multi-answer MRC, there lacks a systematic analysis of how this phenomenon arises and how to better address it. In this work, we design a taxonomy to categorize commonly-seen multi-answer MRC instances, with which we inspect three multi-answer datasets and analyze where the multi-answer challenge comes from. We further analyze how well different paradigms of current multi-answer MRC models deal with different types of multi-answer instances. We find that some paradigms capture well the key information in the questions while others better model the relation between questions and contexts. We thus explore strategies to make the best of the strengths of different paradigms. Experiments show that generation models can be a promising platform to incorporate different paradigms. Our annotations and code are released for further research.

pdf bib
An Exploration of Encoder-Decoder Approaches to Multi-Label Classification for Legal and Biomedical Text
Yova Kementchedjhieva | Ilias Chalkidis

Standard methods for multi-label text classification largely rely on encoder-only pre-trained language models, whereas encoder-decoder models have proven more effective in other classification tasks. In this study, we compare four methods for multi-label classification, two based on an encoder only, and two based on an encoder-decoder. We carry out experiments on four datasets—two in the legal domain and two in the biomedical domain, each with two levels of label granularity— and always depart from the same pre-trained model, T5. Our results show that encoder-decoder methods outperform encoder-only methods, with a growing advantage on more complex datasets and labeling schemes of finer granularity. Using encoder-decoder models in a non-autoregressive fashion, in particular, yields the best performance overall, so we further study this approach through ablations to better understand its strengths.

pdf bib
Domain Incremental Lifelong Learning in an Open World
Yi Dai | Hao Lang | Yinhe Zheng | Bowen Yu | Fei Huang | Yongbin Li

Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose Diana: a dynamic architecture-based lifelong learning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model’s generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks.

pdf bib
Improving Knowledge Graph Completion with Generative Hard Negative Mining
Zile Qiao | Wei Ye | Dingyao Yu | Tong Mo | Weiping Li | Shikun Zhang

Contrastive learning has recently shown great potential to improve text-based knowledge graph completion (KGC). In this paper, we propose to learn a more semantically structured entity representation space in text-based KGC via hard negatives mining. Specifically, we novelly leverage a sequence-to-sequence architecture to generate high-quality hard negatives. These negatives are sampled from the same decoding distributions as the anchor (or correct entity), inherently being semantically close to the anchor and thus enjoying good hardness. A self-information-enhanced contrasting strategy is further incorporated into the Seq2Seq generator to systematically diversify the produced negatives. Extensive experiments on three KGC benchmarks demonstrate the sound hardness and diversity of our generated negatives and the resulting performance superiority on KGC.

pdf bib
Visually-Enhanced Phrase Understanding
Tsu-Yuan Hsu | Chen-An Li | Chao-Wei Huang | Yun-Nung Chen

Large-scale vision-language pre-training has exhibited strong performance in various visual and textual understanding tasks. Recently, the textual encoders of multi-modal pre-trained models have been shown to generate high-quality textual representations, which often outperform models that are purely text-based, such as BERT. In this study, our objective is to utilize both textual and visual encoders of multi-modal pre-trained models to enhance language understanding tasks. We achieve this by generating an image associated with a textual prompt, thus enriching the representation of a phrase for downstream tasks. Results from experiments conducted on four benchmark datasets demonstrate that our proposed method, which leverages visually-enhanced text representations, significantly improves performance in the entity clustering task.

pdf bib
Reasoning in Large Language Models Through Symbolic Math Word Problems
Vedant Gaur | Nikunj Saunshi

Large language models (LLMs) have revolutionized NLP by solving downstream tasks with little to no labeled data. Despite their versatile abilities, the larger question of their ability to reason remains ill-understood. This paper addresses reasoning in math word problems (MWPs) by studying symbolic versions of the numeric problems, since a symbolic expression is a “concise explanation” of the numeric answer. We create and use a symbolic version of the SVAMP dataset and find that GPT-3’s davinci-002 model also has good zero-shot accuracy on symbolic MWPs. To evaluate the faithfulness of the model’s reasoning, we go beyond accuracy and additionally evaluate the alignment between the final answer and the outputted reasoning, which correspond to numeric and symbolic answers respectively for MWPs. We explore a self-prompting approach to encourage the symbolic reasoning to align with the numeric answer, thus equipping the LLM with the ability to provide a concise and verifiable reasoning and making it more interpretable. Surprisingly, self-prompting also improves the symbolic accuracy to be higher than both the numeric and symbolic accuracies, thus providing an ensembling effect. The SVAMP-Sym dataset will be released for future research on symbolic math problems.

pdf bib
It’s not Sexually Suggestive; It’s Educative | Separating Sex Education from Suggestive Content on TikTok videos
Enfa George | Mihai Surdeanu

We introduce SexTok, a multi-modal dataset composed of TikTok videos labeled as sexually suggestive (from the annotator’s point of view), sex-educational content, or neither. Such a dataset is necessary to address the challenge of distinguishing between sexually suggestive content and virtual sex education videos on TikTok. Children’s exposure to sexually suggestive videos has been shown to have adversarial effects on their development (Collins et al. 2017). Meanwhile, virtual sex education, especially on subjects that are more relevant to the LGBTQIA+ community, is very valuable (Mitchell et al. 2014). The platform’s current system removes/punishes some of both types of videos, even though they serve different purposes. Our dataset contains video URLs, and it is also audio transcribed. To validate its importance, we explore two transformer-based models for classifying the videos. Our preliminary results suggest that the task of distinguishing between these types of videos is learnable but challenging. These experiments suggest that this dataset is meaningful and invites further study on the subject.

pdf bib
Dynamic Structured Neural Topic Model with Self-Attention Mechanism
Nozomu Miyamoto | Masaru Isonuma | Sho Takase | Junichiro Mori | Ichiro Sakata

This study presents a dynamic structured neural topic model, which can handle the time-series development of topics while capturing their dependencies. Our model captures the topic branching and merging processes by modeling topic dependencies based on a self-attention mechanism. Additionally, we introduce citation regularization, which induces attention weights to represent citation relations by modeling text and citations jointly. Our model outperforms a prior dynamic embedded topic model regarding perplexity and coherence, while maintaining sufficient diversity across topics. Furthermore, we confirm that our model can potentially predict emerging topics from academic literature.

pdf bib
Hybrid-Regressive Paradigm for Accurate and Speed-Robust Neural Machine Translation
Qiang Wang | Xinhui Hu | Ming Chen

This work empirically confirms that non-autoregressive translation (NAT) is less robust in decoding batch size and hardware settings than autoregressive translation (AT). To address this issue, we demonstrate that prompting a small number of AT predictions can significantly reduce the performance gap between AT and NAT through synthetic experiments. Following this line, we propose hybrid-regressive translation (HRT), a two-stage translation prototype that combines the strengths of AT and NAT. Specifically, HRT first generates discontinuous sequences via autoregression (e.g., make a prediction for every k tokens, k>1) and then fills in all previously skipped tokens at once in a non-autoregressive manner. Experiments on five translation tasks show that HRT achieves comparable translation quality with AT while having at least 1.5x faster inference regardless of batch size and device. Additionally, HRT successfully inherits the sound characteristics of AT in the deep-encoder-shallow-decoder architecture, allowing for further speedup without BLEU loss.

pdf bib
Commonsense Knowledge Transfer for Pre-trained Language Models
Wangchunshu Zhou | Ronan Le Bras | Yejin Choi

Despite serving as the foundation models for a wide range of NLP benchmarks, pre-trained language models have shown limited capabilities of acquiring implicit commonsense knowledge from self-supervision alone, compared to learning linguistic and factual knowledge that appear more explicitly in the surface patterns in text. In this work, we introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model. It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model and then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction, which align human language with the underlying commonsense knowledge. Empirical results show that our approach consistently improves the model’s performance on downstream tasks that require commonsense reasoning. Moreover, we find that the improvement is more significant in the few-shot setting. This suggests that our approach helps language models better transfer to downstream tasks without extensive supervision by injecting commonsense knowledge into their parameters.

pdf bib
Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection
Shadi Iskander | Kira Radinsky | Yonatan Belinkov

Natural language processing models tend to learn and encode social biases present in the data. One popular approach for addressing such biases is to eliminate encoded information from the model’s representations. However, current methods are restricted to removing only linearly encoded information. In this work, we propose Iterative Gradient-Based Projection (IGBP), a novel method for removing non-linear encoded concepts from neural representations. Our method consists of iteratively training neural classifiers to predict a particular attribute we seek to eliminate, followed by a projection of the representation on a hypersurface, such that the classifiers become oblivious to the target attribute. We evaluate the effectiveness of our method on the task of removing gender and race information as sensitive attributes. Our results demonstrate that IGBP is effective in mitigating bias through intrinsic and extrinsic evaluations, with minimal impact on downstream task accuracy.

pdf bib
Focal Training and Tagger Decouple for Grammatical Error Correction
Minghuan Tan | Min Yang | Ruifeng Xu

In this paper, we investigate how to improve tagging-based Grammatical Error Correction models. We address two issues of current tagging-based approaches, label imbalance issue, and tagging entanglement issue. Then we propose to down-weight the loss of well-classified labels using Focal Loss and decouple the error detection layer from the label tagging layer through an extra self-attention-based matching module. Experiments over three latest Chinese Grammatical Error Correction datasets show that our proposed methods are effective. We further analyze choices of hyper-parameters for Focal Loss and inference tweaking.

pdf bib
LET: Leveraging Error Type Information for Grammatical Error Correction
Lingyu Yang | Hongjia Li | Lei Li | Chengyin Xu | Shutao Xia | Chun Yuan

Grammatical error correction (GEC) aims to correct errors in given sentences and is significant to many downstream natural language understanding tasks. Recent work introduces the idea of grammatical error detection (GED) to improve the GEC task performance. In contrast, these explicit multi-stage works propagate and amplify the problem of misclassification of the GED module. To introduce more convincing error type information, we propose an end-to-end framework in this paper, which Leverages Error Type (LET) information in the generation process. First, the input text is fed into a classification module to obtain the error type corresponding to each token. Then, we introduce the category information into the decoder’s input and cross-attention module in two ways, respectively. Experiments on various datasets show that our proposed method outperforms existing methods by a clear margin.

pdf bib
On the Role of Parallel Data in Cross-lingual Transfer Learning
Machel Reid | Mikel Artetxe

While prior work has established that the use of parallel data is conducive for cross-lingual learning, it is unclear if the improvements come from the data itself, or if it is the modeling of parallel interactions that matters. Exploring this, we examine the usage of unsupervised machine translation to generate synthetic parallel data, and compare it to supervised machine translation and gold parallel data. We find that even model generated parallel data can be useful for downstream tasks, in both a general setting (continued pretraining) as well as the task-specific setting (translate-train), although our best results are still obtained using real parallel data. Our findings suggest that existing multilingual models do not exploit the full potential of monolingual data, and prompt the community to reconsider the traditional categorization of cross-lingual learning approaches.

pdf bib
CoMave: Contrastive Pre-training with Multi-scale Masking for Attribute Value Extraction
Xinnan Guo | Wentao Deng | Yongrui Chen | Yang Li | Mengdi Zhou | Guilin Qi | Tianxing Wu | Dong Yang | Liubin Wang | Yong Pan

Attribute Value Extraction (AVE) aims to automatically obtain attribute value pairs from product descriptions to aid e-commerce. Despite the progressive performance of existing approaches in e-commerce platforms, they still suffer from two challenges: 1) difficulty in identifying values at different scales simultaneously; 2) easy confusion by some highly similar fine-grained attributes. This paper proposes a pre-training technique for AVE to address these issues. In particular, we first improve the conventional token-level masking strategy, guiding the language model to understand multi-scale values by recovering spans at the phrase and sentence level. Second, we apply clustering to build a challenging negative set for each example and design a pre-training objective based on contrastive learning to force the model to discriminate similar attributes. Comprehensive experiments show that our solution provides a significant improvement over traditional pre-trained models in the AVE task, and achieves state-of-the-art on four benchmarks.

pdf bib
Phrase Retrieval for Open Domain Conversational Question Answering with Conversational Dependency Modeling via Contrastive Learning
Soyeong Jeong | Jinheon Baek | Sung Ju Hwang | Jong Park

Open-Domain Conversational Question Answering (ODConvQA) aims at answering questions through a multi-turn conversation based on a retriever-reader pipeline, which retrieves passages and then predicts answers with them. However, such a pipeline approach not only makes the reader vulnerable to the errors propagated from the retriever, but also demands additional effort to develop both the retriever and the reader, which further makes it slower since they are not runnable in parallel. In this work, we propose a method to directly predict answers with a phrase retrieval scheme for a sequence of words, reducing the conventional two distinct subtasks into a single one. Also, for the first time, we study its capability for ODConvQA tasks. However, simply adopting it is largely problematic, due to the dependencies between previous and current turns in a conversation. To address this problem, we further introduce a novel contrastive learning strategy, making sure to reflect previous turns when retrieving the phrase for the current context, by maximizing representational similarities of consecutive turns in a conversation while minimizing irrelevant conversational contexts. We validate our model on two ODConvQA datasets, whose experimental results show that it substantially outperforms the relevant baselines with the retriever-reader. Code is available at:

pdf bib
Unlearning Bias in Language Models by Partitioning Gradients
Charles Yu | Sullam Jeoung | Anish Kasi | Pengfei Yu | Heng Ji

Recent research has shown that large-scale pretrained language models, specifically transformers, tend to exhibit issues relating to racism, sexism, religion bias, and toxicity in general. Unfortunately, these pretrained language models are used almost universally in downstream tasks, and natural language processing is often applied to make real-world predictions. Thus, debiasing these language models as early in development as possible is increasingly crucial for preventing unintentional harms caused by natural language systems. To this end, we propose a new technique called partitioned contrastive gradient unlearning (PCGU), a gray-box method for debiasing pretrained masked language models. PCGU aims to optimize only the weights that contribute most to a specific domain of bias, doing so by computing a first-order approximation based on the gradients of contrastive sentence pairs. Our experiments show that PCGU is both low-cost and seems particularly effective at pinpointing the sources of implicit social bias in large pretrained transformers. Although we train using PCGU in the gender-profession domain only, we find that doing so can also partially mitigate bias across other domains. All code for our implementation and experiments can be found at

pdf bib
Meta-training with Demonstration Retrieval for Efficient Few-shot Learning
Aaron Mueller | Kanika Narang | Lambert Mathias | Qifan Wang | Hamed Firooz

Large language models show impressive results on few-shot NLP tasks. However, these models are memory and computation-intensive. Meta-training allows one to leverage smaller models for few-shot generalization in a domain-general and task-agnostic manner; however, these methods alone results in models that may not have sufficient parameterization or knowledge to adapt quickly to a large variety of tasks. To overcome this issue, we propose meta-training with demonstration retrieval, where we use a dense passage retriever to retrieve semantically similar labeled demonstrations to each example for more varied supervision. By separating external knowledge from model parameters, we can use meta-training to train parameter-efficient models that generalize well on a larger variety of tasks. We construct a meta-training set from UnifiedQA and CrossFit, and propose a demonstration bank based on UnifiedQA tasks. To our knowledge, our work is the first to combine retrieval with meta-training, to use DPR models to retrieve demonstrations, and to leverage demonstrations from many tasks simultaneously, rather than randomly sampling demonstrations from the training set of the target task. Our approach outperforms a variety of targeted parameter-efficient and retrieval-augmented few-shot methods on QA, NLI, and text classification tasks (including SQuAD, QNLI, and TREC). Our approach can be meta-trained and fine-tuned quickly on a single GPU.

pdf bib
VCSUM: A Versatile Chinese Meeting Summarization Dataset
Han Wu | Mingjie Zhan | Haochen Tan | Zhaohui Hou | Ding Liang | Linqi Song

Compared to news and chat summarization, the development of meeting summarization is hugely decelerated by the limited data. To this end, we introduce a versatile Chinese meeting summarization dataset, dubbed VCSum, consisting of 239 real-life meetings, with a total duration of over 230 hours. We claim our dataset is versatile because we provide the annotations of topic segmentation, headlines, segmentation summaries, overall meeting summaries, and salient sentences for each meeting transcript. As such, the dataset can adapt to various summarization tasks or methods, including segmentation-based summarization, multi-granularity summarization and retrieval-then-generate summarization. Our analysis confirms the effectiveness and robustness of VCSum. We also provide a set of benchmark models regarding different downstream summarization tasks on VCSum to facilitate further research.

pdf bib
LEDA: a Large-Organization Email-Based Decision-Dialogue-Act Analysis Dataset
Mladen Karan | Prashant Khare | Ravi Shekhar | Stephen McQuistin | Ignacio Castro | Gareth Tyson | Colin Perkins | Patrick Healey | Matthew Purver

Collaboration increasingly happens online. This is especially true for large groups working on global tasks, with collaborators all around the globe. The size and distributed nature of such groups makes decision-making challenging. This paper proposes a set of dialog acts for the study of decision-making mechanisms in such groups, and provides a new annotated dataset based on real-world data from the public mail-archives of one such organisation – the Internet Engineering Task Force (IETF). We provide an initial data analysis showing that this dataset can be used to better understand decision-making in such organisations. Finally, we experiment with a preliminary transformer-based dialog act tagging model.

pdf bib
Negation Scope Refinement via Boundary Shift Loss
Yin Wu | Aixin Sun

Negation in natural language may affect many NLP applications, e.g., information extraction and sentiment analysis. The key sub-task of negation detection is negation scope resolution which aims to extract the portion of a sentence that is being negated by a negation cue (e.g., keyword “not” and never”) in the sentence. Due to the long spans, existing methods tend to make wrong predictions around the scope boundaries. In this paper, we propose a simple yet effective model named R-BSL which engages the Boundary Shift Loss to refine the predicted boundary. On multiple benchmark datasets, we show that the extremely simple R-BSL achieves best results.

pdf bib
Towards Diverse and Effective Question-Answer Pair Generation from Children Storybooks
Sugyeong Eo | Hyeonseok Moon | Jinsung Kim | Yuna Hur | Jeongwook Kim | SongEun Lee | Changwoo Chun | Sungsoo Park | Heuiseok Lim

Recent advances in QA pair generation (QAG) have raised interest in applying this technique to the educational field. However, the diversity of QA types remains a challenge despite its contributions to comprehensive learning and assessment of children. In this paper, we propose a QAG framework that enhances QA type diversity by producing different interrogative sentences and implicit/explicit answers. Our framework comprises a QFS-based answer generator, an iterative QA generator, and a relevancy-aware ranker. The two generators aim to expand the number of candidates while covering various types. The ranker trained on the in-context negative samples clarifies the top-N outputs based on the ranking score. Extensive evaluations and detailed analyses demonstrate that our approach outperforms previous state-of-the-art results by significant margins, achieving improved diversity and quality. Our task-oriented processes are consistent with real-world demand, which highlights our system’s high applicability.

pdf bib
Pulling Out All The Full Stops: Punctuation Sensitivity in Neural Machine Translation and Evaluation
Prathyusha Jwalapuram

Much of the work testing machine translation systems for robustness and sensitivity has been adversarial or tended towards testing noisy input such as spelling errors, or non-standard input such as dialects. In this work, we take a step back to investigate a sensitivity problem that can seem trivial and is often overlooked: punctuation. We perform basic sentence-final insertion and deletion perturbation tests with full stops, exclamation and questions marks across source languages and demonstrate a concerning finding: commercial, production-level machine translation systems are vulnerable to mere single punctuation insertion or deletion, resulting in unreliable translations. Moreover, we demonstrate that both string-based and model-based evaluation metrics also suffer from this vulnerability, producing significantly different scores when translations only differ in a single punctuation, with model-based metrics penalizing each punctuation differently. Our work calls into question the reliability of machine translation systems and their evaluation metrics, particularly for real-world use cases, where inconsistent punctuation is often the most common and the least disruptive noise.

pdf bib
Reimagining Retrieval Augmented Language Models for Answering Queries
Wang-Chiew Tan | Yuliang Li | Pedro Rodriguez | Richard James | Xi Victoria Lin | Alon Halevy | Wen-tau Yih

We present a reality check on large language models and inspect the promise of retrieval-augmented language models in comparison. Such language models are semi-parametric, where models integrate model parameters and knowledge from external data sources to make their predictions, as opposed to the parametric nature of vanilla large language models. We give initial experimental findings that semi-parametric architectures can be enhanced with views, a query analyzer/planner, and provenance to make a significantly more powerful system for question answering in terms of accuracy and efficiency, and potentially for other NLP tasks.

pdf bib
Numeric Magnitude Comparison Effects in Large Language Models
Raj Shah | Vijay Marupudi | Reba Koenen | Khushi Bhardwaj | Sashank Varma

Large Language Models (LLMs) do not differentially represent numbers, which are pervasive in text. In contrast, neuroscience research has identified distinct neural representations for numbers and words. In this work, we investigate how well popular LLMs capture the magnitudes of numbers (e.g., that 4<5) from a behavioral lens. Prior research on the representational capabilities of LLMs evaluates whether they show human-level performance, for instance, high overall accuracy on standard benchmarks. Here, we ask a different question, one inspired by cognitive science: How closely do the number representations of LLMscorrespond to those of human language users, who typically demonstrate the distance, size, and ratio effects? We depend on a linking hypothesis to map the similarities among the model embeddings of number words and digits to human response times. The results reveal surprisingly human-like representations across language models of different architectures, despite the absence of the neural circuitry that directly supports these representations in the human brain. This research shows the utility of understanding LLMs using behavioral benchmarks and points the way to future work on the number of representations of LLMs and their cognitive plausibility.

pdf bib
Multi-Relational Probabilistic Event Representation Learning via Projected Gaussian Embedding
Linhai Zhang | Congzhi Zhang | Deyu Zhou

Event representation learning has been shown beneficial in various downstream tasks. Current event representation learning methods, which mainly focus on capturing the semantics of events via deterministic vector embeddings, have made notable progress. However, they ignore two important properties: the multiple relations between events and the uncertainty within events. In this paper, we propose a novel approach to learning multi-relational probabilistic event embeddings based on contrastive learning. Specifically, the proposed method consists of three major modules, a multi-relational event generation module to automatically generate multi-relational training data, a probabilistic event encoding module to model uncertainty of events by Gaussian density embeddings, and a relation-aware projection module to adapt unseen relations by projecting Gaussian embeddings into relation-aware subspaces. Moreover, a novel contrastive learning loss is elaborately designed for learning the multi-relational probabilistic embeddings. Since the existing benchmarks for event representation learning ignore relations and uncertainty of events, a novel dataset named MRPES is constructed to investigate whether multiple relations between events and uncertainty within events are learned. Experimental results show that the proposed approach outperforms other state-of-the-art baselines on both existing and newly constructed datasets.

pdf bib
PragmatiCQA: A Dataset for Pragmatic Question Answering in Conversations
Peng Qi | Nina Du | Christopher Manning | Jing Huang

Pragmatic reasoning about another speaker’s unspoken intent and state of mind is crucial to efficient and effective human communication. It is virtually omnipresent in conversations between humans, e.g., when someone asks “do you have a minute?”, instead of interpreting it literally as a query about your schedule, you understand that the speaker might have requests that take time, and respond accordingly. In this paper, we present PragmatiCQA, the first large-scale open-domain question answering (QA) dataset featuring 6873 QA pairs that explores pragmatic reasoning in conversations over a diverse set of topics. We designed innovative crowdsourcing mechanisms for interest-based and task-driven data collection to address the common issue of incentive misalignment between crowdworkers and potential users. To compare computational models’ capability at pragmatic reasoning, we also propose several quantitative metrics to evaluate question answering systems on PragmatiCQA. We find that state-of-the-art systems still struggle to perform human-like pragmatic reasoning, and highlight their limitations for future research.

pdf bib
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks
Lukas Hauzenberger | Shahed Masoudian | Deepak Kumar | Markus Schedl | Navid Rekabsaz

Societal biases are reflected in large pre-trained language models and their fine-tuned versions on downstream tasks. Common in-processing bias mitigation approaches, such as adversarial training and mutual information removal, introduce additional optimization criteria, and update the model to reach a new debiased state. However, in practice, end-users and practitioners might prefer to switch back to the original model, or apply debiasing only on a specific subset of protected attributes. To enable this, we propose a novel modular bias mitigation approach, consisting of stand-alone highly sparse debiasing subnetworks, where each debiasing module can be integrated into the core model on-demand at inference time. Our approach draws from the concept of diff pruning, and proposes a novel training regime adaptable to various representation disentanglement optimizations. We conduct experiments on three classification tasks with gender, race, and age as protected attributes. The results show that our modular approach, while maintaining task performance, improves (or at least remains on-par with) the effectiveness of bias mitigation in comparison with baseline finetuning. Particularly on a two-attribute dataset, our approach with separately learned debiasing subnetworks shows effective utilization of either or both the subnetworks for selective bias mitigation.

pdf bib
Scientific Fact-Checking: A Survey of Resources and Approaches
Juraj Vladika | Florian Matthes

The task of fact-checking deals with assessing the veracity of factual claims based on credible evidence and background knowledge. In particular, scientific fact-checking is the variation of the task concerned with verifying claims rooted in scientific knowledge. This task has received significant attention due to the growing importance of scientific and health discussions on online platforms. Automated scientific fact-checking methods based on NLP can help combat the spread of misinformation, assist researchers in knowledge discovery, and help individuals understand new scientific breakthroughs. In this paper, we present a comprehensive survey of existing research in this emerging field and its related tasks. We provide a task description, discuss the construction process of existing datasets, and analyze proposed models and approaches. Based on our findings, we identify intriguing challenges and outline potential future directions to advance the field.

pdf bib
Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems
Chiyu Song | Hongliang He | Haofei Yu | Pengfei Fang | Leyang Cui | Zhenzhong Lan

Sample-and-rank is a key decoding strategy for modern generation-based dialogue systems. It helps achieve diverse and high-quality responses by selecting an answer from a small pool of generated candidates. The current state-of-the-art ranking methods mainly use an encoding paradigm called Cross-Encoder, which separately encodes each context-candidate pair and ranks the candidates according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each candidate, resulting in high computational costs. Poly-Encoder addresses the above problems by reducing the interaction between context and candidates, but with a price of performance drop. In this work, we develop a new paradigm called Uni-Encoder, that keeps the full attention over each pair as in Cross-Encoder while only encoding the context once, as in Poly-Encoder. Uni-Encoder encodes all the candidates with the context in one forward pass. We use the same positional embedding for all candidates to ensure they are treated equally and design a new attention mechanism to avoid confusion. Our Uni-Encoder can simulate other ranking paradigms using different attention and response concatenation methods. Extensive experiments show that our proposed paradigm achieves new state-of-the-art results on four benchmark datasets with high computational efficiency. For instance, it improves R10@1 by 2.9% with an approximately 4X faster inference speed on the Ubuntu V2 dataset.

pdf bib
DLAMA: A Framework for Curating Culturally Diverse Facts for Probing the Knowledge of Pretrained Language Models
Amr Keleg | Walid Magdy

A few benchmarking datasets have been released to evaluate the factual knowledge of pretrained language models. These benchmarks (e.g., LAMA, and ParaRel) are mainly developed in English and later are translated to form new multilingual versions (e.g., mLAMA, and mParaRel). Results on these multilingual benchmarks suggest that using English prompts to recall the facts from multilingual models usually yields significantly better and more consistent performance than using non-English prompts. Our analysis shows that mLAMA is biased toward facts from Western countries, which might affect the fairness of probing models. We propose a new framework for curating factual triples from Wikidata that are culturally diverse. A new benchmark DLAMA-v1 is built of factual triples from three pairs of contrasting cultures having a total of 78,259 triples from 20 relation predicates. The three pairs comprise facts representing the (Arab and Western), (Asian and Western), and (South American and Western) countries respectively. Having a more balanced benchmark (DLAMA-v1) supports that mBERT performs better on Western facts than non-Western ones, while monolingual Arabic, English, and Korean models tend to perform better on their culturally proximate facts. Moreover, both monolingual and multilingual models tend to make a prediction that is culturally or geographically relevant to the correct label, even if the prediction is wrong.

pdf bib
Self-adaptive Context and Modal-interaction Modeling For Multimodal Emotion Recognition
Haozhe Yang | Xianqiang Gao | Jianlong Wu | Tian Gan | Ning Ding | Feijun Jiang | Liqiang Nie

The multimodal emotion recognition in conversation task aims to predict the emotion label for a given utterance with its context and multiple modalities. Existing approaches achieve good results but also suffer from the following two limitations: 1) lacking modeling of diverse dependency ranges, i.e., long, short, and independent context-specific representations and without consideration of the different recognition difficulty for each utterance; 2) consistent treatment of the contribution for various modalities. To address the above challenges, we propose the Self-adaptive Context and Modal-interaction Modeling (SCMM) framework. We first design the context representation module, which consists of three submodules to model multiple contextual representations. Thereafter, we propose the modal-interaction module, including three interaction submodules to make full use of each modality. Finally, we come up with a self-adaptive path selection module to select an appropriate path in each module and integrate the features to obtain the final representation. Extensive experiments under four settings on three multimodal datasets, including IEMOCAP, MELD, and MOSEI, demonstrate that our proposed method outperforms the state-of-the-art approaches.

pdf bib
Structure-Discourse Hierarchical Graph for Conditional Question Answering on Long Documents
Haowei Du | Yansong Feng | Chen Li | Yang Li | Yunshi Lan | Dongyan Zhao

Conditional question answering on long documents aims to find probable answers and identify conditions that need to be satisfied to make the answers correct over long documents. Existing approaches solve this task by segmenting long documents into multiple sections, and attending information at global and local tokens to predict the answers and corresponding conditions. However, the natural structure of the document and discourse relations between sentences in each document section are ignored, which are crucial for condition retrieving across sections, as well as logical interaction over the question and conditions. To address this issue, this paper constructs a Structure-Discourse Hierarchical Graph (SDHG) and conducts bottom-up information propagation. Firstly we build the sentence-level discourse graphs for each section and encode the discourse relations by graph attention. Secondly, we construct a section-level structure graph based on natural structures, and conduct interactions over the question and contexts. Finally different levels of representations are integrated into jointly answer and condition decoding. The experiments on the benchmark ConditionalQA shows our approach gains over the prior state-of-the-art, by 3.0 EM score and 2.4 F1 score on answer measuring, as well as 2.2 EM score and 1.9 F1 score on jointly answer and condition measuring.

pdf bib
COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements
Xuhui Zhou | Hao Zhu | Akhila Yerukola | Thomas Davidson | Jena D. Hwang | Swabha Swayamdipta | Maarten Sap

Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance “your English is very good” may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement’s offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.

pdf bib
Distilling Calibrated Knowledge for Stance Detection
Yingjie Li | Cornelia Caragea

Stance detection aims to determine the position of an author toward a target and provides insights into people’s views on controversial topics such as marijuana legalization. Despite recent progress in this task, most existing approaches use hard labels (one-hot vectors) during training, which ignores meaningful signals among categories offered by soft labels. In this work, we explore knowledge distillation for stance detection and present a comprehensive analysis. Our contributions are: 1) we propose to use knowledge distillation over multiple generations in which a student is taken as a new teacher to transfer knowledge to a new fresh student; 2) we propose a novel dynamic temperature scaling for knowledge distillation to calibrate teacher predictions in each generation step. Extensive results on three stance detection datasets show that knowledge distillation benefits stance detection and a teacher is able to transfer knowledge to a student more smoothly via calibrated guiding signals. We publicly release our code to facilitate future research.

pdf bib
PTCSpell: Pre-trained Corrector Based on Character Shape and Pinyin for Chinese Spelling Correction
Xiao Wei | Jianbao Huang | Hang Yu | Qian Liu

Chinese spelling correction (CSC) is a challenging task with the goal of correcting each wrong character in Chinese texts. Incorrect characters in a Chinese text are mainly due to the similar shape and similar pronunciation of Chinese characters. Recently, the paradigm of pre-training and fine-tuning has achieved remarkable success in natural language processing. However, the pre-training objectives in existing methods are not tailored for the CSC task since they neglect the visual and phonetic properties of characters, resulting in suboptimal spelling correction. In this work, we propose to pre-train a new corrector named PTCSpell for the CSC task under the detector-corrector architecture. The corrector we propose has the following two improvements. First, we design two novel pre-training objectives to capture pronunciation and shape information in Chinese characters. Second, we propose a new strategy to tackle the issue that the detector’s prediction results mislead the corrector by balancing the loss of wrong characters and correct characters. Experiments on three benchmarks (i.e., SIGHAN 2013, 2014, and 2015) show that our model achieves an average of 5.8% F1 improvements at the correction level over state-of-the-art methods, verifying its effectiveness.

pdf bib
Disentangling Text Representation With Counter-Template For Unsupervised Opinion Summarization
Yanyue Zhang | Deyu Zhou

Approaches for unsupervised opinion summarization are generally based on the reconstruction model and generate a summary by decoding the aggregated representation of inputs. Recent work has shown that aggregating via simple average leads to vector degeneration, generating the generic summary. To tackle the challenge, some approaches select the inputs before aggregating. However, we argue that the selection is too coarse as not all information in each input is equally essential for the summary. For example, the content information such as “great coffee maker, easy to set up” is more valuable than the pattern such as “this is a great product”. Therefore, we propose a novel framework for unsupervised opinion summarization based on text representation disentanglement with counter-template. In specific, a disentangling module is added to the encoder-decoder architecture which decouples the input text representation into two parts: content and pattern. To capture the pattern information, a counter-template is utilized as supervision, which is automatically generated based on contrastive learning. Experimental results on two benchmark datasets show that the proposed approach outperforms the state-of-the-art baselines on both quality and stability.

pdf bib
Evaluation of Question Generation Needs More References
Shinhyeok Oh | Hyojun Go | Hyeongdon Moon | Yunsung Lee | Myeongho Jeong | Hyun Seung Lee | Seungtaek Choi

Question generation (QG) is the task of generating a valid and fluent question based on a given context and the target answer. According to various purposes, even given the same context, instructors can ask questions about different concepts, and even the same concept can be written in different ways. However, the evaluation for QG usually depends on single reference-based similarity metrics, such as n-gram-based metric or learned metric, which is not sufficient to fully evaluate the potential of QG methods. To this end, we propose to paraphrase the reference question for a more robust QG evaluation. Using large language models such as GPT-3, we created semantically and syntactically diverse questions, then adopt the simple aggregation of the popular evaluation metrics as the final scores. Through our experiments, we found that using multiple (pseudo) references is more effective for QG evaluation while showing a higher correlation with human evaluations than evaluation with a single reference.

pdf bib
XtremeCLIP: Extremely Parameter-efficient Tuning for Low-resource Vision Language Understanding
Moming Tang | Chengyu Wang | Jianing Wang | Chuanqi Tan | Songfang Huang | Cen Chen | Weining Qian

Recently, Contrastive Visual-Language Pre-training (CLIP) has demonstrated remarkable capability in various Visual Language Understanding (VLU) tasks. Yet, most CLIP-based methods require tasks-specific designs and sufficient training data. In this paper, we introduce a simple yet efficient paradigm for low-resource VLU named XtremeCLIP, which involves very few trainable parameters to improve the generalization ability of the trained models. In our XtremeCLIP framework, we reformulate a series of VLU tasks as a unified open-book affinity-matching problem. Furthermore, to handle the insufficient supervised signals in small datasets, we adopt contrastive learning to utilize the implicit sorting information of ground-truth labels to provide more supervised cues. Extensive experiments over multiple datasets on visual entailment, visual question answering, and image classification show that XtremeCLIP consistently outperforms existing baselines in low-resource settings.

pdf bib
FACTUAL: A Benchmark for Faithful and Consistent Textual Scene Graph Parsing
Zhuang Li | Yuyang Chai | Terry Yue Zhuo | Lizhen Qu | Gholamreza Haffari | Fei Li | Donghong Ji | Quan Hung Tran

Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks.

pdf bib
Target-Oriented Relation Alignment for Cross-Lingual Stance Detection
Ruike Zhang | Nan Xu | Hanxuan Yang | Yuan Tian | Wenji Mao

Stance detection is an important task in text mining and social media analytics, aiming to automatically identify the user’s attitude toward a specific target from text, and has wide applications in a variety of domains. Previous work on stance detection has mainly focused on monolingual setting. To address the problem of imbalanced language resources, cross-lingual stance detection is proposed to transfer the knowledge learned from a high-resource (source) language (typically English) to another low-resource (target) language. However, existing research on cross-lingual stance detection has ignored the inconsistency in the occurrences and distributions of targets between languages, which consequently degrades the performance of stance detection in low-resource languages. In this paper, we first identify the target inconsistency issue in cross-lingual stance detection, and propose a fine-grained Target-oriented Relation Alignment (TaRA) method for the task, which considers both target-level associations and language-level alignments. Specifically, we propose the Target Relation Graph to learn the in-language and cross-language target associations. We further devise the relation alignment strategy to enable knowledge transfer between semantically correlated targets across languages. Experimental results on the representative datasets demonstrate the effectiveness of our method compared to competitive methods under variant settings.

pdf bib
NonFactS: NonFactual Summary Generation for Factuality Evaluation in Document Summarization
Amir Soleimani | Christof Monz | Marcel Worring

Pre-trained abstractive summarization models can generate fluent summaries and achieve high ROUGE scores. Previous research has found that these models often generate summaries that are inconsistent with their context document and contain nonfactual information. To evaluate factuality in document summarization, a document-level Natural Language Inference (NLI) classifier can be used. However, training such a classifier requires large-scale high-quality factual and nonfactual samples. To that end, we introduce NonFactS, a data generation model, to synthesize nonfactual summaries given a context document and a human-annotated (reference) factual summary. Compared to previous methods, our nonfactual samples are more abstractive and more similar to their corresponding factual samples, resulting in state-of-the-art performance on two factuality evaluation benchmarks, FALSESUM and SUMMAC. Our experiments demonstrate that even without human-annotated summaries, NonFactS can use random sentences to generate nonfactual summaries and a classifier trained on these samples generalizes to out-of-domain documents.

pdf bib
When to Read Documents or QA History: On Unified and Selective Open-domain QA
Kyungjae Lee | Sang-eun Han | Seung-won Hwang | Moontae Lee

This paper studies the problem of open-domain question answering, with the aim of answering a diverse range of questions leveraging knowledge resources. Two types of sources, QA-pair and document corpora, have been actively leveraged with the following complementary strength. The former is highly precise when the paraphrase of given question q was seen and answered during training, often posed as a retrieval problem, while the latter generalizes better for unseen questions. A natural follow-up is thus leveraging both models, while a naive pipelining or integration approaches have failed to bring additional gains over either model alone. Our distinction is interpreting the problem as calibration, which estimates the confidence of predicted answers as an indicator to decide when to use a document or QA-pair corpus. The effectiveness of our method was validated on widely adopted benchmarks such as Natural Questions and TriviaQA.

pdf bib
Interpretable Automatic Fine-grained Inconsistency Detection in Text Summarization
Hou Pong Chan | Qi Zeng | Heng Ji

Existing factual consistency evaluation approaches for text summarization provide binary predictions and limited insights into the weakness of summarization systems. Therefore, we propose the task of fine-grained inconsistency detection, the goal of which is to predict the fine-grained types of factual errors in a summary. Motivated by how humans inspect factual inconsistency in summaries, we propose an interpretable fine-grained inconsistency detection model, FineGrainFact, which explicitly represents the facts in the documents and summaries with semantic frames extracted by semantic role labeling, and highlights the related semantic frames to predict inconsistency. The highlighted semantic frames help verify predicted error types and correct inconsistent summaries. Experiment results demonstrate that our model outperforms strong baselines and provides evidence to support or refute the summary.

pdf bib
A Multi-dimensional study on Bias in Vision-Language models
Gabriele Ruggeri | Debora Nozza

In recent years, joint Vision-Language (VL) models have increased in popularity and capability. Very few studies have attempted to investigate bias in VL models, even though it is a well-known issue in both individual modalities. This paper presents the first multi-dimensional analysis of bias in English VL models, focusing on gender, ethnicity, and age as dimensions. When subjects are input as images, pre-trained VL models complete a neutral template with a hurtful word 5% of the time, with higher percentages for female and young subjects. Bias presence in downstream models has been tested on Visual Question Answering. We developed a novel bias metric called the Vision-Language Association Test based on questions designed to elicit biased associations between stereotypical concepts and targets. Our findings demonstrate that pre-trained VL models contain biases that are perpetuated in downstream tasks.

pdf bib
Correction of Errors in Preference Ratings from Automated Metrics for Text Generation
Jan Deriu | Pius von Däniken | Don Tuggener | Mark Cieliebak

A major challenge in the field of Text Generation is evaluation: Human evaluations are cost-intensive, and automated metrics often display considerable disagreements with human judgments. In this paper, we propose to apply automated metrics for Text Generation in a preference-based evaluation protocol. The protocol features a statistical model that incorporates various levels of uncertainty to account for the error-proneness of the metrics. We show that existing metrics are generally over-confident in assigning significant differences between systems. As a remedy, the model allows to combine human ratings with automated ratings. We show that it can reduce the required amounts of human ratings to arrive at robust and statistically significant results by more than 50%, while yielding the same evaluation outcome as the pure human evaluation in 95% of cases. We showcase the benefits of the evaluation protocol for three text generation tasks: dialogue systems, machine translation, and text summarization.

pdf bib
PEER: Pre-training ELECTRA Extended by Ranking
Ru He | Wei Wang | Songfang Huang | Fei Huang

The BERT model and its variants have made great achievements in many downstream natural language processing tasks. The achievements of these models, however, demand highly expensive pre-training computation cost. To address this pre-training efficiency issue, the ELECTRA model is proposed to use a discriminator to perform replaced token detection (RTD) task, that is, to classify whether each input token is original or replaced by a generator. The RTD task performed by the ELECTRA accelerates pre-training so substantially, such that it is very challenging to further improve the pre-training efficiency established by the ELECTRA by using or adding other pre-training tasks, as the recent comprehensive study of Bajaj et al. (2022) summarizes. To further advance this pre-training efficiency frontier, in this paper we propose to extend the RTD task into a task of ranking input tokens according to K different quality levels. Essentially, we generalize the binary classifier in the ELECTRA into a K-level ranker to undertake a more precise task with negligible additional computation cost. Our extensive experiments show that our proposed method is able to outperform the state-of-the-art pre-training efficient models including ELECTRA in downstream GLUE tasks given the same computation cost.

pdf bib
ML-LMCL: Mutual Learning and Large-Margin Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding
Xuxin Cheng | Bowen Cao | Qichen Ye | Zhihong Zhu | Hongxiang Li | Yuexian Zou

Spoken language understanding (SLU) is a fundamental task in the task-oriented dialogue systems. However, the inevitable errors from automatic speech recognition (ASR) usually impair the understanding performance and lead to error propagation. Although there are some attempts to address this problem through contrastive learning, they (1) treat clean manual transcripts and ASR transcripts equally without discrimination in fine-tuning; (2) neglect the fact that the semantically similar pairs are still pushed away when applying contrastive learning; (3) suffer from the problem of Kullback–Leibler (KL) vanishing. In this paper, we propose Mutual Learning and Large-Margin Contrastive Learning (ML-LMCL), a novel framework for improving ASR robustness in SLU. Specifically, in fine-tuning, we apply mutual learning and train two SLU models on the manual transcripts and the ASR transcripts, respectively, aiming to iteratively share knowledge between these two models. We also introduce a distance polarization regularizer to avoid pushing away the intra-cluster pairs as much as possible. Moreover, we use a cyclical annealing schedule to mitigate KL vanishing issue. Experiments on three datasets show that ML-LMCL outperforms existing models and achieves new state-of-the-art performance.

pdf bib
Guiding Dialogue Agents to Complex Semantic Targets by Dynamically Completing Knowledge Graph
Yue Tan | Bo Wang | Anqi Liu | Dongming Zhao | Kun Huang | Ruifang He | Yuexian Hou

In the target-oriented dialogue, the representation and achievement of targets are two interrelated essential issues. In current approaches, the target is typically supposed to be a single object represented as a word, which makes it relatively easy to achieve the target through dialogue with the help of a knowledge graph (KG). However, when the target has complex semantics, the existing knowledge graph is often incomplete in tracking complex semantic relations. This paper studies target-oriented dialog where the target is a topic sentence. We combine the methods of knowledge retrieval and relationship prediction to construct a context-related dynamic KG. On dynamic KG, we can track the implicit semantic paths in the speaker’s mind that may not exist in the existing KGs. In addition, we also designed a novel metric to evaluate the tracked path automatically. The experimental results show that our method can control the agent more logically and smoothly toward the complex target.

pdf bib
Chain of Thought Prompting Elicits Knowledge Augmentation
Dingjun Wu | Jing Zhang | Xinmei Huang

The knowledge-augmented deep learning paradigm refers to a paradigm in which domain knowledge is identified and integrated into deep models. Conventional methods typically employ task-specific approaches to gather external knowledge from various sources. In contrast, large language models are extensively pre-trained and can serve as a comprehensive source of external knowledge. In this paper, we propose CoT-KA, a Chain-of-Thought-based method that augments knowledge for deep learning. CoT-KA avoids the need for additional knowledge retrieval or knowledge reasoning models, as required in conventional augmentation methods. Our results demonstrate that CoT-KA outperforms both pure CoT-based methods and the non-augmented method across the majority of eleven publicly available benchmarks for various reasoning tasks.

pdf bib
TACR: A Table Alignment-based Cell Selection Method for HybridQA
Jian Wu | Yicheng Xu | Yan Gao | Jian-Guang Lou | Börje Karlsson | Manabu Okumura

Hybrid Question-Answering (HQA), which targets reasoning over tables and passages linked from table cells, has witnessed significant research in recent years. A common challenge in HQA and other passage-table QA datasets is that it is generally unrealistic to iterate over all table rows, columns, and linked passages to retrieve evidence. Such a challenge made it difficult for previous studies to show their reasoning ability in retrieving answers. To bridge this gap, we propose a novel Table-alignment-based Cell-selection and Reasoning model (TACR) for hybrid text and table QA, evaluated on the HybridQA and WikiTableQuestions datasets. In evidence retrieval, we design a table-question-alignment enhanced cell-selection method to retrieve fine-grained evidence. In answer reasoning, we incorporate a QA module that treats the row containing selected cells as context. Experimental results over the HybridQA and WikiTableQuestions (WTQ) datasets show that TACR achieves state-of-the-art results on cell selection and outperforms fine-grained evidence retrieval baselines on HybridQA, while achieving competitive performance on WTQ. We also conducted a detailed analysis to demonstrate that being able to align questions to tables in the cell-selection stage can result in important gains from experiments of over 90% table row and column selection accuracy, meanwhile also improving output explainability.

pdf bib
Modeling Cross-Cultural Pragmatic Inference with Codenames Duet
Omar Shaikh | Caleb Ziems | William Held | Aryan Pariani | Fred Morstatter | Diyi Yang

Pragmatic reference enables efficient interpersonal communication. Prior work uses simple reference games to test models of pragmatic reasoning, often with unidentified speakers and listeners. In practice, however, speakers’ sociocultural background shapes their pragmatic assumptions. For example, readers of this paper assume NLP refers to Natural Language Processing, and not “Neuro-linguistic Programming.” This work introduces the Cultural Codes dataset, which operationalizes sociocultural pragmatic inference in a simple word reference game. Cultural Codes is based on the multi-turn collaborative two-player game, Codenames Duet. Our dataset consists of 794 games with 7,703 turns, distributed across 153 unique players. Alongside gameplay, we collect information about players’ personalities, values, and demographics. Utilizing theories of communication and pragmatics, we predict each player’s actions via joint modeling of their sociocultural priors and the game context. Our experiments show that accounting for background characteristics significantly improves model performance for tasks related to both clue-giving and guessing, indicating that sociocultural priors play a vital role in gameplay decisions.

pdf bib
Werewolf Among Us: Multimodal Resources for Modeling Persuasion Behaviors in Social Deduction Games
Bolin Lai | Hongxin Zhang | Miao Liu | Aryan Pariani | Fiona Ryan | Wenqi Jia | Shirley Anugrah Hayati | James Rehg | Diyi Yang

Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset can be found at https://persuasion-deductiongame. The codes and models are available at

pdf bib
Long to reign over us: A Case Study of Machine Translation and a New Monarch
Rebecca Knowles | Samuel Larkin

Novel terminology and changes in terminology are often a challenge for machine translation systems. The passing of Queen Elizabeth II and the accession of King Charles III provide a striking example of translation shift in the real world, particularly in translation contexts that have ambiguity. Examining translation between French and English, we present a focused case-study of translations about King Charles III as produced both by publicly-available MT systems and by a neural machine translation system trained specifically on Canadian parliamentary text. We find that even in cases where human translators would have adequate context to disambiguate terms from the source language, machine translation systems do not always produce the expected output. Where we are able to analyze the training data, we note that this may represent artifacts in the data, raising important questions about machine translation updates in light of real world events.

pdf bib
A Unified Generative Approach to Product Attribute-Value Identification
Keiji Shinzato | Naoki Yoshinaga | Yandi Xia | Wei-Te Chen

Product attribute-value identification (PAVI) has been studied to link products on e-commerce sites with their attribute values (e.g., ⟨Material, Cotton⟩) using product text as clues. Technical demands from real-world e-commerce platforms require PAVI methods to handle unseen values, multi-attribute values, and canonicalized values, which are only partly addressed in existing extraction- and classification-based approaches. Motivated by this, we explore a generative approach to the PAVI task. We finetune a pre-trained generative model, T5, to decode a set of attribute-value pairs as a target sequence from the given product text. Since the attribute value pairs are unordered set elements, how to linearize them will matter; we, thus, explore methods of composing an attribute-value pair and ordering the pairs for the task. Experimental results confirm that our generation-based approach outperforms the existing extraction and classification-based methods on large-scale real-world datasets meant for those methods.

pdf bib
K-UniMorph: Korean Universal Morphology and its Feature Schema
Eunkyul Jo | Kim Kyuwon | Xihan Wu | KyungTae Lim | Jungyeul Park | Chulwoo Park

We present in this work a new Universal Morphology dataset for Korean. Previously, the Korean language has been underrepresented in the field of morphological paradigms amongst hundreds of diverse world languages. Hence, we propose this Universal Morphological paradigms for the Korean language that preserve its distinct characteristics. For our K-UniMorph dataset, we outline each grammatical criterion in detail for the verbal endings, clarify how to extract inflected forms, and demonstrate how we generate the morphological schemata. This dataset adopts morphological feature schema from CITATION and CITATION for the Korean language as we extract inflected verb forms from the Sejong morphologically analyzed corpus that is one of the largest annotated corpora for Korean. During the data creation, our methodology also includes investigating the correctness of the conversion from the Sejong corpus. Furthermore, we carry out the inflection task using three different Korean word forms: letters, syllables and morphemes. Finally, we discuss and describe future perspectives on Korean morphological paradigms and the dataset.

pdf bib
How does the brain process syntactic structure while listening?
Subba Reddy Oota | Mounika Marreddy | Manish Gupta | Raju Bapi

Syntactic parsing is the task of assigning a syntactic structure to a sentence. There are two popular syntactic parsing methods: constituency and dependency parsing. Recent works have used syntactic embeddings based on constituency trees, incremental top-down parsing, and other word syntactic features for brain activity prediction given the text stimuli to study how the syntax structure is represented in the brain’s language network. However, the effectiveness of dependency parse trees or the relative predictive power of the various syntax parsers across brain areas, especially for the listening task, is yet unexplored. In this study, we investigate the predictive power of the brain encoding models in three settings: (i) individual performance of the constituency and dependency syntactic parsing based embedding methods, (ii) efficacy of these syntactic parsing based embedding methods when controlling for basic syntactic signals, (iii) relative effectiveness of each of the syntactic embedding methods when controlling for the other. Further, we explore the relative importance of syntactic information (from these syntactic embedding methods) versus semantic information using BERT embeddings. We find that constituency parsers help explain activations in the temporal lobe and middle-frontal gyrus, while dependency parsers better encode syntactic structure in the angular gyrus and posterior cingulate cortex. Although semantic signals from BERT are more effective compared to any of the syntactic features or embedding methods, syntactic embedding methods explain additional variance for a few brain regions.

pdf bib
Towards Imperceptible Document Manipulations against Neural Ranking Models
Xuanang Chen | Ben He | Zheng Ye | Le Sun | Yingfei Sun

Adversarial attacks have gained traction in order to identify vulnerabilities in neural ranking models (NRMs), but current attack methods often introduce noticeable errors. Moreover, current methods rely heavily on using a well-imitated surrogate NRM to guarantee the attack effect, making them difficult to use in practice. This paper proposes a framework called Imperceptible DocumEnt Manipulation (IDEM) to produce adversarial documents that are less noticeable to both algorithms and humans. IDEM instructs a well-established generative language model like BART to generate error-free connection sentences, and employs a separate position-wise merging strategy to balance between relevance and coherence of the perturbed text. Evaluation results on the MS MARCO benchmark demonstrate that IDEM outperforms strong baselines while preserving fluency and correctness of the target documents. Furthermore, the separation of adversarial text generation from the surrogate NRM makes IDEM more robust and less affected by the quality of the surrogate NRM.

pdf bib
Ask an Expert: Leveraging Language Models to Improve Strategic Reasoning in Goal-Oriented Dialogue Models
Qiang Zhang | Jason Naradowsky | Yusuke Miyao

Existing dialogue models may encounter scenarios which are not well-represented in the training data, and as a result generate responses that are unnatural, inappropriate, or unhelpful. We propose the “Ask an Expert” framework in which the model is trained with access to an “expert” which it can consult at each turn. Advice is solicited via a structured dialogue with the expert, and the model is optimized to selectively utilize (or ignore) it given the context and dialogue history. In this work the expert takes the form of an LLM.We evaluate this framework in a mental health support domain, where the structure of the expert conversation is outlined by pre-specified prompts which reflect a reasoning strategy taught to practitioners in the field. Blenderbot models utilizing “Ask an Expert” show quality improvements across all expert sizes, including those with fewer parameters than the dialogue model itself. Our best model provides a ~10% improvement over baselines, approaching human-level scores on “engingingness” and “helpfulness” metrics.

pdf bib
SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation
Tetsu Kasanishi | Masaru Isonuma | Junichiro Mori | Ichiro Sakata

Automatic literature review generation is one of the most challenging tasks in natural language processing. Although large language models have tackled literature review generation, the absence of large-scale datasets has been a stumbling block to the progress. We release SciReviewGen, consisting of over 10,000 literature reviews and 690,000 papers cited in the reviews. Based on the dataset, we evaluate recent transformer-based summarization models on the literature review generation task, including Fusion-in-Decoder extended for literature review generation. Human evaluation results show that some machine-generated summaries are comparable to human-written reviews, while revealing the challenges of automatic literature review generation such as hallucinations and a lack of detailed information. Our dataset and code are available at [](

pdf bib
Revisiting Sample Size Determination in Natural Language Understanding
Ernie Chang | Muhammad Hassan Rashid | Pin-Jie Lin | Changsheng Zhao | Vera Demberg | Yangyang Shi | Vikas Chandra

Knowing exactly how many data points need to be labeled to achieve a certain model performance is a hugely beneficial step towards reducing the overall budgets for annotation. It pertains to both active learning and traditional data annotation, and is particularly beneficial for low resource scenarios. Nevertheless, it remains a largely under-explored area of research in NLP. We therefore explored various techniques for estimating the training sample size necessary to achieve a targeted performance value. We derived a simple yet effective approach to predict the maximum achievable model performance based on small amount of training samples – which serves as an early indicator during data annotation for data quality and sample size determination. We performed ablation studies on four language understanding tasks, and showed that the proposed approach allows us to forecast model performance within a small margin of mean absolute error (~0.9%) with only 10% data.

pdf bib
TransESC: Smoothing Emotional Support Conversation via Turn-Level State Transition
Weixiang Zhao | Yanyan Zhao | Shilong Wang | Bing Qin

Emotion Support Conversation (ESC) is an emerging and challenging task with the goal of reducing the emotional distress of people. Previous attempts fail to maintain smooth transitions between utterances in ESC because they ignoring to grasp the fine-grained transition information at each dialogue turn. To solve this problem, we propose to take into account turn-level state Transitions of ESC (TransESC) from three perspectives, including semantics transition, strategy transition and emotion transition, to drive the conversation in a smooth and natural way. Specifically, we construct the state transition graph with a two-step way, named transit-then-interact, to grasp such three types of turn-level transition information. Finally, they are injected into the transition aware decoder to generate more engaging responses. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of TransESC to generate more smooth and effective supportive responses. Our source code will be publicly available.

pdf bib
Residual Prompt Tuning: improving prompt tuning with residual reparameterization
Anastasiia Razdaibiedina | Yuning Mao | Madian Khabsa | Mike Lewis | Rui Hou | Jimmy Ba | Amjad Almahairi

Prompt tuning is one of the successful approaches for parameter-efficient tuning of pre-trained language models. Despite being arguably the most parameter-efficient (tuned soft prompts constitute <0.1% of total parameters), it typically performs worse than other efficient tuning methods and is quite sensitive to hyper-parameters. In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning. We propose to reparameterize soft prompt embeddings using a shallow network with a residual connection. Our experiments show that Residual Prompt Tuning significantly outperforms prompt tuning across T5-Large, T5-Base and BERT-Base models. Notably, our method reaches +7 points improvement over prompt tuning on SuperGLUE benchmark with T5-Base model and allows to reduce the prompt length by 10 times without hurting performance. In addition, we show that our approach is robust to the choice of learning rate and prompt initialization, and is effective in few-shot settings.

pdf bib
Attend, Select and Eliminate: Accelerating Multi-turn Response Selection with Dual-attention-based Content Elimination
Jianxin Liang | Chang Liu | Chongyang Tao | Jiazhan Feng | Dongyan Zhao

Although the incorporation of pre-trained language models (PLMs) significantly pushes the research frontier of multi-turn response selection, it brings a new issue of heavy computation costs. To alleviate this problem and make the PLM-based response selection model both effective and efficient, we propose an inference framework together with a post-training strategy that builds upon any pre-trained transformer-based response selection models to accelerate inference by progressively selecting and eliminating unimportant content under the guidance of context-response dual-attention. Specifically, at each transformer layer, we first identify the importance of each word based on context-to-response and response-to-context attention, then select a number of unimportant words to be eliminated following a retention configuration derived from evolutionary search while passing the rest of the representations into deeper layers. To mitigate the training-inference gap posed by content elimination, we introduce a post-training strategy where we use knowledge distillation to force the model with progressively eliminated content to mimic the predictions of the original model with no content elimination. Experiments on three benchmarks indicate that our method can effectively speeds-up SOTA models without much performance degradation and shows a better trade-off between speed and performance than previous methods.

pdf bib
Medical Dialogue Generation via Dual Flow Modeling
Kaishuai Xu | Wenjun Hou | Yi Cheng | Jian Wang | Wenjie Li

Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor’s dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMed) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.

pdf bib
Listen, Decipher and Sign: Toward Unsupervised Speech-to-Sign Language Recognition
Liming Wang | Junrui Ni | Heting Gao | Jialu Li | Kai Chieh Chang | Xulin Fan | Junkai Wu | Mark Hasegawa-Johnson | Chang Yoo

Existing supervised sign language recognition systems rely on an abundance of well-annotated data. Instead, an unsupervised speech-to-sign language recognition (SSR-U) system learns to translate between spoken and sign languages by observing only non-parallel speech and sign-language corpora. We propose speech2sign-U, a neural network-based approach capable of both character-level and word-level SSR-U. Our approach significantly outperforms baselines directly adapted from unsupervised speech recognition (ASR-U) models by as much as 50% recall@10 on several challenging American sign language corpora with various levels of sample sizes, vocabulary sizes, and audio and visual variability. The code is available at

pdf bib
Distinguishing Address vs. Reference Mentions of Personal Names in Text
Vinodkumar Prabhakaran | Aida Mostafazadeh Davani | Melissa Ferguson | Stav Atir

Detecting named entities in text has long been a core NLP task. However, not much work has gone into distinguishing whether an entity mention is addressing the entity vs. referring to the entity; e.g., John, would you turn the light off? vs. John turned the light off. While this distinction is marked by a vocative case marker in some languages, many modern Indo-European languages such as English do not use such explicit vocative markers, and the distinction is left to be interpreted in context. In this paper, we present a new annotated dataset that captures the address vs. reference distinction in English, an automatic tagger that performs at 85% accuracy in making this distinction, and demonstrate how this distinction is important in NLP and computational social science applications in English language.

pdf bib
“Low-Resource” Text Classification: A Parameter-Free Classification Method with Compressors
Zhiying Jiang | Matthew Yang | Mikhail Tsirlin | Raphael Tang | Yiqin Dai | Jimmy Lin

Deep neural networks (DNNs) are often used for text classification due to their high accuracy. However, DNNs can be computationally intensive, requiring millions of parameters and large amounts of labeled data, which can make them expensive to use, to optimize, and to transfer to out-of-distribution (OOD) cases in practice. In this paper, we propose a non-parametric alternative to DNNs that’s easy, lightweight, and universal in text classification: a combination of a simple compressor like gzip with a k-nearest-neighbor classifier. Without any training parameters, our method achieves results that are competitive with non-pretrained deep learning methods on six in-distribution datasets.It even outperforms BERT on all five OOD datasets, including four low-resource languages. Our method also excels in the few-shot setting, where labeled data are too scarce to train DNNs effectively.

pdf bib
LR-Sum: Summarization for Less-Resourced Languages
Chester Palen-Michel | Constantine Lignos

We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.

pdf bib
RQUGE: Reference-Free Metric for Evaluating Question Generation by Answering the Question
Alireza Mohammadshahi | Thomas Scialom | Majid Yazdani | Pouya Yanki | Angela Fan | James Henderson | Marzieh Saeidi

Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and reranked by RQUGE.

pdf bib
Unsupervised Semantic Variation Prediction using the Distribution of Sibling Embeddings
Taichi Aida | Danushka Bollegala

Languages are dynamic entities, where the meanings associated with words constantly change with time. Detecting the semantic variation of words is an important task for various NLP applications that must make time-sensitive predictions. Existing work on semantic variation prediction have predominantly focused on comparing some form of an averaged contextualised representation of a target word computed from a given corpus. However, some of the previously associated meanings of a target word can become obsolete over time (e.g. meaning of gay as happy), while novel usages of existing words are observed (e.g. meaning of cell as a mobile phone).We argue that mean representations alone cannot accurately capture such semantic variations and propose a method that uses the entire cohort of the contextualised embeddings of the target word, which we refer to as the sibling distribution. Experimental results on SemEval-2020 Task 1 benchmark dataset for semantic variation prediction show that our method outperforms prior work that consider only the mean embeddings, and is comparable to the current state-of-the-art. Moreover, a qualitative analysis shows that our method detects important semantic changes in words that are not captured by the existing methods.

pdf bib
TranSFormer: Slow-Fast Transformer for Machine Translation
Bei Li | Yi Jing | Xu Tan | Zhen Xing | Tong Xiao | Jingbo Zhu

Learning multiscale Transformer models has been evidenced as a viable approach to augmenting machine translation systems. Prior research has primarily focused on treating subwords as basic units in developing such systems. However, the incorporation of fine-grained character-level features into multiscale Transformer has not yet been explored. In this work, we present a Slow-Fast two-stream learning model, referred to as TranSFormer, which utilizes a “slow” branch to deal with subword sequences and a “fast” branch to deal with longer character sequences. This model is efficient since the fast branch is very lightweight by reducing the model width, and yet provides useful fine-grained features for the slow branch. Our TranSFormer shows consistent BLEU improvements (larger than 1 BLEU point) on several machine translation benchmarks.

pdf bib
Mitigating the Learning Bias towards Repetition by Self-Contrastive Training for Open-Ended Generation
Jian Guan | Minlie Huang

Despite the huge progress in myriad generation tasks, pretrained language models (LMs) such as GPT2 still tend to generate repetitive texts with maximization-based decoding algorithms for open-ended generation. We attribute their overestimation of token-level repetition probabilities to the learning bias: LMs capture simple repetitive patterns faster with the MLE loss. We propose self-contrastive training to penalize the output of a premature checkpoint of the same model when it incorrectly predicts repetition, which is shown to mitigate repetition effectively while maintaining fluency on two datasets. Furthermore, we find that LMs use longer-range dependencies to predict repetitive tokens than non-repetitive ones, which may be the cause of sentence-level repetition loops.

pdf bib
Digging out Discrimination Information from Generated Samples for Robust Visual Question Answering
Zhiquan Wen | Yaowei Wang | Mingkui Tan | Qingyao Wu | Qi Wu

Visual Question Answering (VQA) aims to answer a textual question based on a given image. Nevertheless, recent studies have shown that VQA models tend to capture the biases to answer the question, instead of using the reasoning ability, resulting in poor generalisation ability. To alleviate the issue, some existing methods consider the natural distribution of the data, and construct samples to balance the dataset, achieving remarkable performance. However, these methods may encounter some limitations: 1) rely on additional annotations, 2) the generated samples may be inaccurate, e.g., assigned wrong answers, and 3) ignore the power of positive samples. In this paper, we propose a method to Dig out Discrimination information from Generated samples (DDG) to address the above limitations. Specifically, we first construct positive and negative samples in vision and language modalities, without using additional annotations. Then, we introduce a knowledge distillation mechanism to promote the learning of the original samples by the positive samples. Moreover, we impel the VQA models to focus on vision and language modalities using the negative samples. Experimental results on the VQA-CP v2 and VQA v2 datasets show the effectiveness of our DDG.

pdf bib
Words as Gatekeepers: Measuring Discipline-specific Terms and Meanings in Scholarly Publications
Li Lucy | Jesse Dodge | David Bamman | Katherine Keith

Scholarly text is often laden with jargon, or specialized language that can facilitate efficient in-group communication within fields but hinder understanding for out-groups. In this work, we develop and validate an interpretable approach for measuring scholarly jargon from text. Expanding the scope of prior work which focuses on word types, we use word sense induction to also identify words that are widespread but overloaded with different meanings across fields. We then estimate the prevalence of these discipline-specific words and senses across hundreds of subfields, and show that word senses provide a complementary, yet unique view of jargon alongside word types. We demonstrate the utility of our metrics for science of science and computational sociolinguistics by highlighting two key social implications. First, though most fields reduce their use of jargon when writing for general-purpose venues, and some fields (e.g., biological sciences) do so less than others. Second, the direction of correlation between jargon and citation rates varies among fields, but jargon is nearly always negatively correlated with interdisciplinary impact. Broadly, our findings suggest that though multidisciplinary venues intend to cater to more general audiences, some fields’ writing norms may act as barriers rather than bridges, and thus impede the dispersion of scholarly ideas.

pdf bib
Trade-Offs Between Fairness and Privacy in Language Modeling
Cleo Matzken | Steffen Eger | Ivan Habernal

Protecting privacy in contemporary NLP models is gaining in importance. So does the need to mitigate social biases of such models. But can we have both at the same time? Existing research suggests that privacy preservation comes at the price of worsening biases in classification tasks. In this paper, we explore the extent to which this tradeoff really holds when we incorporate both privacy preservation and de-biasing techniques into training text generation models. How does improving the model along one dimension affect the other dimension as well as the utility of the model? We conduct an extensive set of experiments that include bias detection, privacy attacks, language modeling, and performance on downstream tasks.

pdf bib
CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset
Hanchong Zhang | Jieyu Li | Lu Chen | Ruisheng Cao | Yunyan Zhang | Yu Huang | Yefeng Zheng | Kai Yu

The cross-domain text-to-SQL task aims to build a system that can parse user questions into SQL on complete unseen databases, and the single-domain text-to-SQL task evaluates the performance on identical databases. Both of these setups confront unavoidable difficulties in real-world applications. To this end, we introduce the cross-schema text-to-SQL task, where the databases of evaluation data are different from that in the training data but come from the same domain. Furthermore, we present CSS, a large-scale CrosS-Schema Chinese text-to-SQL dataset, to carry on corresponding studies. CSS originally consisted of 4,340 question/SQL pairs across 2 databases. In order to generalize models to different medical systems, we extend CSS and create 19 new databases along with 29,280 corresponding dataset examples. Moreover, CSS is also a large corpus for single-domain Chinese text-to-SQL studies. We present the data collection approach and a series of analyses of the data statistics. To show the potential and usefulness of CSS, benchmarking baselines have been conducted and reported. Our dataset is publicly available at

pdf bib
Silver Syntax Pre-training for Cross-Domain Relation Extraction
Elisa Bassignana | Filip Ginter | Sampo Pyysalo | Rob van der Goot | Barbara Plank

Relation Extraction (RE) remains a challenging task, especially when considering realistic out-of-domain evaluations. One of the main reasons for this is the limited training size of current RE datasets: obtaining high-quality (manually annotated) data is extremely expensive and cannot realistically be repeated for each new domain. An intermediate training step on data from related tasks has shown to be beneficial across many NLP tasks. However, this setup still requires supplementary annotated data, which is often not available. In this paper, we investigate intermediate p