Findings of the Association for Computational Linguistics: EMNLP 2023

Houda Bouamor, Juan Pino, Kalika Bali (Editors)


Anthology ID:
2023.findings-emnlp
Month:
December
Year:
2023
Address:
Singapore
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2023.findings-emnlp
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Findings of the Association for Computational Linguistics: EMNLP 2023
Houda Bouamor | Juan Pino | Kalika Bali

pdf bib
Multi Document Summarization Evaluation in the Presence of Damaging Content
Avshalom Manevich | David Carmel | Nachshon Cohen | Elad Kravi | Ori Shapira

In the Multi-document summarization (MDS) task, a summary is produced for a given set of documents. A recent line of research introduced the concept of damaging documents, denoting documents that should not be exposed to readers due to various reasons. In the presence of damaging documents, a summarizer is ideally expected to exclude damaging content in its output. Existing metrics evaluate a summary based on aspects such as relevance and consistency with the source documents. We propose to additionally measure the ability of MDS systems to properly handle damaging documents in their input set. To that end, we offer two novel metrics based on lexical similarity and language model likelihood. A set of experiments demonstrates the effectiveness of our metrics in measuring the ability of MDS systems to summarize a set of documents while eliminating damaging content from their summaries.

pdf bib
Guiding AMR Parsing with Reverse Graph Linearization
Bofei Gao | Liang Chen | Peiyi Wang | Zhifang Sui | Baobao Chang

Abstract Meaning Representation (AMR) parsing aims to extract an abstract semantic graph from a given sentence. The sequence-to-sequence approaches, which linearize the semantic graph into a sequence of nodes and edges and generate the linearized graph directly, have achieved good performance. However, we observed that these approaches suffer from structure loss accumulation during the decoding process, leading to a much lower F1-score for nodes and edges decoded later compared to those decoded earlier. To address this issue, we propose a novel Reverse Graph Linearization (RGL) enhanced framework. RGL defines both default and reverse linearization orders of an AMR graph, where most structures at the back part of the default order appear at the front part of the reversed order and vice versa. RGL incorporates the reversed linearization to the original AMR parser through a two-pass self-distillation mechanism, which guides the model when generating the default linearizations. Our analysis shows that our proposed method significantly mitigates the problem of structure loss accumulation, outperforming the previously best AMR parsing model by 0.8 and 0.5 Smatch scores on the AMR 2.0 and AMR 3.0 dataset, respectively. The code are available at https://github.com/pkunlp-icler/AMR_reverse_graph_linearization.

pdf bib
Translate the Beauty in Songs: Jointly Learning to Align Melody and Translate Lyrics
Chengxi Li | Kai Fan | Jiajun Bu | Boxing Chen | Zhongqiang Huang | Zhi Yu

Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by jointly modeling lyric translation and lyrics-melody alignment. It is a novel encoder-decoder framework that can simultaneously translate the source lyrics and determine the number of aligned notes at each decoding step through an adaptive note grouping module. To address data scarcity, we commissioned a small amount of training data annotated specifically for this task and used large amounts of automatic training data through back-translation. Experiments conducted on an English-Chinese song translation data set show the effectiveness of our model in both automatic and human evaluations.

pdf bib
Aksharantar: Open Indic-language Transliteration datasets and models for the Next Billion Users
Yash Madhani | Sushane Parthan | Priyanka Bedekar | Gokul Nc | Ruchi Khapra | Anoop Kunchukuttan | Pratyush Kumar | Mitesh Khapra

Transliteration is very important in the Indian language context due to the usage of multiple scripts and the widespread use of romanized inputs. However, few training and evaluation sets are publicly available. We introduce Aksharantar, the largest publicly available transliteration dataset for Indian languages created by mining from monolingual and parallel corpora, as well as collecting data from human annotators. The dataset contains 26 million transliteration pairs for 21 Indic languages from 3 language families using 12 scripts. Aksharantar is 21 times larger than existing datasets and is the first publicly available dataset for 7 languages and 1 language family. We also introduce a test set of 103k word pairs for 19 languages that enables a fine-grained analysis of transliteration models on native origin words, foreign words, frequent words, and rare words. Using the training set, we trained IndicXlit, a multilingual transliteration model that improves accuracy by 15% on the Dakshina test set, and establishes strong baselines on the Aksharantar testset introduced in this work. The models, mining scripts, transliteration guidelines, and datasets are available at https://github.com/AI4Bharat/IndicXlit under open-source licenses.

pdf bib
Pretraining Without Attention
Junxiong Wang | Jing Yan | Albert Gu | Alexander Rush

Transformers have been essential to pretraining success in NLP. While other architectures have been used, downstream accuracy is either significantly worse, or requires attention layers to match standard benchmarks such as GLUE. This work explores pretraining without attention by using recent advances in sequence routing based on state-space models (SSMs). Our proposed model, Bidirectional Gated SSM (BiGS), combines SSM layers with a multiplicative gating architecture that has been effective in simplified sequence modeling architectures. The model learns static layers that do not consider pair-wise interactions. Even so, BiGS is able to match BERT pretraining accuracy on GLUE and can be extended to long-form pretraining of 4096 tokens without approximation. Analysis shows that while the models have similar average accuracy, the approach has different inductive biases than BERT and scales more efficiently to longer sequences.

pdf bib
Time-Aware Representation Learning for Time-Sensitive Question Answering
Jungbin Son | Alice Oh

Time is one of the crucial factors in real-world question answering (QA) problems. However, language models have difficulty understanding the relationships between time specifiers, such as ‘after’ and ‘before’, and numbers, since existing QA datasets do not include sufficient time expressions. To address this issue, we propose a Time-Context aware Question Answering (TCQA) framework. We suggest a Time-Context dependent Span Extraction (TCSE) task, and build a time-context dependent data generation framework for model training. Moreover, we present a metric to evaluate the time awareness of the QA model using TCSE. The TCSE task consists of a question and four sentence candidates classified as correct or incorrect based on time and context. The model is trained to extract the answer span from the sentence that is both correct in time and context. The model trained with TCQA outperforms baseline models up to 8.5 of the F1-score in the TimeQA dataset. Our dataset and code are available at https://github.com/sonjbin/TCQA

pdf bib
EffEval: A Comprehensive Evaluation of Efficiency for MT Evaluation Metrics
Daniil Larionov | Jens Grünwald | Christoph Leiter | Steffen Eger

Efficiency is a key property to foster inclusiveness and reduce environmental costs, especially in an era of LLMs. In this work, we provide a comprehensive evaluation of efficiency for MT evaluation metrics. Our approach involves replacing computation-intensive transformers with lighter alternatives and employing linear and quadratic approximations for alignment algorithms on top of LLM representations. We evaluate six (reference-free and reference-based) metrics across three MT datasets and examine 16 lightweight transformers. In addition, we look into the training efficiency of metrics like COMET by utilizing adapters. Our results indicate that (a) TinyBERT provides the optimal balance between quality and efficiency, (b) CPU speed-ups are more substantial than those on GPU; (c) WMD approximations yield no efficiency gains while reducing quality and (d) adapters enhance training efficiency (regarding backward pass speed and memory requirements) as well as, in some cases, metric quality. These findings can help to strike a balance between evaluation speed and quality, which is essential for effective NLG systems. Furthermore, our research contributes to the ongoing efforts to optimize NLG evaluation metrics with minimal impact on performance. To our knowledge, ours is the most comprehensive analysis of different aspects of efficiency for MT metrics conducted so far.

pdf bib
Unsupervised Opinion Summarization Using Approximate Geodesics
Somnath Basu Roy Chowdhury | Nicholas Monath | Kumar Dubey | Amr Ahmed | Snigdha Chaturvedi

Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm consists of an encoder-decoder based representation learning model that generates topical representations of texts. These representations capture the underlying semantics of the text as a distribution over learnable latent units. GeoSumm generates these topical representations by performing dictionary learning over pre-trained text representations at multiple layers of the decoder. We then use these topical representations to quantify the importance of review sentences using a novel approximate geodesic distance-based scoring mechanism. We use the importance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves strong performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of GeoSumm across different domains.

pdf bib
Investigating the Frequency Distortion of Word Embeddings and Its Impact on Bias Metrics
Francisco Valentini | Juan Sosa | Diego Slezak | Edgar Altszyler

Recent research has shown that static word embeddings can encode words’ frequencies. However, little has been studied about this behavior. In the present work, we study how frequency and semantic similarity relate to one another in static word embeddings, and we assess the impact of this relationship on embedding-based bias metrics. We find that Skip-gram, GloVe and FastText embeddings tend to produce higher similarity between high-frequency words than between other frequency combinations. We show that the association between frequency and similarity also appears when words are randomly shuffled, and holds for different hyperparameter settings. This proves that the patterns we find are neither due to real semantic associations nor to specific parameters choices, and are an artifact produced by the word embeddings. To illustrate how frequencies can affect the measurement of biases related to gender, ethnicity, and affluence, we carry out a controlled experiment that shows that biases can even change sign or reverse their order when word frequencies change.

pdf bib
Improving Classifier Robustness through Active Generative Counterfactual Data Augmentation
Ananth Balashankar | Xuezhi Wang | Yao Qin | Ben Packer | Nithum Thain | Ed Chi | Jilin Chen | Alex Beutel

Counterfactual Data Augmentation (CDA) is a commonly used technique for improving robustness in natural language classifiers. However, one fundamental challenge is how to discover meaningful counterfactuals and efficiently label them, with minimal human labeling cost. Most existing methods either completely rely on human-annotated labels, an expensive process which limits the scale of counterfactual data, or implicitly assume label invariance, which may mislead the model with incorrect labels. In this paper, we present a novel framework that utilizes counterfactual generative models to generate a large number of diverse counterfactuals by actively sampling from regions of uncertainty, and then automatically label them with a learned auxiliary classifier. Our key insight is that we can more correctly label the generated counterfactuals by training a pairwise classifier that interpolates the relationship between the original example and the counterfactual. We demonstrate that with a small amount of human-annotated counterfactual data (10%), we can generate a counterfactual augmentation dataset with learned labels, that provides an 18-20% improvement in robustness and a 14-21% reduction in errors on 6 out-of-domain datasets, comparable to that of a fully human-annotated counterfactual dataset for both sentiment classification and question paraphrase tasks.

pdf bib
Data Augmentation Techniques for Machine Translation of Code-Switched Texts: A Comparative Study
Injy Hamed | Nizar Habash | Thang Vu

Code-switching (CSW) text generation has been receiving increasing attention as a solution to address data scarcity. In light of this growing interest, we need more comprehensive studies comparing different augmentation approaches. In this work, we compare three popular approaches: lexical replacements, linguistic theories, and back-translation (BT), in the context of Egyptian Arabic-English CSW. We assess the effectiveness of the approaches on machine translation and the quality of augmentations through human evaluation. We show that BT and CSW predictive-based lexical replacement, being trained on CSW parallel data, perform best on both tasks. Linguistic theories and random lexical replacement prove to be effective in the lack of CSW parallel data, where both approaches achieve similar results.

pdf bib
On the Relation between Sensitivity and Accuracy in In-Context Learning
Yanda Chen | Chen Zhao | Zhou Yu | Kathleen McKeown | He He

In-context learning (ICL) suffers from oversensitivity to the prompt, making it unreliable in real-world scenarios. We study the sensitivity of ICL with respect to multiple perturbation types. First, we find that label bias obscures the true sensitivity, and therefore prior work may have significantly underestimated ICL sensitivity. Second, we observe a strong negative correlation between ICL sensitivity and accuracy: predictions sensitive to perturbations are less likely to be correct. Motivated by these findings, we propose SenSel, a few-shot selective prediction method that abstains from sensitive predictions. Experiments on ten classification datasets show that SenSel consistently outperforms two commonly used confidence-based and entropy-based baselines on abstention decisions.

pdf bib
Self-distilled Transitive Instance Weighting for Denoised Distantly Supervised Relation Extraction
Xiangyu Lin | Weijia Jia | Zhiguo Gong

The widespread existence of wrongly labeled instances is a challenge to distantly supervised relation extraction. Most of the previous works are trained in a bag-level setting to alleviate such noise. However, sentence-level training better utilizes the information than bag-level training, as long as combined with effective noise alleviation. In this work, we propose a novel Transitive Instance Weighting mechanism integrated with the self-distilled BERT backbone, utilizing information in the intermediate outputs to generate dynamic instance weights for denoised sentence-level training. By down-weighting wrongly labeled instances and discounting the weights of easy-to-fit ones, our method can effectively tackle wrongly labeled instances and prevent overfitting. Experiments on both held-out and manual datasets indicate that our method achieves state-of-the-art performance and consistent improvements over the baselines.

pdf bib
MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation
Joshua Tanner | Jacob Hoffman

Recent approaches to word sense disambiguation (WSD) utilize encodings of the sense gloss (definition), in addition to the input context, to improve performance. In this work we demonstrate that this approach can be adapted for use in multiword expression (MWE) identification by training models which use gloss and context information to filter MWE candidates produced by a rule-based extraction pipeline. Our approach substantially improves precision, outperforming the state-of-the-art in MWE identification on the DiMSUM dataset by up to 1.9 F1 points and achieving competitive results on the PARSEME 1.1 English dataset. Our models also retain most of their WSD performance, showing that a single model can be used for both tasks. Finally, building on similar approaches using Bi-encoders for WSD, we introduce a novel Poly-encoder architecture which improves MWE identification performance.

pdf bib
Dual Contrastive Learning Framework for Incremental Text Classification
Yigong Wang | Zhuoyi Wang | Yu Lin | Jinghui Guo | Sadaf Halim | Latifur Khan

Incremental learning plays a pivotal role in the context of online knowledge discovery, as it encourages large models (LM) to learn and refresh knowledge continuously. Many approaches have been proposed to simultaneously preserve knowledge from previous tasks while learning new concepts in online NLP applications. In this paper, we primarily focus on learning a more generalized embedding space that could be better transferred to various downstream sequence tasks. The key idea is to learn from both task-agnostic and task-specific embedding aspects so that the inherent challenge of catastrophic forgetting that arises in incremental learning scenarios can be addressed with a more generalized solution. We propose a dual contrastive learning (DCL) based framework to foster the transferability of representations across different tasks, it consists of two key components: firstly, we utilize global contrastive learning that intertwines a task-agnostic strategy for promoting a generalized embedding space; secondly, considering the domain shift from unseen distributions can compromise the quality of learned embeddings. We further incorporate a task-specific attention mechanism to enhance the adaptability of task-specific weight for various emerging tasks and ultimately reduce errors in generic representations. Experiments over various text datasets demonstrate that our work achieves superior performance and outperforms the current state-of-the-art methods.

pdf bib
Reference Free Domain Adaptation for Translation of Noisy Questions with Question Specific Rewards
Baban Gain | Ramakrishna Appicharla | Soumya Chennabasavaraj | Nikesh Garera | Asif Ekbal | Muthusamy Chelliah

Community Question-Answering (CQA) portals serve as a valuable tool for helping users within an organization. However, making them accessible to non-English-speaking users continues to be a challenge. Translating questions can broaden the community’s reach, benefiting individuals with similar inquiries in various languages. Translating questions using Neural Machine Translation (NMT) poses more challenges, especially in noisy environments, where the grammatical correctness of the questions is not monitored. These questions may be phrased as statements by non-native speakers, with incorrect subject-verb order and sometimes even missing question marks. Creating a synthetic parallel corpus from such data is also difficult due to its noisy nature. To address this issue, we propose a training methodology that fine-tunes the NMT system only using source-side data. Our approach balances adequacy and fluency by utilizing a loss function that combines BERTScore and Masked Language Model (MLM) Score. Our method surpasses the conventional Maximum Likelihood Estimation (MLE) based fine-tuning approach, which relies on synthetic target data, by achieving a 1.9 BLEU score improvement. Our model exhibits robustness while we add noise to our baseline, and still achieve 1.1 BLEU improvement and large improvements on TER and BLEURT metrics. Our proposed methodology is model-agnostic and is only necessary during the training phase. We make the codes and datasets publicly available at https://www.iitp.ac.in/~ai-nlp-ml/resources.html#DomainAdapt for facilitating further research.

pdf bib
Filtered Semi-Markov CRF
Urchade Zaratiana | Nadi Tomeh | Niama El Khbir | Pierre Holat | Thierry Charnois

Semi-Markov CRF has been proposed as an alternative to the traditional Linear Chain CRF for text segmentation tasks such as Named Entity Recognition (NER). Unlike CRF, which treats text segmentation as token-level prediction, Semi-CRF considers segments as the basic unit, making it more expressive. However, Semi-CRF suffers from two major drawbacks: (1) quadratic complexity over sequence length, as it operates on every span of the input sequence, and (2) inferior performance compared to CRF for sequence labeling tasks like NER. In this paper, we introduce Filtered Semi-Markov CRF, a variant of Semi-CRF that addresses these issues by incorporating a filtering step to eliminate irrelevant segments, reducing complexity and search space. Our approach is evaluated on several NER benchmarks, where it outperforms both CRF and Semi-CRF while being significantly faster. The implementation of our method is available on Github.

pdf bib
Data Pruning for Efficient Model Pruning in Neural Machine Translation
Abdul Azeemi | Ihsan Qazi | Agha Raza

Model pruning methods reduce memory requirements and inference time of large-scale pre-trained language models after deployment. However, the actual pruning procedure is computationally intensive, involving repeated training and pruning until the required sparsity is achieved. This paper combines data pruning with movement pruning for Neural Machine Translation (NMT) to enable efficient fine-pruning. We design a dataset pruning strategy by leveraging cross-entropy scores of individual training instances. We conduct pruning experiments on the task of machine translation from Romanian-to-English and Turkish-to-English, and demonstrate that selecting hard-to-learn examples (top-k) based on training cross-entropy scores outperforms other dataset pruning methods. We empirically demonstrate that data pruning reduces the overall steps required for convergence and the training time of movement pruning. Finally, we perform a series of experiments to tease apart the role of training data during movement pruning and uncover new insights to understand the interplay between data and model pruning in the context of NMT.

pdf bib
Long-Form Speech Translation through Segmentation with Finite-State Decoding Constraints on Large Language Models
Arya McCarthy | Hao Zhang | Shankar Kumar | Felix Stahlberg | Ke Wu

One challenge in speech translation is that plenty of spoken content is long-form, but short units are necessary for obtaining high-quality translations. To address this mismatch, we adapt large language models (LLMs) to split long ASR transcripts into segments that can be independently translated so as to maximize the overall translation quality. We overcome the tendency of hallucination in LLMs by incorporating finite-state constraints during decoding; these eliminate invalid outputs without requiring additional training. We discover that LLMs are adaptable to transcripts containing ASR errors through prompt-tuning or fine-tuning. Relative to a state-of-the-art automatic punctuation baseline, our best LLM improves the average BLEU by 2.9 points for English–German, English–Spanish, and English–Arabic TED talk translation in 9 test sets, just by improving segmentation.

pdf bib
Re-Temp: Relation-Aware Temporal Representation Learning for Temporal Knowledge Graph Completion
Kunze Wang | Caren Han | Josiah Poon

Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting aims to predict the missing entity from a fact in the future, posing a challenge that aligns more closely with real-world prediction problems. Existing research mostly encodes entities and relations using sequential graph neural networks applied to recent snapshots. However, these approaches tend to overlook the ability to skip irrelevant snapshots according to entity-related relations in the query and disregard the importance of explicit temporal information. To address this, we propose our model, Re-Temp (Relation-Aware Temporal Representation Learning), which leverages explicit temporal embedding as input and incorporates skip information flow after each timestamp to skip unnecessary information for prediction. Additionally, we introduce a two-phase forward propagation method to prevent information leakage. Through the evaluation on six TKGC (extrapolation) datasets, we demonstrate that our model outperforms all eight recent state-of-the-art models by a significant margin.

pdf bib
RethinkingTMSC: An Empirical Study for Target-Oriented Multimodal Sentiment Classification
Junjie Ye | Jie Zhou | Junfeng Tian | Rui Wang | Qi Zhang | Tao Gui | Xuanjing Huang

Recently, Target-oriented Multimodal Sentiment Classification (TMSC) has gained significant attention among scholars. However, current multimodal models have reached a performance bottleneck. To investigate the causes of this problem, we perform extensive empirical evaluation and in-depth analysis of the datasets to answer the following questions: **Q1**: Are the modalities equally important for TMSC? **Q2**: Which multimodal fusion modules are more effective? **Q3**: Do existing datasets adequately support the research? Our experiments and analyses reveal that the current TMSC systems primarily rely on the textual modality, as most of targets’ sentiments can be determined *solely* by text. Consequently, we point out several directions to work on for the TMSC task in terms of model design and dataset construction. The code and data can be found in https://github.com/Junjie-Ye/RethinkingTMSC.

pdf bib
Lexical Entrainment for Conversational Systems
Zhengxiang Shi | Procheta Sen | Aldo Lipani

Conversational agents have become ubiquitous in assisting with daily tasks, and are expected to possess human-like features. One such feature is lexical entrainment (LE), a phenomenon in which speakers in human-human conversations tend to naturally and subconsciously align their lexical choices with those of their interlocutors, leading to more successful and engaging conversations. As an example, if a digital assistant replies “Your appointment for Jinling Noodle Pub is at 7 pm” to the question “When is my reservation for Jinling Noodle Bar today?”, it may feel as though the assistant is trying to correct the speaker, whereas a response of “Your reservation for Jinling Noodle Baris at 7 pm” would likely be perceived as more positive. This highlights the importance of LE in establishing a shared terminology for maximum clarity and reducing ambiguity in conversations. However, we demonstrate in this work that current response generation models do not adequately address this crucial human-like phenomenon. To address this, we propose a new dataset, named MultiWOZ-ENTR, and a measure for LE for conversational systems. Additionally, we suggest a way to explicitly integrate LE into conversational systems with two new tasks, a LE extraction task and a LE generation task. We also present two baseline approaches for the LE extraction task, which aim to detect LE expressions from dialogue contexts

pdf bib
AutoReply: Detecting Nonsense in Dialogue with Discriminative Replies
Weiyan Shi | Emily Dinan | Adi Renduchintala | Daniel Fried | Athul Jacob | Zhou Yu | Mike Lewis

We show that dialogue models can detect errors in their own messages, by calculating the likelihood of replies that are indicative of poor messages. For example, if an agent believes its partner is likely to respond “I don’t understand” to a candidate message, that message may not make sense, so an alternative message should be chosen. We evaluate our approach on a dataset from the game Diplomacy, which contains long dialogues richly grounded in the game state, on which existing models make many errors. We first show that hand-crafted replies can be effective for the task of detecting nonsense in applications as complex as Diplomacy. We then design AutoReply, an algorithm to search for such discriminative replies automatically, given a small number of annotated dialogue examples. We find that AutoReply-generated replies outperform handcrafted replies and perform on par with supervised learning approaches.

pdf bib
Follow-on Question Suggestion via Voice Hints for Voice Assistants
Besnik Fetahu | Pedro Faustini | Anjie Fang | Giuseppe Castellucci | Oleg Rokhlenko | Shervin Malmasi

The adoption of voice assistants like Alexa or Siri has grown rapidly, allowing users to instantly access information via voice search. Query suggestion is a standard feature of screen-based search experiences, allowing users to explore additional topics. However, this is not trivial to implement in voice-based settings. To enable this, we tackle the novel task of suggesting questions with compact and natural voice hints to allow users to ask follow-up questions. We define the task, ground it in syntactic theory and outline linguistic desiderata for spoken hints. We propose baselines and an approach using sequence-to-sequence Transformers to generate spoken hints from a list of questions. Using a new dataset of 6681 input questions and human written hints, we evaluated the models with automatic metrics and human evaluation. Results show that a naive approach of concatenating suggested questions creates poor voice hints. Our approach, which applies a linguistically-motivated pretraining task was strongly preferred by humans for producing the most natural hints.

pdf bib
Bidirectional Masked Self-attention and N-gram Span Attention for Constituency Parsing
Soohyeong Kim | Whanhee Cho | Minji Kim | Yong Choi

Attention mechanisms have become a crucial aspect of deep learning, particularly in natural language processing (NLP) tasks. However, in tasks such as constituency parsing, attention mechanisms can lack the directional information needed to form sentence spans. To address this issue, we propose a Bidirectional masked and N-gram span Attention (BNA) model, which is designed by modifying the attention mechanisms to capture the explicit dependencies between each word and enhance the representation of the output span vectors. The proposed model achieves state-of-the-art performance on the Penn Treebank and Chinese Penn Treebank datasets, with F1 scores of 96.47 and 94.15, respectively. Ablation studies and analysis show that our proposed BNA model effectively captures sentence structure by contextualizing each word in a sentence through bidirectional dependencies and enhancing span representation.

pdf bib
CR-COPEC: Causal Rationale of Corporate Performance Changes to learn from Financial Reports
Ye Chun | Sunjae Kwon | Kyunghwan Sohn | Nakwon Sung | Junyoup Lee | Byoung Seo | Kevin Compher | Seung-won Hwang | Jaesik Choi

In this paper, we introduce CR-COPEC called Causal Rationale of Corporate Performance Changes from financial reports. This is a comprehensive large-scale domain-adaptation causal sentence dataset to detect financial performance changes of corporate. CR-COPEC contributes to two major achievements. First, it detects causal rationale from 10-K annual reports of the U.S. companies, which contain experts’ causal analysis following accounting standards in a formal manner. This dataset can be widely used by both individual investors and analysts as material information resources for investing and decision-making without tremendous effort to read through all the documents. Second, it carefully considers different characteristics which affect the financial performance of companies in twelve industries. As a result, CR-COPEC can distinguish causal sentences in various industries by taking unique narratives in each industry into consideration. We also provide an extensive analysis of how well CR-COPEC dataset is constructed and suited for classifying target sentences as causal ones with respect to industry characteristics.

pdf bib
Plausibility Processing in Transformer Language Models: Focusing on the Role of Attention Heads in GPT
Soo Ryu

The goal of this paper is to explore how Transformer language models process semantic knowledge, especially regarding the plausibility of noun-verb relations. First, I demonstrate GPT2 exhibits a higher degree of similarity with humans in plausibility processing compared to other Transformer language models. Next, I delve into how knowledge of plausibility is contained within attention heads of GPT2 and how these heads causally contribute to GPT2’s plausibility processing ability. Through several experiments, it was found that: i) GPT2 has a number of attention heads that detect plausible noun-verb relationships; ii) these heads collectively contribute to the Transformer’s ability to process plausibility, albeit to varying degrees; and iii) attention heads’ individual performance in detecting plausibility does not necessarily correlate with how much they contribute to GPT2’s plausibility processing ability.

pdf bib
Automatic Unit Test Data Generation and Actor-Critic Reinforcement Learning for Code Synthesis
Philip Gorinski | Matthieu Zimmer | Gerasimos Lampouras | Derrick Goh Xin Deik | Ignacio Iacobacci

The advent of large pre-trained language models in the domain of Code Synthesis has shown remarkable performance on various benchmarks, treating the problem of Code Generation in a fashion similar to Natural Language Generation, trained with a Language Modelling (LM) objective. In addition, the property of programming language code being precisely evaluable with respect to its semantics – through the use of Unit Tests to check its functional correctness – lends itself to using Reinforcement Learning (RL) as a further training paradigm. Previous work has shown that RL can be applied as such to improve models’ coding capabilities; however, such RL-based methods rely on a reward signal based on defined Unit Tests, which are much harder to obtain compared to the huge crawled code datasets used in LM objectives. In this work, we present a novel approach to automatically obtain data consisting of function signatures and associated Unit Tests, suitable for RL training of Code Synthesis models. We also introduce a straightforward, simple yet effective Actor-Critic RL training scheme and show that it, in conjunction with automatically generated training data, leads to improvement of a pre-trained code language model’s performance by up to 9.9% improvement over the original underlying code synthesis LM, and up to 4.3% over RL-based models trained with standard PPO or CodeRL.

pdf bib
Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI
Alexander Leonhardt | Giuseppe Abrami | Daniel Baumartz | Alexander Mehler

Automatic analysis of large corpora is a complex task, especially in terms of time efficiency. This complexity is increased by the fact that flexible, extensible text analysis requires the continuous integration of ever new tools. Since there are no adequate frameworks for these purposes in the field of NLP, and especially in the context of UIMA, that are not outdated or unusable for security reasons, we present a new approach to address the latter task: Docker Unified UIMA Interface (DUUI), a scalable, flexible, lightweight, and feature-rich framework for automatic distributed analysis of text corpora that leverages Big Data experience and virtualization with Docker. We evaluate DUUI’s communication approach against a state-of-the-art approach and demonstrate its outstanding behavior in terms of time efficiency, enabling the analysis of big text data.

pdf bib
Towards Agile Text Classifiers for Everyone
Maximilian Mozes | Jessica Hoffmann | Katrin Tomanek | Muhamed Kouate | Nithum Thain | Ann Yuan | Tolga Bolukbasi | Lucas Dixon

Text-based safety classifiers are widely used for content moderation and increasingly to tune generative language model behavior - a topic of growing concern for the safety of digital assistants and chatbots. However, different policies require different classifiers, and safety policies themselves improve from iteration and adaptation. This paper introduces and evaluates methods for agile text classification, whereby classifiers are trained using small, targeted datasets that can be quickly developed for a particular policy. Experimenting with 7 datasets from three safety-related domains, comprising 15 annotation schemes, led to our key finding: prompt-tuning large language models, like PaLM 62B, with a labeled dataset of as few as 80 examples can achieve state-of-the-art performance. We argue that this enables a paradigm shift for text classification, especially for models supporting safer online discourse. Instead of collecting millions of examples to attempt to create universal safety classifiers over months or years, classifiers could be tuned using small datasets, created by individuals or small organizations, tailored for specific use cases, and iterated on and adapted in the time-span of a day.

pdf bib
Beyond Good Intentions: Reporting the Research Landscape of NLP for Social Good
Fernando Adauto | Zhijing Jin | Bernhard Schölkopf | Tom Hope | Mrinmaya Sachan | Rada Mihalcea

With the recent advances in natural language processing (NLP), a vast number of applications have emerged across various use cases. Among the plethora of NLP applications, many academic researchers are motivated to do work that has a positive social impact, in line with the recent initiatives of NLP for Social Good (NLP4SG). However, it is not always obvious to researchers how their research efforts are tackling today’s big social problems. Thus, in this paper, we introduce NLP4SGPapers, a scientific dataset with three associated tasks that can help identify NLP4SG papers and characterize the NLP4SG landscape by: (1) identifying the papers that address a social problem, (2) mapping them to the corresponding UN Sustainable Development Goals (SDGs), and (3) identifying the task they are solving and the methods they are using. Using state-of-the-art NLP models, we address each of these tasks and use them on the entire ACL Anthology, resulting in a visualization workspace that gives researchers a comprehensive overview of the field of NLP4SG. Our website is available at https://nlp4sg.vercel.app . We released our data at https://huggingface.co/datasets/feradauto/NLP4SGPapers and code at https://github.com/feradauto/nlp4sg

pdf bib
PAXQA: Generating Cross-lingual Question Answering Examples at Training Scale
Bryan Li | Chris Callison-Burch

Existing question answering (QA) systems owe much of their success to large, high-quality training data. Such annotation efforts are costly, and the difficulty compounds in the cross-lingual setting. Therefore, prior cross-lingual QA work has focused on releasing evaluation datasets, and then applying zero-shot methods as baselines. This work proposes a synthetic data generation method for cross-lingual QA which leverages indirect supervision from existing parallel corpora. Our method termed PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages. First, we apply a question generation (QG) model to the English side. Second, we apply annotation projection to translate both the questions and answers. To better translate questions, we propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts. We apply PAXQA to generate cross-lingual QA examples in 4 languages (662K examples total), and perform human evaluation on a subset to create validation and test splits. We then show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets. The largest performance gains are for directions with non-English questions and English contexts. Ablation studies show that our dataset generation method is relatively robust to noise from automatic word alignments, showing the sufficient quality of our generations. To facilitate follow-up work, we release our code and datasets at https://github.com/manestay/paxqa.

pdf bib
Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for Cross-Lingual Machine Reading Comprehension
Tingfeng Cao | Chengyu Wang | Chuanqi Tan | Jun Huang | Jinhui Zhu

In cross-lingual language understanding, machine translation is often utilized to enhance the transferability of models across languages, either by translating the training data from the source language to the target, or from the target to the source to aid inference. However, in cross-lingual machine reading comprehension (MRC), it is difficult to perform a deep level of assistance to enhance cross-lingual transfer because of the variation of answer span positions in different languages. In this paper, we propose X-STA, a new approach for cross-lingual MRC. Specifically, we leverage an attentive teacher to subtly transfer the answer spans of the source language to the answer output space of the target. A Gradient-Disentangled Knowledge Sharing technique is proposed as an improved cross-attention block. In addition, we force the model to learn semantic alignments from multiple granularities and calibrate the model outputs with teacher guidance to enhance cross-lingual transferability. Experiments on three multi-lingual MRC datasets show the effectiveness of our method, outperforming state-of-the-art approaches.

pdf bib
BERT Goes Off-Topic: Investigating the Domain Transfer Challenge using Genre Classification
Dmitri Roussinov | Serge Sharoff

While performance of many text classification tasks has been recently improved due to Pretrained Language Models (PLMs), in this paper we show that they still suffer from a performance gap when the underlying distribution of topics changes. For example, a genre classifier trained on political topics often fails when tested on documents in the same genre, but about sport or medicine. In this work, we quantify this phenomenon empirically with a large corpus and a large set of topics. Thus, we verify that domain transfer remains challenging both for classic PLMs, such as BERT, and for modern large models (LLMs), such as GPT. We develop a data augmentation approach by generating texts in any desired genre and on any desired topic, even when there are no documents in the training corpus that are both in that particular genre and on that particular topic. When we augment the training dataset with the topically-controlled synthetic texts, F1 improves up to 50% for some topics, approaching on-topic training, while showing no or next to no improvement for other topics. While our empirical results focus on genre classification, our methodology is applicable to other classification tasks such as gender, authorship, or sentiment classification.

pdf bib
Toward Stronger Textual Attack Detectors
Pierre Colombo | Marine Picot | Nathan Noiry | Guillaume Staerman | Pablo Piantanida

The landscape of available textual adversarial attacks keeps growing, posing severe threats and raising concerns regarding deep NLP systems integrity. However, the crucial problem of defending against malicious attacks has only drawn few attention in the NLP community. The latter is nonetheless instrumental to develop robust and trustworthy systems. This paper makes two important contributions in this line of search: (i) we introduce LAROUSSE, a new framework to detect textual adversarial attacks and (ii) we introduce STAKEOUT, an extended benchmark composed of nine popular attack methods, three datasets and two pre-trained models. LAROUSSE is ready-to-use in production as it is unsupervised, hyperparameter free and non-differentiable, protecting it against gradient-based methods. Our new benchmark STAKEOUT allows for a robust evaluation framework: we conduct extensive numerical experiments which demonstrate that LAROUSSE outperforms previous methods, and which allows to identify interesting factor of detection rate variations.

pdf bib
MEAL: Stable and Active Learning for Few-Shot Prompting
Abdullatif Köksal | Timo Schick | Hinrich Schuetze

Few-shot classification has made great strides due to foundation models that, through priming and prompting, are highly effective few-shot learners. However, this approach has high variance both across different sets of few shots (*data selection*) and across different finetuning runs (*run variability*). This is problematic not only because it impedes the fair comparison of different approaches, but especially because it makes few-shot learning too unreliable for many real-world applications. To alleviate these issues, we make two contributions for more stable and effective few-shot learning: First, we propose novel ensembling methods and show that they substantially reduce *run variability*. Second, we introduce a new active learning (AL) criterion for *data selection* and present the first AL-based approach specifically tailored towards prompt-based learning. In our experiments, we show that our combined method, MEAL (**M**ultiprompt finetuning and prediction **E**nsembling with **A**ctive **L**earning), improves overall performance of prompt-based finetuning by 2.3 points on five diverse tasks. We publicly share our code and data splits in https://github.com/akoksal/MEAL.

pdf bib
Structure and Label Constrained Data Augmentation for Cross-domain Few-shot NER
Jingyi Zhang | Ying Zhang | Yufeng Chen | Jinan Xu

Cross-domain few-shot named entity recognition (NER) is a challenging task that aims to recognize entities in target domains with limited labeled data by leveraging relevant knowledge from source domains. However, domain gaps limit the effect of knowledge transfer and harm the performance of NER models. In this paper, we analyze those domain gaps from two new perspectives, i.e., entity annotations and entity structures and leverage word-to-tag and word-to-word relations to model them, respectively. Moreover, we propose a novel method called Structure and Label Constrained Data Augmentation (SLC-DA) for Cross-domain Few-shot NER, which novelly design a label constrained pre-train task and a structure constrained optimization objectives in the data augmentation process to generate domain-specific augmented data to help NER models smoothly transition from source to target domains. We evaluate our approach on several standard datasets and achieve state-of-the-art or competitive results, demonstrating the effectiveness of our method in cross-domain few-shot NER.

pdf bib
Weakly-supervised Deep Cognate Detection Framework for Low-Resourced Languages Using Morphological Knowledge of Closely-Related Languages
Koustava Goswami | Priya Rani | Theodorus Fransen | John McCrae

Exploiting cognates for transfer learning in under-resourced languages is an exciting opportunity for language understanding tasks, including unsupervised machine translation, named entity recognition and information retrieval. Previous approaches mainly focused on supervised cognate detection tasks based on orthographic, phonetic or state-of-the-art contextual language models, which under-perform for most under-resourced languages. This paper proposes a novel language-agnostic weakly-supervised deep cognate detection framework for under-resourced languages using morphological knowledge from closely related languages. We train an encoder to gain morphological knowledge of a language and transfer the knowledge to perform unsupervised and weakly-supervised cognate detection tasks with and without the pivot language for the closely-related languages. While unsupervised, it overcomes the need for hand-crafted annotation of cognates. We performed experiments on different published cognate detection datasets across language families and observed not only significant improvement over the state-of-the-art but also our method outperformed the state-of-the-art supervised and unsupervised methods. Our model can be extended to a wide range of languages from any language family as it overcomes the requirement of the annotation of the cognate pairs for training.

pdf bib
SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
Ruoxi Sun | Sercan Arik | Rajarishi Sinha | Hootan Nakhost | Hanjun Dai | Pengcheng Yin | Tomas Pfister

Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose “SQLPrompt”, tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution-based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs (“MixPrompt”) and foundation models (“MixLLMs”). We show that SQLPrompt outperforms previous approaches for in-context learning with zero labeled data by a large margin, closing the gap with finetuning state-of-the-art with thousands of labeled data.

pdf bib
Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
Xinsong Zhang | Yan Zeng | Jipeng Zhang | Hang Li

Foundation models or pre-trained models have substantially improved the performance of various language, vision, and vision-language understanding tasks. However, existing foundation models can only perform the best in one type of tasks, namely language, vision, or vision-language. It is still an open question whether it is possible to construct a general foundation model performing the best for all the understanding tasks. In this paper, we propose a new method for training the general foundation model, X-FM (the X-Foundation Model). X-FM has one language encoder, one vision encoder, and one fusion encoder, as well as a new training method. The training method includes two new techniques for learning X-FM from text, image, and image-text pair data. One is to stop gradients from the vision-language training when learning the language encoder. The other is to leverage the vision-language training to guide the learning of the vision encoder. Extensive experiments on benchmark datasets show that X-FM can significantly outperform existing general foundation models and perform better than or comparable to existing foundation models specifically for language, vision, or vision-language understanding. Code and pre-trained models are released at https://github.com/zhangxinsong-nlp/XFM.

pdf bib
Trigger Warnings: Bootstrapping a Violence Detector for Fan Fiction
Magdalena Wolska | Matti Wiegmann | Christopher Schröder | Ole Borchardt | Benno Stein | Martin Potthast

We present the first dataset and evaluation results on a newly defined task: assigning trigger warnings. We introduce a labeled corpus of narrative fiction from Archive of Our Own (AO3), a popular fan fiction site, and define a document-level classification task to determine whether or not to assign a trigger warning to an English story. We focus on the most commonly assigned trigger type “violence’ using the warning labels provided by AO3 authors as ground-truth labels. We trained SVM, BERT, and Longfomer models on three datasets sampled from the corpus and achieve F1 scores between 0.8 and 0.9, indicating that assigning trigger warnings for violence is feasible.

pdf bib
Pass-Tuning: Towards Structure-Aware Parameter-Efficient Tuning for Code Representation Learning
Nuo Chen | Qiushi Sun | Jianing Wang | Xiang Li | Ming Gao

Code pre-trained models (CodePTMs) have recently become the de-facto paradigm for various tasks in the domain of code intelligence. To achieve excellent performance, the widely used strategy is to fine-tune all the parameters of CodePTMs. However, as the model size increases along with the number of downstream tasks, this strategy becomes excessively expensive. There are also some prior works that utilize Parameter-Efficient Learning (PEL) methods for model tuning in natural language processing to mitigate similar problems, but applying them directly to CodePTMs fails to capture the inherent structural characteristics of codes. To address the problem, in this paper, we propose Pass-Tuning for structure-aware Parameter-Efficient code representation learning. Specifically, a plug-and-play graph neural network module that can learn from Abstract Syntax Tree (AST) is employed as a tunable prefix. On the one hand, Pass-Tuning can further exploit the structural information of source code. On the other hand, it could serve as a replacement for full fine-tuning. We evaluate our method on multiple tasks across eight programming languages, including code understanding and generation. These results demonstrate the effectiveness, robustness, and universality of our method.

pdf bib
Counterfactual Augmentation for Multimodal Learning Under Presentation Bias
Victoria Lin | Louis-Philippe Morency | Dimitrios Dimitriadis | Srinagesh Sharma

In real-world machine learning systems, labels are often derived from user behaviors that the system wishes to encourage. Over time, new models must be trained as new training examples and features become available. However, feedback loops between users and models can bias future user behavior, inducing a *presentation bias* in the labels that compromises the ability to train new models. In this paper, we propose *counterfactual augmentation*, a novel causal method for correcting presentation bias using generated counterfactual labels. Our empirical evaluations demonstrate that counterfactual augmentation yields better downstream performance compared to both uncorrected models and existing bias-correction methods. Model analyses further indicate that the generated counterfactuals align closely with true counterfactuals in an oracle setting.

pdf bib
A Table-to-Text Framework with Heterogeneous Multidominance Attention and Self-Evaluated Multi-Pass Deliberation
Xi Chen | Xinjiang Lu | Haoran Xin | Wenjun Peng | Haoyang Duan | Feihu Jiang | Jingbo Zhou | Hui Xiong

Though big progress in table-to-text works, effectively leveraging table structure signals, e.g., hierarchical structure, remains challenging. Besides, deliberating generated descriptions proves to be effective for table-to-text. However, determining the appropriate outcome when encountering multi-pass candidates is another challenge. To this end, we propose a novel table-to-text approach on top of Self-evaluated multi-pass Generation and Heterogenous Multidominance Attention, namely SG-HMA. Specifically, we formulate the table structure into a multidominance (MD) structure and devise a heterogenous multidominance attention (HMA) to comprehensively explore the complex interactions encoded in the hierarchical structure, which can further deliver rich signals for text generation with the help of pre-trained language models (PLMs). Afterward, a contrastive loss is introduced to align the generation objective with evaluation metrics, so the more faithful generated descriptions can be guaranteed. We conduct extensive experiments on three public datasets, demonstrating that SG-HMA outperforms several SOTA methods quantitatively and qualitatively.

pdf bib
Crossing the Aisle: Unveiling Partisan and Counter-Partisan Events in News Reporting
Kaijian Zou | Xinliang Zhang | Winston Wu | Nicholas Beauchamp | Lu Wang

News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter-partisan events: events that support or oppose the author’s political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8,511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at https://github.com/launchnlp/Partisan-Event-Dataset.

pdf bib
Video-Text Retrieval by Supervised Sparse Multi-Grained Learning
Yimu Wang | Peng Shi

While recent progress in video-text retrieval has been advanced by the exploration of better representation learning, in this paper, we present a novel multi-grained sparse learning framework, S3MA, to learn an aligned sparse space shared between the video and the text for video-text retrieval. The shared sparse space is initialized with a finite number of sparse concepts, each of which refers to a number of words. With the text data at hand, we learn and update the shared sparse space in a supervised manner using the proposed similarity and alignment losses. Moreover, to enable multi-grained alignment, we incorporate frame representations for better modeling the video modality and calculating fine-grained and coarse-grained similarities. Benefiting from the learned shared sparse space and multi-grained similarities, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of S3MA over existing methods.

pdf bib
Zero-Shot-BERT-Adapters: a Zero-Shot Pipeline for Unknown Intent Detection
Daniele Comi | Dimitrios Christofidellis | Pier Piazza | Matteo Manica

Intent discovery is a crucial task in natural language processing, and it is increasingly relevant for various of industrial applications. Identifying novel, unseen intents from user inputs remains one of the biggest challenges in this field. Herein, we propose Zero-Shot-BERT-Adapters, a two-stage method for multilingual intent discovery relying on a Transformer architecture, fine-tuned with Adapters. We train the model for Natural Language Inference (NLI) and later perform unknown intent classification in a zero-shot setting for multiple languages. In our evaluation, we first analyze the quality of the model after adaptive fine-tuning on known classes. Secondly, we evaluate its performance in casting intent classification as an NLI task. Lastly, we test the zero-shot performance of the model on unseen classes, showing how Zero-Shot-BERT-Adapters can effectively perform intent discovery by generating semantically similar intents, if not equal, to the ground-truth ones. Our experiments show how Zero-Shot-BERT-Adapters outperforms various baselines in two zero-shot settings: known intent classification and unseen intent discovery. The proposed pipeline holds the potential for broad application in customer care. It enables automated dynamic triage using a lightweight model that can be easily deployed and scaled in various business scenarios, unlike large language models. Zero-Shot-BERT-Adapters represents an innovative multi-language approach for intent discovery, enabling the online generation of novel intents. A Python package implementing the pipeline and the new datasets we compiled are available at the following link: https://github.com/GT4SD/zero-shot-bert-adapters.

pdf bib
ReFSQL: A Retrieval-Augmentation Framework for Text-to-SQL Generation
Kun Zhang | Xiexiong Lin | Yuanzhuo Wang | Xin Zhang | Fei Sun | Cen Jianhe | Hexiang Tan | Xuhui Jiang | Huawei Shen

Text-to-SQL is the task that aims at translating natural language questions into SQL queries. Existing methods directly align the natural language with SQL Language and train one encoder-decoder-based model to fit all questions. However, they underestimate the inherent structural characteristics of SQL, as well as the gap between specific structure knowledge and general knowledge. This leads to structure errors in the generated SQL. To address the above challenges, we propose a retrieval-argument framework, namely ReFSQL. It contains two parts, structure-enhanced retriever and the generator. Structure-enhanced retriever is designed to identify samples with comparable specific knowledge in an unsupervised way. Subsequently, we incorporate the retrieved samples’ SQL into the input, enabling the model to acquire prior knowledge of similar SQL grammar. To further bridge the gap between specific and general knowledge, we present a mahalanobis contrastive learning method, which facilitates the transfer of the sample toward the specific knowledge distribution constructed by the retrieved samples. Experimental results on five datasets verify the effectiveness of our approach in improving the accuracy and robustness of Text-to-SQL generation. Our framework has achieved improved performance when combined with many other backbone models (including the 11B flan-T5) and also achieved state-of-the-art performance when compared to existing methods that employ the fine-tuning approach.

pdf bib
Approximating Two-Layer Feedforward Networks for Efficient Transformers
Róbert Csordás | Kazuki Irie | Jürgen Schmidhuber

How to reduce compute and memory requirements of neural networks (NNs) without sacrificing performance? Many recent works use sparse Mixtures of Experts (MoEs) to build resource-efficient large language models (LMs). Here we introduce several novel perspectives on MoEs, presenting a general framework that *unifies* various methods to *approximate two-layer NNs* (e.g., feedforward blocks of Transformers), including product-key memories (PKMs). Leveraging insights from this framework, we propose methods to improve both MoEs and PKMs. Unlike prior work that compares MoEs with dense baselines under the *compute-equal* condition, our evaluation condition is *parameter-equal*, which is crucial to properly evaluate LMs. We show that our MoEs are competitive with the *dense* Transformer-XL on both the WikiText-103 and enwiki8 datasets at two different scales, while being much more resource efficient. This demonstrates that MoEs are relevant not only to extremely large LMs but also to any-scale resource-efficient LMs. Our code is public.

pdf bib
Adapter-TST: A Parameter Efficient Method for Multiple-Attribute Text Style Transfer
Zhiqiang Hu | Nancy Chen | Roy Lee

Adapting a large language model for multiple-attribute text style transfer via fine-tuning can be challenging due to the substantial amount of computational resources and labeled data required for the specific downstream task. In this paper, we address this challenge by introducing Adapter-TST, a framework that freezes the pre-trained model’s original parameters and enables the development of a multiple-attribute text style transfer model. Using BART as the backbone model, Adapter-TST utilizes different neural adapters to model different types of attribute information, similar to a plug-in connected to BART. Our method allows control over multiple attributes (e.g. sentiment, tense, active or passive voice) and configures the adapters’ architecture to generate multiple outputs in respect to attributes or compositional editing on the same sentence. We evaluate the proposed model on both traditional sentiment transfer and multiple-attribute transfer tasks. The experiment results demonstrate that Adapter-TST outperforms all the state-of-the-art baselines with significantly less computational resources. We have also empirically shown that each adapter is able to characterize specific stylistic attributes effectively and can be configured to perform compositional editing.

pdf bib
Solving the Right Problem is Key for Translational NLP: A Case Study in UMLS Vocabulary Insertion
Bernal Gutierrez | Yuqing Mao | Vinh Nguyen | Kin Fung | Yu Su | Olivier Bodenreider

As the immense opportunities enabled by large language models become more apparent, NLP systems will be increasingly expected to excel in real-world settings. However, in many instances, powerful models alone will not yield translational NLP solutions, especially if the formulated problem is not well aligned with the real-world task. In this work, we study the case of UMLS vocabulary insertion, an important real-world task in which hundreds of thousands of new terms, referred to as atoms, are added to the UMLS, one of the most comprehensive open-source biomedical knowledge bases. Previous work aimed to develop an automated NLP system to make this time-consuming, costly, and error-prone task more efficient. Nevertheless, practical progress in this direction has been difficult to achieve due to a problem formulation and evaluation gap between research output and the real-world task. In order to address this gap, we introduce a new formulation for UMLS vocabulary insertion which mirrors the real-world task, datasets which faithfully represent it and several strong baselines we developed through re-purposing existing solutions. Additionally, we propose an effective rule-enhanced biomedical language model which enables important new model behavior, outperforms all strong baselines and provides measurable qualitative improvements to editors who carry out the UVI task. We hope this case study provides insight into the considerable importance of problem formulation for the success of translational NLP solutions.

pdf bib
Improving Cross-lingual Transfer through Subtree-aware Word Reordering
Ofir Arviv | Dmitry Nikolaev | Taelin Karidi | Omri Abend

Despite the impressive growth of the abilities of multilingual language models, such as XLM-R and mT5, it has been shown that they still face difficulties when tackling typologically-distant languages, particularly in the low-resource setting. One obstacle for effective cross-lingual transfer is variability in word-order patterns. It can be potentially mitigated via source- or target-side word reordering, and numerous approaches to reordering have been proposed. However, they rely on language-specific rules, work on the level of POS tags, or only target the main clause, leaving subordinate clauses intact. To address these limitations, we present a new powerful reordering method, defined in terms of Universal Dependencies, that is able to learn fine-grained word-order patterns conditioned on the syntactic context from a small amount of annotated data and can be applied at all levels of the syntactic tree. We conduct experiments on a diverse set of tasks and show that our method consistently outperforms strong baselines over different language pairs and model architectures. This performance advantage holds true in both zero-shot and few-shot scenarios.

pdf bib
Novel Slot Detection With an Incremental Setting
Chen Liang | Hongliang Li | Changhao Guan | Qingbin Liu | Jian Liu | Jinan Xu | Zhe Zhao

Current dialogue systems face diverse user requests and rapid change domains, making quickly adapt to scenarios with previous unseen slot types become a major challenge. Recently, researchers have introduced novel slot detection (NSD) to discover potential new types. However, dialogue system with NSD does not bring practical improvements due to the system still cannot handle novel slots in subsequent interactions. In this paper, we define incremental novel slot detection (INSD), which separates the dialogue system to deal with novel types as two major phrases: 1) model discovers unknown slots, 2) training model to possess the capability to handle new classes. We provide an effective model to extract novel slots with set prediction strategy and propose a query-enhanced approach to overcome catastrophic forgetting during the process of INSD. We construct two INSD datasets to evaluate our method and experimental results show that our approach exhibits superior performance.

pdf bib
Self-supervised Post-processing Method to Enrich Pretrained Word Vectors
Hwiyeol Jo

Retrofitting techniques, which inject external resources into word representations, have compensated for the weakness of distributed representations in semantic and relational knowledge between words. However, the previous methods require additional external resources and strongly depend on the lexicon. To address the issues, we propose a simple extension of extrofitting, self-supervised extrofitting: extrofitting by its own word vector distribution. Our methods improve the vanilla embeddings on all of word similarity tasks without any external resources. Moreover, the method is also effective in various languages, which implies that our method will be useful in lexicon-scarce languages. As downstream tasks, we show its benefits in dialogue state tracking and text classification tasks, reporting better and generalized results compared to other word vector specialization methods.

pdf bib
Automatic Model Selection with Large Language Models for Reasoning
James Zhao | Yuxi Xie | Kenji Kawaguchi | Junxian He | Michael Xie

Chain-of-Thought (CoT) and Program-Aided Language Models (PAL) represent two distinct reasoning methods, each with its own strengths. CoT employs natural language, offering flexibility and interpretability, while PAL utilizes programming language, yielding more structured and rigorous logic. We introduce a model selection method to combine the best of both worlds by employing a large language model (LLM) to dynamically select between them. Our theoretical analysis underscores the feasibility of this method, which is further corroborated by empirical results. Our proposed method demonstrates significant performance improvements across eight reasoning datasets with Codex, ChatGPT, and GPT-4. Additionally, our method is complementary to self-consistency; when integrated, it can further enhance performance while significantly reducing computation costs. Moreover, we achieve new state-of-the-art results on GSM8K and SVAMP, with respective accuracies of 96.8% and 93.7%.

pdf bib
ARKitSceneRefer: Text-based Localization of Small Objects in Diverse Real-World 3D Indoor Scenes
Shunya Kato | Shuhei Kurita | Chenhui Chu | Sadao Kurohashi

3D referring expression comprehension is a task to ground text representations onto objects in 3D scenes. It is a crucial task for indoor household robots or augmented reality devices to localize objects referred to in user instructions. However, existing indoor 3D referring expression comprehension datasets typically cover larger object classes that are easy to localize, such as chairs, tables, or doors, and often overlook small objects, such as cooking tools or office supplies. Based on the recently proposed diverse and high-resolution 3D scene dataset of ARKitScenes, we construct the ARKitSceneRefer dataset focusing on small daily-use objects that frequently appear in real-world indoor scenes. ARKitSceneRefer contains 15k objects of 1,605 indoor scenes, which are significantly larger than those of the existing 3D referring datasets, and covers diverse object classes of 583 from the LVIS dataset. In empirical experiments with both 2D and 3D state-of-the-art referring expression comprehension models, we observed the task difficulty of the localization in the diverse small object classes.

pdf bib
Improving Question Generation with Multi-level Content Planning
Zehua Xia | Qi Gou | Bowen Yu | Haiyang Yu | Fei Huang | Yongbin Li | Nguyen Cam-Tu

This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context. Previous studies have suggested that key phrase selection is essential for question generation (QG), yet it is still challenging to connect such disjointed phrases into meaningful questions, particularly for long context. To mitigate this issue, we propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-Model, which simultaneously selects key phrases and generates full answers, and Q-Model which takes the generated full answer as an additional input to generate questions. Here, full answer generation is introduced to connect the short answer with the selected key phrases, thus forming an answer-aware summary to facilitate QG. Both FA-Model and Q-Model are formalized as simple-yet-effective Phrase-Enhanced Transformers, our joint model for phrase selection and text generation. Experimental results show that our method outperforms strong baselines on two popular QG datasets. Our code is available at https://github.com/zeaver/MultiFactor.

pdf bib
Is ChatGPT a Financial Expert? Evaluating Language Models on Financial Natural Language Processing
Yue Guo | Zian Xu | Yi Yang

The emergence of Large Language Models (LLMs), such as ChatGPT, has revolutionized general natural language preprocessing (NLP) tasks. However, their expertise in the financial domain lacks a comprehensive evaluation. To assess the ability of LLMs to solve financial NLP tasks, we present FinLMEval, a framework for Financial Language Model Evaluation, comprising nine datasets designed to evaluate the performance of language models. This study compares the performance of fine-tuned auto-encoding language models (BERT, RoBERTa, FinBERT) and the LLM ChatGPT. Our findings reveal that while ChatGPT demonstrates notable performance across most financial tasks, it generally lags behind the fine-tuned expert models, especially when dealing with proprietary datasets. We hope this study builds foundation evaluation benchmarks for continuing efforts to build more advanced LLMs in the financial domain.

pdf bib
DelucionQA: Detecting Hallucinations in Domain-specific Question Answering
Mobashir Sadat | Zhengyu Zhou | Lukas Lange | Jun Araki | Arsalan Gundroo | Bingqing Wang | Rakesh Menon | Md Parvez | Zhe Feng

Hallucination is a well-known phenomenon in text generated by large language models (LLMs). The existence of hallucinatory responses is found in almost all application scenarios e.g., summarization, question-answering (QA) etc. For applications requiring high reliability (e.g., customer-facing assistants), the potential existence of hallucination in LLM-generated text is a critical problem. The amount of hallucination can be reduced by leveraging information retrieval to provide relevant background information to the LLM. However, LLMs can still generate hallucinatory content for various reasons (e.g., prioritizing its parametric knowledge over the context, failure to capture the relevant information from the context, etc.). Detecting hallucinations through automated methods is thus paramount. To facilitate research in this direction, we introduce a sophisticated dataset, DelucionQA, that captures hallucinations made by retrieval-augmented LLMs for a domain-specific QA task. Furthermore, we propose a set of hallucination detection methods to serve as baselines for future works from the research community. Analysis and case study are also provided to share valuable insights on hallucination phenomena in the target scenario.

pdf bib
InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution
Xiangru Jian | Yimu Wang

Over recent decades, significant advancements in cross-modal retrieval is mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance.

pdf bib
Dissecting In-Context Learning of Translations in GPT-3
Vikas Raunak | Arul Menezes | Hany Awadalla

Most of the recent work in leveraging Large Language Models (LLMs) such as GPT-3 for Machine Translation (MT) has focused on selecting the few-shot samples for prompting. In this work, we try to better understand the role of demonstration attributes for the in-context learning of translations through perturbations of high-quality, in-domain demonstrations. We find that asymmetric perturbation of the source-target mappings yield vastly different results. We show that the perturbation of the source side has surprisingly little impact, while target perturbation can drastically reduce translation quality, suggesting that it is the output text distribution that provides the most important learning signal during in-context learning of translations. We propose a method named Zero-Shot-Context to add this signal automatically in Zero-Shot prompting. We demonstrate that it improves upon the zero-shot translation performance of GPT-3, even making it competitive with few-shot prompted translations.

pdf bib
Social Commonsense-Guided Search Query Generation for Open-Domain Knowledge-Powered Conversations
Revanth Reddy | Hao Bai | Wentao Yao | Sharath Chandra Etagi Suresh | Heng Ji | ChengXiang Zhai

Open-domain dialog involves generating search queries that help obtain relevant knowledge for holding informative conversations. However, it can be challenging to determine what information to retrieve when the user is passive and does not express a clear need or request. To tackle this issue, we present a novel approach that focuses on generating internet search queries that are guided by social commonsense. Specifically, we leverage a commonsense dialog system to establish connections related to the conversation topic, which subsequently guides our query generation. Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation. Through extensive evaluations, we show that our approach overcomes limitations of existing query generation techniques that rely solely on explicit dialog information, and produces search queries that are more relevant, specific, and compelling, ultimately resulting in more engaging responses.

pdf bib
MixTEA: Semi-supervised Entity Alignment with Mixture Teaching
Feng Xie | Xin Song | Xiang Zeng | Xuechen Zhao | Lei Tian | Bin Zhou | Yusong Tan

Semi-supervised entity alignment (EA) is a practical and challenging task because of the lack of adequate labeled mappings as training data. Most works address this problem by generating pseudo mappings for unlabeled entities. However, they either suffer from the erroneous (noisy) pseudo mappings or largely ignore the uncertainty of pseudo mappings. In this paper, we propose a novel semi-supervised EA method, termed as MixTEA, which guides the model learning with an end-to-end mixture teaching of manually labeled mappings and probabilistic pseudo mappings. We firstly train a student model using few labeled mappings as standard. More importantly, in pseudo mapping learning, we propose a bi-directional voting (BDV) strategy that fuses the alignment decisions in different directions to estimate the uncertainty via the joint matching confidence score. Meanwhile, we also design a matching diversity-based rectification (MDR) module to adjust the pseudo mapping learning, thus reducing the negative influence of noisy mappings. Extensive results on benchmark datasets as well as further analyses demonstrate the superiority and the effectiveness of our proposed method.

pdf bib
Boot and Switch: Alternating Distillation for Zero-Shot Dense Retrieval
Fan Jiang | Qiongkai Xu | Tom Drummond | Trevor Cohn

Neural ‘dense’ retrieval models are state of the art for many datasets, however these models often exhibit limited domain transfer ability. Existing approaches to adaptation are unwieldy, such as requiring explicit supervision, complex model architectures, or massive external models. We present ABEL, a simple but effective unsupervised method to enhance passage retrieval in zero-shot settings. Our technique follows a straightforward loop: a dense retriever learns from supervision signals provided by a reranker, and subsequently, the reranker is updated based on feedback from the improved retriever. By iterating this loop, the two components mutually enhance one another’s performance. Experimental results demonstrate that our unsupervised ABEL model outperforms both leading supervised and unsupervised retrievers on the BEIR benchmark. Meanwhile, it exhibits strong adaptation abilities to tasks and domains that were unseen during training. By either fine-tuning ABEL on labelled data or integrating it with existing supervised dense retrievers, we achieve state-of-the-art results.

pdf bib
TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language Understanding
Shuhuai Ren | Sishuo Chen | Shicheng Li | Xu Sun | Lu Hou

Large-scale video-language pre-training has made remarkable strides in advancing video-language understanding tasks. However, the heavy computational burden of video encoding remains a formidable efficiency bottleneck, particularly for long-form videos. These videos contain massive visual tokens due to their inherent 3D properties and spatiotemporal redundancy, making it challenging to capture complex temporal and spatial relationships. To tackle this issue, we propose an efficient method called TEmporal-Spatial Token Aggregation (TESTA). TESTA condenses video semantics by adaptively aggregating similar frames, as well as similar patches within each frame. TESTA can reduce the number of visual tokens by 75% and thus accelerate video encoding. Building upon TESTA, we introduce a pre-trained video-language model equipped with a divided space-time token aggregation module in each video encoder block. We evaluate our model on five datasets for paragraph-to-video retrieval and long-form VideoQA tasks. Experimental results show that TESTA improves computing efficiency by 1.7 times, and achieves significant performance gains from its scalability in processing longer input frames, e.g., +13.7 R@1 on QuerYD and +6.5 R@1 on Condensed Movie.

pdf bib
Fusing Temporal Graphs into Transformers for Time-Sensitive Question Answering
Xin Su | Phillip Howard | Nagib Hakim | Steven Bethard

Answering time-sensitive questions from long documents requires temporal reasoning over the times in questions and documents. An important open question is whether large language models can perform such reasoning solely using a provided text document, or whether they can benefit from additional temporal information extracted using other systems. We address this research question by applying existing temporal information extraction systems to construct temporal graphs of events, times, and temporal relations in questions and documents. We then investigate different approaches for fusing these graphs into Transformer models. Experimental results show that our proposed approach for fusing temporal graphs into input text substantially enhances the temporal reasoning capabilities of Transformer models with or without fine-tuning. Additionally, our proposed method outperforms various graph convolution-based approaches and establishes a new state-of-the-art performance on SituatedQA and three splits of TimeQA.

pdf bib
The Internal State of an LLM Knows When It’s Lying
Amos Azaria | Tom Mitchell

While Large Language Models (LLMs) have shown exceptional performance in various tasks, one of their most prominent drawbacks is generating inaccurate or false information with a confident tone. In this paper, we provide evidence that the LLM’s internal state can be used to reveal the truthfulness of statements. This includes both statements provided to the LLM, and statements that the LLM itself generates. Our approach is to train a classifier that outputs the probability that a statement is truthful, based on the hidden layer activations of the LLM as it reads or generates the statement. Experiments demonstrate that given a set of test sentences, of which half are true and half false, our trained classifier achieves an average of 71% to 83% accuracy labeling which sentences are true versus false, depending on the LLM base model. Furthermore, we explore the relationship between our classifier’s performance and approaches based on the probability assigned to the sentence by the LLM. We show that while LLM-assigned sentence probability is related to sentence truthfulness, this probability is also dependent on sentence length and the frequencies of words in the sentence, resulting in our trained classifier providing a more reliable approach to detecting truthfulness, highlighting its potential to enhance the reliability of LLM-generated content and its practical applicability in real-world scenarios.

pdf bib
Factual Relation Discrimination for Factuality-oriented Abstractive Summarization
Zhiguang Gao | Peifeng Li | Feng Jiang | Xiaomin Chu | Qiaoming Zhu

Most neural abstractive summarization models are capable of producing high-quality summaries. However, they still frequently contain factual errors. Existing factuality-oriented abstractive summarization models only consider the integration of factual information and ignore the causes of factual errors. To address this issue, we propose a factuality-oriented abstractive summarization model DASum, which is based on a new task factual relation discrimination that is able to identify the causes of factual errors. First, we use data augmentation methods to construct counterfactual summaries (i. e., negative samples), and build a factual summarization dataset. Then, we propose the factual relation discrimination task, which determines the factuality of the dependency relations in summaries during summary generation and guides our DASum to generate factual relations, thereby improving the factuality of summaries. Experimental results on the CNN/DM and XSUM datasets show that our DASum outperforms several state-of-the-art benchmarks in terms of the factual metrics.

pdf bib
Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment
Qian Li | Cheng Ji | Shu Guo | Zhaoji Liang | Lihong Wang | Jianxin Li

Multi-Modal Entity Alignment (MMEA) is a critical task that aims to identify equivalent entity pairs across multi-modal knowledge graphs (MMKGs). However, this task faces challenges due to the presence of different types of information, including neighboring entities, multi-modal attributes, and entity types. Directly incorporating the above information (e.g., concatenation or attention) can lead to an unaligned information space. To address these challenges, we propose a novel MMEA transformer, called Meaformer, that hierarchically introduces neighbor features, multi-modal attributes, and entity types to enhance the alignment task. Taking advantage of the transformer’s ability to better integrate multiple information, we design a hierarchical modifiable self-attention block in a transformer encoder to preserve the unique semantics of different information. Furthermore, we design two entity-type prefix injection methods to redintegrate entity-type information using type prefixes, which help to restrict the global information of entities not present in the MMKGs.

pdf bib
Is a Prestigious Job the same as a Prestigious Country? A Case Study on Multilingual Sentence Embeddings and European Countries
Jindřich Libovický

We study how multilingual sentence representations capture European countries and occupations and how this differs across European languages. We prompt the models with templated sentences that we machine-translate into 12 European languages and analyze the most prominent dimensions in the embeddings. Our analysis reveals that the most prominent feature in the embedding is the political distinction between Eastern and Western Europe and the country’s economic strength in terms of GDP. When prompted specifically for job prestige, the embedding space clearly distinguishes high and low-prestige jobs. The occupational dimension is uncorrelated with the most dominant country dimensions in three out of four studied models. The exception is a small distilled model that exhibits a connection between occupational prestige and country of origin, which is a potential source of nationality-based discrimination. Our findings are consistent across languages.

pdf bib
Towards A Holistic Landscape of Situated Theory of Mind in Large Language Models
Ziqiao Ma | Jacob Sansom | Run Peng | Joyce Chai

Large Language Models (LLMs) have generated considerable interest and debate regarding their potential emergence of Theory of Mind (ToM). Several recent inquiries reveal a lack of robust ToM in these models and pose a pressing demand to develop new benchmarks, as current ones primarily focus on different aspects of ToM and are prone to shortcuts and data leakage. In this position paper, we seek to answer two road-blocking questions: (1) How can we taxonomize a holistic landscape of machine ToM? (2) What is a more effective evaluation protocol for machine ToM? Following psychological studies, we taxonomize machine ToM into 7 mental state categories and delineate existing benchmarks to identify under-explored aspects of ToM. We argue for a holistic and situated evaluation of ToM to break ToM into individual components and treat LLMs as an agent who is physically situated in environments and socially situated in interactions with humans. Such situated evaluation provides a more comprehensive assessment of mental states and potentially mitigates the risk of shortcuts and data leakage. We further present a pilot study in a grid world setup as a proof of concept. We hope this position paper can facilitate future research to integrate ToM with LLMs and offer an intuitive means for researchers to better position their work in the landscape of ToM.

pdf bib
Text Augmented Spatial Aware Zero-shot Referring Image Segmentation
Yucheng Suo | Linchao Zhu | Yi Yang

In this paper, we study a challenging task of zero-shot referring image segmentation. This task aims to identify the instance mask that is most related to a referring expression without training on pixel-level annotations. Previous research takes advantage of pre-trained cross-modal models, e.g., CLIP, to align instance-level masks with referring expressions. Yet, CLIP only considers the global-level alignment of image-text pairs, neglecting fine-grained matching between the referring sentence and local image regions. To address this challenge, we introduce a Text Augmented Spatial-aware (TAS) zero-shot referring image segmentation framework that is training-free and robust to various visual encoders. TAS incorporates a mask proposal network for instance-level mask extraction, a text-augmented visual-text matching score for mining the image-text correlation, and a spatial rectifier for mask post-processing. Notably, the text-augmented visual-text matching score leverages a P-score and an N-score in addition to the typical visual-text matching score. The P-score is utilized to close the visual-text domain gap through a surrogate captioning model, where the score is computed between the surrogate model-generated texts and the referring expression. The N-score considers the fine-grained alignment of region-text pairs via negative phrase mining, encouraging the masked image to be repelled from the mined distracting phrases. Extensive experiments are conducted on various datasets, including RefCOCO, RefCOCO+, and RefCOCOg. The proposed method clearly outperforms state-of-the-art zero-shot referring image segmentation methods.

pdf bib
IRFL: Image Recognition of Figurative Language
Ron Yosef | Yonatan Bitton | Dafna Shahaf

Figures of speech such as metaphors, similes, and idioms are integral parts of human communication. They are ubiquitous in many forms of discourse, allowing people to convey complex, abstract ideas and evoke emotion. As figurative forms are often conveyed through multiple modalities (e.g., both text and images), understanding multimodal figurative language is an important AI challenge, weaving together profound vision, language, commonsense and cultural knowledge. In this work, we develop the Image Recognition of Figurative Language (IRFL) dataset. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset, and introduce two novel tasks as a benchmark for multimodal figurative language understanding. We experimented with state-of-the-art vision and language models and found that the best (22%) performed substantially worse than humans (97%). We release our dataset, benchmark, and code in hopes of driving the development of models that can better understand figurative language.

pdf bib
Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization for Few-shot Generalization
Kaihang Pan | Juncheng Li | Hongye Song | Jun Lin | Xiaozhong Liu | Siliang Tang

Prompt tuning is a parameter-efficient method, which learns soft prompts and conditions frozen language models to perform specific downstream tasks. Though effective, prompt tuning under few-shot settings on the one hand heavily relies on a good initialization of soft prompts. On the other hand, it can easily overfit to few-shot training samples, thereby undermining generalizability. Existing works leverage pre-training or supervised meta-learning to initialize soft prompts but they fail to data-efficiently generalize to unseen downstream tasks. To address the above problems, this paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER). SUPMER leverages self-supervised meta-learning with a diverse set of well-designed meta-tasks to learn a universal prompt initialization for efficient adaptation using only unlabeled data. Additionally, it jointly meta-learns a gradient regularization function to transform raw gradients into a domain-generalizable direction, thus alleviating the problem of overfitting. Extensive experiments show that SUPMER achieves better performance for different few-shot downstream tasks, and also exhibits a stronger domain generalization ability. The code for SUPMER will be available at https://github.com/beepkh/SUPMER.

pdf bib
An Adaptive Prompt Generation Framework for Task-oriented Dialogue System
Jun Gao | Liuyu Xiang | Huijia Wu | Han Zhao | Yiqi Tong | Zhaofeng He

The de facto way of utilizing black-box large language models (LLMs) to perform various downstream tasks is prompting. However, obtaining suitable prompts for specific tasks is still a challenging problem. While existing LLM-based methods demonstrate promising performance in task-oriented dialogue (TOD) task, they often require manual adjustment in prompt selection, or focus solely on dialogue understanding or generation. To address these issues, we propose an adaptive prompt generation framework to fully unleash the potential of LLMs for the comprehensive TOD system. Firstly, we design a trainable slot generator (TSG) that can generate domain and slot information in the belief state, which serves as prior knowledge for subsequent prompt generation. Next, we propose an adaptive prompt generator (APG) that utilizes the prior knowledge to generate prompts for the LLM, deriving the belief state and system response of the dialogue for evaluation. Finally, we evaluate our framework on the MultiWOZ 2.0 dataset. Extensive experiments demonstrate that our method outperforms existing methods. Our code and data will be released.

pdf bib
Temporal Knowledge Graph Reasoning Based on N-tuple Modeling
Zhongni Hou | Xiaolong Jin | Zixuan Li | Long Bai | Saiping Guan | Yutao Zeng | Jiafeng Guo | Xueqi Cheng

Reasoning over Temporal Knowledge Graphs (TKGs) that predicts temporal facts (e.g., events) in the future is crucial for many applications. The temporal facts in existing TKGs only contain their core entities (i.e., the entities playing core roles therein) and formulate them as quadruples, i.e., (subject entity, predicate, object entity, timestamp). This formulation oversimplifies temporal facts and inevitably causes information loss. Therefore, we propose to describe a temporal fact more accurately as an n-tuple, containing not only its predicate and core entities, but also its auxiliary entities, as well as the roles of all entities. By so doing, TKGs are augmented to N-tuple Temporal Knowledge Graphs (N-TKGs). To conduct reasoning over N-TKGs, we further propose N-tuple Evolutional Network (NE-Net). It recurrently learns the evolutional representations of entities and predicates in temporal facts at different timestamps in the history via modeling the relations among those entities and predicates. Based on the learned representations, reasoning tasks at future timestamps can be realized via task-specific decoders. Experiment results on two newly built datasets demonstrate the superiority of N-TKG and the effectiveness of NE-Net.

pdf bib
Make Your Decision Convincing! A Unified Two-Stage Framework: Self-Attribution and Decision-Making
Yanrui Du | Sendong Zhao | Haochun Wang | Yuhan Chen | Rui Bai | Zewen Qiang | Muzhen Cai | Bing Qin

Explaining black-box model behavior with natural language has achieved impressive results in various NLP tasks. Recent research has explored the utilization of subsequences from the input text as a rationale, providing users with evidence to support the model decision. Although existing frameworks excel in generating high-quality rationales while achieving high task performance, they neglect to account for the unreliable link between the generated rationale and model decision. In simpler terms, a model may make correct decisions while attributing wrong rationales, or make poor decisions while attributing correct rationales. To mitigate this issue, we propose a unified two-stage framework known as Self-Attribution and Decision-Making (SADM). Through extensive experiments on five reasoning datasets from the ERASER benchmark, we demonstrate that our framework not only establishes a more reliable link between the generated rationale and model decision but also achieves competitive results in task performance and the quality of rationale. Furthermore, we explore the potential of our framework in semi-supervised scenarios.

pdf bib
Adaptive Structure Induction for Aspect-based Sentiment Analysis with Spectral Perspective
Hao Niu | Yun Xiong | Xiaosu Wang | Wenjing Yu | Yao Zhang | Zhonglei Guo

Recently, incorporating structure information (e.g. dependency syntactic tree) can enhance the performance of aspect-based sentiment analysis (ABSA). However, this structure information is obtained from off-the-shelf parsers, which is often sub-optimal and cumbersome. Thus, automatically learning adaptive structures is conducive to solving this problem. In this work, we concentrate on structure induction from pre-trained language models (PLMs) and throw the structure induction into a spectrum perspective to explore the impact of scale information in language representation on structure induction ability. Concretely, the main architecture of our model is composed of commonly used PLMs (e.g. RoBERTa, etc), and a simple yet effective graph structure learning (GSL) module (graph learner + GNNs). Subsequently, we plug in spectral filters with different bands respectively after the PLMs to produce filtered language representations and feed them into the GSL module to induce latent structures. We conduct extensive experiments on three public benchmarks for ABSA. The results and further analyses demonstrate that introducing this spectral approach can shorten Aspects-sentiment Distance (AsD) and be beneficial to structure induction. Even based on such a simple framework, the effects on three datasets can reach SOTA (state of the art) or near SOTA performance. Additionally, our exploration also has the potential to be generalized to other tasks or to bring inspiration to other similar domains.

pdf bib
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
Peter West | Ronan Bras | Taylor Sorensen | Bill Lin | Liwei Jiang | Ximing Lu | Khyathi Chandu | Jack Hessel | Ashutosh Baheti | Chandra Bhagavatula | Yejin Choi

We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-releaseddiscrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.

pdf bib
In-Context Demonstration Selection with Cross Entropy Difference
Dan Iter | Reid Pryzant | Ruochen Xu | Shuohang Wang | Yang Liu | Yichong Xu | Chenguang Zhu

Large language models (LLMs) can use in-context demonstrations to improve performance on zero-shot tasks. However, selecting the best in-context examples is challenging because model performance can vary widely depending on the selected examples. We present a cross-entropy difference (CED) method for selecting in-context demonstrations. Our method is based on the observation that the effectiveness of in-context demonstrations negatively correlates with the perplexity of the test example by a language model that was finetuned on that demonstration. We utilize parameter efficient finetuning to train small models on training data that are used for computing the cross-entropy difference between a test example and every candidate in-context demonstration. This metric is used to rank and select in-context demonstrations independently for each test input. We evaluate our method on a mix-domain dataset that combines 8 benchmarks, representing 4 text generation tasks, showing that CED for in-context demonstration selection can improve performance for a variety of LLMs over baseline selection methods.

pdf bib
The Past, Present, and Future of Typological Databases in NLP
Emi Baylor | Esther Ploeger | Johannes Bjerva

Typological information has the potential to be beneficial in the development of NLP models, particularly for low-resource languages. Unfortunately, current large-scale typological databases, notably WALS and Grambank, are inconsistent both with each other and with other sources of typological information, such as linguistic grammars. Some of these inconsistencies stem from coding errors or linguistic variation, but many of the disagreements are due to the discrete categorical nature of these databases. We shed light on this issue by systematically exploring disagreements across typological databases and resources, and their uses in NLP, covering the past and present. We next investigate the future of such work, offering an argument that a continuous view of typological features is clearly beneficial, echoing recommendations from linguistics. We propose that such a view of typology has significant potential in the future, including in language modeling in low-resource scenarios.

pdf bib
SoulChat: Improving LLMs’ Empathy, Listening, and Comfort Abilities through Fine-tuning with Multi-turn Empathy Conversations
Yirong Chen | Xiaofen Xing | Jingkai Lin | Huimin Zheng | Zhenyu Wang | Qi Liu | Xiangmin Xu

Large language models (LLMs) have been widely applied in various fields due to their excellent capability for memorizing knowledge and chain of thought (CoT). When these language models are applied in the field of psychological counseling, they often rush to provide universal advice. However, when users seek psychological support, they need to gain empathy, trust, understanding and comfort, rather than just reasonable advice. To this end, we constructed a multi-turn empathetic conversation dataset of more than 2 million samples, in which the input is the multi-turn conversation context, and the target is empathetic responses that cover expressions such as questioning, comfort, recognition, listening, trust, emotional support, etc. Experiments have shown that the empathy ability of LLMs can be significantly enhanced when finetuning by using multi-turn dialogue history and responses that are closer to the expression of a psychological consultant.

pdf bib
Can ChatGPT Assess Human Personalities? A General Evaluation Framework
Haocong Rao | Cyril Leung | Chunyan Miao

Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers–Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal ChatGPT’s ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.

pdf bib
MoqaGPT : Zero-Shot Multi-modal Open-domain Question Answering with Large Language Model
Le Zhang | Yihong Wu | Fengran Mo | Jian-Yun Nie | Aishwarya Agrawal

Multi-modal open-domain question answering typically requires evidence retrieval from databases across diverse modalities, such as images, tables, passages, etc. Even Large Language Models (LLMs) like GPT-4 fall short in this task. To enable LLMs to tackle the task in a zero-shot manner, we introduce MoqaGPT, a straightforward and flexible framework. Using a divide-and-conquer strategy that bypasses intricate multi-modality ranking, our framework can accommodate new modalities and seamlessly transition to new models for the task. Built upon LLMs, MoqaGPT retrieves and extracts answers from each modality separately, then fuses this multi-modal information using LLMs to produce a final answer. Our methodology boosts performance on the MMCoQA dataset, improving F1 by +37.91 points and EM by +34.07 points over the supervised baseline. On the MultiModalQA dataset, MoqaGPT surpasses the zero-shot baseline, improving F1 by 9.5 points and EM by 10.1 points, and significantly closes the gap with supervised methods. Our codebase is available at https://github.com/lezhang7/MOQAGPT.

pdf bib
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
Kelong Mao | Zhicheng Dou | Fengran Mo | Jiewen Hou | Haonan Chen | Hongjin Qian

Precisely understanding users’ contextual search intent has been an important challenge for conversational search. As conversational search sessions are much more diverse and long-tailed, existing methods trained on limited data still show unsatisfactory effectiveness and robustness to handle real conversational search scenarios. Recently, large language models (LLMs) have demonstrated amazing capabilities for text generation and conversation understanding. In this work, we present a simple yet effective prompting framework, called LLM4CS, to leverage LLMs as a text-based search intent interpreter to help conversational search. Under this framework, we explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose to aggregate them into an integrated representation that can robustly represent the user’s real contextual search intent. Extensive automatic evaluations and human evaluations on three widely used conversational search benchmarks, including CAsT-19, CAsT-20, and CAsT-21, demonstrate the remarkable performance of our simple LLM4CS framework compared with existing methods and even using human rewrites. Our findings provide important evidence to better understand and leverage LLMs for conversational search.

pdf bib
DocAsRef: An Empirical Study on Repurposing Reference-based Summary Quality Metrics as Reference-free Metrics
Forrest Bao | Ruixuan Tu | Ge Luo | Yinfei Yang | Hebi Li | Minghui Qiu | Youbiao He | Cen Chen

Automated summary quality assessment falls into two categories: reference-based and reference-free. Reference-based metrics, historically deemed more accurate due to the additional information provided by human-written references, are limited by their reliance on human input. In this paper, we hypothesize that the comparison methodologies used by some reference-based metrics to evaluate a system summary against its corresponding reference can be effectively adapted to assess it against its source document, thereby transforming these metrics into reference-free ones. Experimental results support this hypothesis. After being repurposed reference-freely, the zero-shot BERTScore using the pretrained DeBERTa-large-MNLI model of <0.5B parameters consistently outperforms its original reference-based version across various aspects on the SummEval and Newsroom datasets. It also excels in comparison to most existing reference-free metrics and closely competes with zero-shot summary evaluators based on GPT-3.5.

pdf bib
Toxicity in chatgpt: Analyzing persona-assigned language models
Ameet Deshpande | Vishvak Murahari | Tanmay Rajpurohit | Ashwin Kalyan | Karthik Narasimhan

Large language models (LLMs) have shown incredible capabilities and transcended the natural language processing (NLP) community, with adoption throughout many services like healthcare, therapy, education, and customer service. Since users include people with critical information needs like students or patients engaging with chatbots, the safety of these systems is of prime importance. Legislation has recognized its significance and recently drafted a “Blueprint For An AI Bill Of Rights” which calls for domain experts to identify risks and potential impact of AI systems. To this end, we systematically evaluate toxicity in over half a million generations of ChatGPT, a popular dialogue-based LLM. We find that setting the system parameter of ChatGPT by assigning it a persona, say that of the boxer Muhammad Ali, significantly increases the toxicity of generations. Depending on the persona assigned to ChatGPT, its toxicity can increase up to , with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions. Furthermore, we find concerning patterns where specific entities (e.g., certain races) are targeted more than others ( more) irrespective of the assigned persona, reflecting discriminatory biases in the model. Our findings show that multiple provisions in the legislative blueprint are being violated, and we hope that the broader AI community rethinks the efficacy of current safety guardrails and develops better techniques that lead to robust, safe, and trustworthy AI.

pdf bib
Execution-Based Evaluation for Open-Domain Code Generation
Zhiruo Wang | Shuyan Zhou | Daniel Fried | Graham Neubig

To extend the scope of coding queries to more realistic settings, we propose ODEX, the first Open-Domain EXecution-based natural language (NL) to Python code generation dataset. ODEX has 945 NL-Code pairs spanning 79 diverse libraries, along with 1,707 human-written test cases for execution. Our NL-Code pairs are harvested from StackOverflow forums to encourage natural and practical coding queries. Moreover, ODEX supports four natural languages as intents, in English, Spanish, Japanese, and Russian. ODEX unveils intriguing behavioral differences among top-performing code language models (LM). While CODEX achieves better overall results, CODEGEN improves effectively via scaling – CODEGEN 6.1B performs comparably with CODEX 12B. Both models show substantial gaps between open and closed domains, but CODEGEN gaps tend to decrease with model size while CODEX gaps increase. We release ODEX to facilitate research into open-domain problems for the code generation community.

pdf bib
Syntax-Aware Retrieval Augmented Code Generation
Xiangyu Zhang | Yu Zhou | Guang Yang | Taolue Chen

Neural code generation models are nowadays widely adopted to generate code from natural language descriptions automatically. Recently, pre-trained neural models equipped with token-level retrieval capabilities have exhibited great potentials in neural machine translation. However, applying them directly to code generation experience challenges: the use of the retrieval-based mechanism inevitably introduces extraneous noise to the generation process, resulting in even syntactically incorrect code. Computationally, such models necessitate frequent searches of the cached datastore, which turns out to be time-consuming. To address these issues, we propose kNN-TRANX, a token-level retrieval augmented code generation method. kNN-TRANX allows for searches in smaller datastores tailored for the code generation task. It leverages syntax constraints for the retrieval of datastores, which reduces the impact of retrieve noise. We evaluate kNN-TRANX on two public datasets and the experimental results confirm the effectiveness of our approach.

pdf bib
Selecting Key Views for Zero-Shot Entity Linking
Xuhui Sui | Ying Zhang | Kehui Song | Baohang Zhou | Xiaojie Yuan | Wensheng Zhang

Entity linking, which aligns mentions in the text to entities in knowledge bases, is essential for many natural language processing tasks. Considering the real-world scenarios, recent research hotspot of entity linking has focused on the zero-shot setting, where mentions need to link to unseen entities and only the description of each entity is provided. This task challenges the language understanding ability of models to capture the coherence evidence between the mention context and entity description. However, entity descriptions often contain rich information from multiple views, and a mention with context only relates to a small part of the information. Other irrelevant information will introduce noise, which interferes with models to make the right judgments. Furthermore, the existence of these information also makes it difficult to synthesize key information. To solve these problems, we select key views from descriptions and propose a KVZEL framework for zero-shot entity linking. Specifically, our KVZEL first adopts unsupervised clustering to form sub views. Then, it employs a mention-aware key views selection module to iteratively accumulate mention-focused views. This puts emphasis on capturing mention-related information and allows long-range key information integration. Finally, we aggregate key views to make the final decision. Experimental results show the effectiveness of our KVZEL and it achieves the new state-of-the-art on the zero-shot entity linking dataset.

pdf bib
Is Explanation the Cure? Misinformation Mitigation in the Short Term and Long Term
Yi-Li Hsu | Shih-Chieh Dai | Aiping Xiong | Lun-Wei Ku

With advancements in natural language processing (NLP) models, automatic explanation generation has been proposed to mitigate misinformation on social media platforms in addition to adding warning labels to identified fake news. While many researchers have focused on generating good explanations, how these explanations can really help humans combat fake news is under-explored. In this study, we compare the effectiveness of a warning label and the state-of- the-art counterfactual explanations generated by GPT-4 in debunking misinformation. In a two-wave, online human-subject study, participants (N = 215) were randomly assigned to a control group in which false contents are shown without any intervention, a warning tag group in which the false claims were labeled, or an explanation group in which the false contents were accompanied by GPT-4 generated explanations. Our results show that both interventions significantly decrease participants’ self-reported belief in fake claims in an equivalent manner for the short-term and long-term. We discuss the implications of our findings and directions for future NLP-based misinformation debunking strategies.

pdf bib
Improving the Robustness of Summarization Models by Detecting and Removing Input Noise
Kundan Krishna | Yao Zhao | Jie Ren | Balaji Lakshminarayanan | Jiaming Luo | Mohammad Saleh | Peter Liu

The evaluation of abstractive summarization models typically uses test data that is identically distributed as training data. In real-world practice, documents to be summarized may contain input noise caused by text extraction artifacts or data pipeline bugs. The robustness of model performance under distribution shift caused by such noise is relatively under studied. We present a large empirical study quantifying the sometimes severe loss in performance – up to 12 ROUGE-1 points – from different types of input noise for a range of datasets and model sizes. We then propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any extra training, auxiliary models, or even prior knowledge of the type of noise. Our proposed approach effectively mitigates the loss in performance, recovering a large fraction of the performance drop, sometimes as large as 11 ROUGE-1 points.

pdf bib
How Reliable Are AI-Generated-Text Detectors? An Assessment Framework Using Evasive Soft Prompts
Tharindu Kumarage | Paras Sheth | Raha Moraffah | Joshua Garland | Huan Liu

In recent years, there has been a rapid proliferation of AI-generated text, primarily driven by the release of powerful pre-trained language models (PLMs). To address the issue of misuse associated with AI-generated text, various high-performing detectors have been developed, including the OpenAI detector and the Stanford DetectGPT. In our study, we ask how reliable these detectors are. We answer the question by designing a novel approach that can prompt any PLM to generate text that evades these high-performing detectors. The proposed approach suggests a universal evasive prompt, a novel type of soft prompt, which guides PLMs in producing “human-like” text that can mislead the detectors. The novel universal evasive prompt is achieved in two steps: First, we create an evasive soft prompt tailored to a specific PLM through prompt tuning; and then, we leverage the transferability of soft prompts to transfer the learned evasive soft prompt from one PLM to another. Employing multiple PLMs in various writing tasks, we conduct extensive experiments to evaluate the efficacy of the evasive soft prompts in their evasion of state-of-the-art detectors.

pdf bib
Knowledge is a Region in Weight Space for Fine-tuned Language Models
Almog Gueta | Elad Venezian | Colin Raffel | Noam Slonim | Yoav Katz | Leshem Choshen

Research on neural networks has focused on understanding a single model trained on a single dataset. However, relatively little is known about the relationships between different models, particularly those trained or tested on different datasets. We address this by studying how the weight space and the underlying loss landscape of different models are interconnected. Specifically, we demonstrate that finetuned models that were optimized for high performance, reside in well-defined regions in weight space, and vice versa – that any model that resides anywhere in those regions also exhibits high performance. Notably, we show that language models that have been finetuned on the same dataset form a tight cluster in the weight space, while models finetuned on different datasets from the same underlying task form a looser cluster. Moreover, traversing around the region between the models leads to new models that perform comparably or even better than models obtained via finetuning, even on tasks that the original models were not finetuned on. Our findings provide insight into the relationships between models, demonstrating that a model positioned between two similar models can acquire the knowledge of both. We leverage this and design a method for selecting a better model for efficient finetuning. Specifically, we show that starting from the center of the region is as effective, if not more, than using the pretrained model in 11 out of 12 datasets, resulting in an average accuracy improvement of 3.06.

pdf bib
Unveiling the Multi-Annotation Process: Examining the Influence of Annotation Quantity and Instance Difficulty on Model Performance
Pritam Kadasi | Mayank Singh

The NLP community has long advocated for the construction of multi-annotator datasets to better capture the nuances of language interpretation, subjectivity, and ambiguity. This paper conducts a retrospective study to show how performance scores can vary when a dataset expands from a single annotation per instance to multiple annotations. We propose a novel multi-annotator simulation process to generate datasets with varying annotation budgets. We show that similar datasets with the same annotation budget can lead to varying performance gains. Our findings challenge the popular belief that models trained on multi-annotation examples always lead to better performance than models trained on single or few-annotation examples.

pdf bib
On the Risk of Misinformation Pollution with Large Language Models
Yikang Pan | Liangming Pan | Wenhu Chen | Preslav Nakov | Min-Yen Kan | William Wang

We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation and its subsequent impact on information-intensive applications, particularly Open-Domain Question Answering (ODQA) systems. We establish a threat model and simulate potential misuse scenarios, both unintentional and intentional, to assess the extent to which LLMs can be utilized to produce misinformation. Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation (up to 87%) in the performance of ODQA systems. Moreover, we uncover disparities in the attributes associated with persuading humans and machines, presenting an obstacle to current human-centric approaches to combat misinformation. To mitigate the harm caused by LLM-generated misinformation, we propose three defense strategies: misinformation detection, vigilant prompting, and reader ensemble. These approaches have demonstrated promising results, albeit with certain associated costs. Lastly, we discuss the practicality of utilizing LLMs as automatic misinformation generators and provide relevant resources and code to facilitate future research in this area.

pdf bib
Dolphin: A Challenging and Diverse Benchmark for Arabic NLG
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Ahmed El-Shangiti | Muhammad Abdul-Mageed

We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several Arabic and multilingual models on our benchmark, allowing us to set strong baselines against which researchers can compare.

pdf bib
Hierarchical Enhancement Framework for Aspect-based Argument Mining
Yujie Fu | Yang Li | Suge Wang | Xiaoli Li | Deyu Li | Jian Liao | JianXing Zheng

Aspect-Based Argument Mining (ABAM) is a critical task in computational argumentation. Existing methods have primarily treated ABAM as a nested named entity recognition problem, overlooking the need for tailored strategies to effectively address the specific challenges of ABAM tasks. To this end, we propose a layer-based Hierarchical Enhancement Framework (HEF) for ABAM, and introduce three novel components: the Semantic and Syntactic Fusion (SSF) component, the Batch-level Heterogeneous Graph Attention Network (BHGAT) component, and the Span Mask Interactive Attention (SMIA) component. These components serve the purposes of optimizing underlying representations, detecting argument unit stances, and constraining aspect term recognition boundaries, respectively. By incorporating these components, our framework enables better handling of the challenges and improves the performance and accuracy in argument unit and aspect term recognition. Experiments on multiple datasets and various tasks verify the effectiveness of the proposed framework and components.

pdf bib
MenatQA: A New Dataset for Testing the Temporal Comprehension and Reasoning Abilities of Large Language Models
Yifan Wei | Yisong Su | Huanhuan Ma | Xiaoyan Yu | Fangyu Lei | Yuanzhe Zhang | Jun Zhao | Kang Liu

Large language models (LLMs) have shown nearly saturated performance on many natural language processing (NLP) tasks. As a result, it is natural for people to believe that LLMs have also mastered abilities such as time understanding and reasoning. However, research on the temporal sensitivity of LLMs has been insufficiently emphasized. To fill this gap, this paper constructs Multiple Sensitive Factors Time QA (MenatQA), which encompasses three temporal factors (scope factor, order factor, counterfactual factor) with total 2,853 samples for evaluating the time comprehension and reasoning abilities of LLMs. This paper tests current mainstream LLMs with different parameter sizes, ranging from billions to hundreds of billions. The results show most LLMs fall behind smaller temporal reasoning models with different degree on these factors. In specific, LLMs show a significant vulnerability to temporal biases and depend heavily on the temporal information provided in questions. Furthermore, this paper undertakes a preliminary investigation into potential improvement strategies by devising specific prompts and leveraging external tools. These approaches serve as valuable baselines or references for future research endeavors.

pdf bib
What Makes Chain-of-Thought Prompting Effective? A Counterfactual Study
Aman Madaan | Katherine Hermann | Amir Yazdanbakhsh

The effectiveness of Chain-of-thought prompting (CoT) has been widely recognized, but the underlying mechanisms behind its success, the reason why it just works for a wide range of tasks, remains an open question. To investigate this, we employ a counterfactual prompting approach, systematically manipulating elements of examples used in a few-shot prompt, and testing the consequences on model behavior. This allows us to understand the relative contributions of prompt elements such as symbols (digits, entities) and patterns (equations, sentence structure) on in-context learning. Our experiments with three different large language models (LLMs) reveal several key findings. First, the specific symbols used in the prompt do not significantly impact the model’s performance. However, consistent patterns in examples and specifying text in style frequently found on the web are crucial. Second, our findings suggest that the necessity of accurate few-shot examples depends on their role in communicating task understanding. We identify tasks where inaccurate few-shot examples hurt and, surprisingly, tasks where they improve performance. Additionally, we find that the intermediate steps in CoT may not necessarily facilitate learning how to solve a task, but instead efficiently convey task understanding (what) to the model. Furthermore, CoT leverages LLMs to fill in missing commonsense information, particularly helping difficult reasoning problems and long-tail questions.

pdf bib
Perceptual Structure in the absence of grounding: the impact of abstractedness and subjectivity in color language for LLMs
Pablo Loyola | Edison Marrese-Taylor | Andres Hoyos-Idrobo

The need for grounding in language understanding is an active research topic. Previous work has suggested that color perception and color language appear as a suitable test bed to empirically study the problem, given its cognitive significance and showing that there is considerable alignment between a defined color space and the feature space defined by a language model. To further study this issue, we collect a large scale source of colors and their descriptions, containing almost a 1 million examples , and perform an empirical analysis to compare two kinds of alignments: (i) inter-space, by learning a mapping between embedding space and color space, and (ii) intra-space, by means of prompting comparatives between color descriptions. Our results show that while color space alignment holds for monolexemic, highly pragmatic color descriptions, this alignment drops considerably in the presence of examples that exhibit elements of real linguistic usage such as subjectivity and abstractedness, suggesting that grounding may be required in such cases.

pdf bib
A Dataset for Investigating the Impact of Context for Offensive Language Detection in Tweets
Musa İhtiyar | Ömer Özdemir | Mustafa Erengül | Arzucan Özgür

Offensive language detection is crucial in natural language processing (NLP). We investigated the importance of context for detecting such language in reply tweets on Twitter, where the use of offensive language is widespread. We collected a Turkish tweet dataset where the target group was unvaccinated people during the Covid period. Tweets in the dataset were enriched with contextual information by adding the original tweet to which a particular tweet was posted as a reply. The dataset, which includes over 28,000 tweet-reply pairs, was manually labeled by human annotators and made publicly available. In addition, we compared the performance of different machine learning models with and without contextual information. Our results show that this type of contextual information was not very useful in improving the performance of the models in general, although it slightly increased the macro-averaged F1-score of certain models.

pdf bib
Remember what you did so you know what to do next
Manuel Ciosici | Alex Hedges | Yash Kankanampati | Justin Martin | Marjorie Freedman | Ralph Weischedel

We explore using the 6B parameter GPT-J language model to create a plan for a simulated robot to achieve 30 classes of goals in ScienceWorld, a text game simulator for elementary science experiments and for which previously published empirical work has shown large language models (LLM)s to be a poor fit (Wang et al., 2022). Using the Markov assumption, the LLM outperforms the state-of-the-art based on reinforcement learning by a factor of 1.4. When we fill the LLM’s input buffer with as many prior steps as will fit, improvement rises to 3.3x. Even when training on only 6.5% of the training data, we observe a 2.3x improvement over the state-of-the-art. Our experiments show that performance varies widely across the 30 classes of actions, indicating that averaging over tasks can hide significant performance issues.

pdf bib
An Empirical Study of Multimodal Model Merging
Yi-Lin Sung | Linjie Li | Kevin Lin | Zhe Gan | Mohit Bansal | Lijuan Wang

Model merging (e.g., via interpolation or task arithmetic) fuses multiple models trained on different tasks to generate a multi-task solution. The technique has been proven successful in previous studies, where the models are trained on similar tasks and with the same initialization. In this paper, we expand on this concept to a multimodal setup by merging transformers trained on different modalities. Furthermore, we conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture to create a parameter-efficient modality-agnostic architecture. Through comprehensive experiments, we systematically investigate the key factors impacting model performance after merging, including initialization, merging mechanisms, and model architectures. We also propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes. Our analysis leads to an effective training recipe for matching the performance of the modality-agnostic baseline (i.e., pre-trained from scratch) via model merging. Our method also outperforms naive merging significantly on various tasks, with improvements of 3% on VQA, 7% on COCO retrieval, 25% on NLVR2, 14% on Flickr30k and 3% on ADE20k.

pdf bib
Learning to Abstract with Nonparametric Variational Information Bottleneck
Melika Behjati | Fabio Fehr | James Henderson

Learned representations at the level of characters, sub-words, words, and sentences, have each contributed to advances in understanding different NLP tasks and linguistic phenomena. However, learning textual embeddings is costly as they are tokenization specific and require different models to be trained for each level of abstraction. We introduce a novel language representation model which can learn to compress to different levels of abstraction at different layers of the same model. We apply Nonparametric Variational Information Bottleneck (NVIB) to stacked Transformer self-attention layers in the encoder, which encourages an information-theoretic compression of the representations through the model. We find that the layers within the model correspond to increasing levels of abstraction and that their representations are more linguistically informed. Finally, we show that NVIB compression results in a model which is more robust to adversarial perturbations.

pdf bib
Global Structure Knowledge-Guided Relation Extraction Method for Visually-Rich Document
Xiangnan Chen | Qian Xiao | Juncheng Li | Duo Dong | Jun Lin | Xiaozhong Liu | Siliang Tang

Visual Relation Extraction (VRE) is a powerful means of discovering relationships between entities within visually-rich documents. Existing methods often focus on manipulating entity features to find pairwise relations, yet neglect the more fundamental structural information that links disparate entity pairs together. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a GlObal Structure knowledge-guided relation Extraction (GOSE) framework. GOSE initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document. Subsequently, global structural knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities. This “generate-capture-incorporate” cycle is repeated multiple times, allowing entity representations and global structure knowledge to be mutually reinforced. Extensive experiments validate that GOSE not only outperforms existing methods in the standard fine-tuning setting but also reveals superior cross-lingual learning capabilities; indeed, even yields stronger data-efficient performance in the low-resource setting.

pdf bib
Learning to Compose Representations of Different Encoder Layers towards Improving Compositional Generalization
Lei Lin | Shuangtao Li | Yafang Zheng | Biao Fu | Shan Liu | Yidong Chen | Xiaodong Shi

Recent studies have shown that sequence-to-sequence (seq2seq) models struggle with compositional generalization (CG), i.e., the ability to systematically generalize to unseen compositions of seen components. There is mounting evidence that one of the reasons hindering CG is the representation of the encoder uppermost layer is entangled, i.e., the syntactic and semantic representations of sequences are entangled. However, we consider that the previously identified representation entanglement problem is not comprehensive enough. Additionally, we hypothesize that the source keys and values representations passing into different decoder layers are also entangled. Starting from this intuition, we propose CompoSition (Compose Syntactic and Semantic Representations), an extension to seq2seq models which learns to compose representations of different encoder layers dynamically for different tasks, since recent studies reveal that the bottom layers of the Transformer encoder contain more syntactic information and the top ones contain more semantic information. Specifically, we introduce a composed layer between the encoder and decoder to compose different encoder layers’ representations to generate specific keys and values passing into different decoder layers. CompoSition achieves competitive results on two comprehensive and realistic benchmarks, which empirically demonstrates the effectiveness of our proposal. Codes are available at https://github.com/thinkaboutzero/COMPOSITION.

pdf bib
SelectNoise: Unsupervised Noise Injection to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages
Maharaj Brahma | Kaushal Maurya | Maunendra Desarkar

In this work, we focus on the task of machine translation (MT) from extremely low-resource language (ELRLs) to English. The unavailability of parallel data, lack of representation from large multilingual pre-trained models, and limited monolingual data hinder the development of MT systems for ELRLs. However, many ELRLs often share lexical similarities with high-resource languages (HRLs) due to factors such as dialectical variations, geographical proximity, and language structure. We utilize this property to improve cross-lingual signals from closely related HRL to enable MT for ELRLs. Specifically, we propose a novel unsupervised approach, SelectNoise, based on selective candidate extraction and noise injection to generate noisy HRLs training data. The noise injection acts as a regularizer, and the model trained with noisy data learns to handle lexical variations such as spelling, grammar, and vocabulary changes, leading to improved cross-lingual transfer to ELRLs. The selective candidates are extracted using BPE merge operations and edit operations, and noise injection is performed using greedy, top-p, and top-k sampling strategies. We evaluate the proposed model on 12 ELRLs from the FLORES-200 benchmark in a zero-shot setting across two language families. The proposed model outperformed all the strong baselines, demonstrating its efficacy. It has comparable performance with the supervised noise injection model. Our code and model are publicly available.

pdf bib
Breaking Boundaries in Retrieval Systems: Unsupervised Domain Adaptation with Denoise-Finetuning
Che Chen | Ching Yang | Chun-Yi Lin | Hung-Yu Kao

Dense retrieval models have exhibited remarkable effectiveness, but they rely on abundant labeled data and face challenges when applied to different domains. Previous domain adaptation methods have employed generative models to generate pseudo queries, creating pseudo datasets to enhance the performance of dense retrieval models. However, these approaches typically use unadapted rerank models, leading to potentially imprecise labels. In this paper, we demonstrate the significance of adapting the rerank model to the target domain prior to utilizing it for label generation. This adaptation process enables us to obtain more accurate labels, thereby improving the overall performance of the dense retrieval model. Additionally, by combining the adapted retrieval model with the adapted rerank model, we achieve significantly better domain adaptation results across three retrieval datasets. We release our code for future research.

pdf bib
Exploring the Cognitive Knowledge Structure of Large Language Models: An Educational Diagnostic Assessment Approach
Zheyuan Zhang | Jifan Yu | Juanzi Li | Lei Hou

Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence. Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains. However, cognitive research on the overall knowledge structure of LLMs is still lacking. In this paper, based on educational diagnostic assessment method, we conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom Taxonomy. We aim to reveal the knowledge structures of LLMs and gain insights of their cognitive capabilities. This research emphasizes the significance of investigating LLMs’ knowledge and understanding the disparate cognitive patterns of LLMs. By shedding light on models’ knowledge, researchers can advance development and utilization of LLMs in a more informed and effective manner.

pdf bib
Simpler neural networks prefer subregular languages
Charles Torres | Richard Futrell

We apply a continuous relaxation of L0 regularization (Louizos et al., 2017), which induces sparsity, to study the inductive biases of LSTMs. In particular, we are interested in the patterns of formal languages which are readily learned and expressed by LSTMs. Across a wide range of tests we find sparse LSTMs prefer subregular languages over regular languages and the strength of this preference increases as we increase the pressure for sparsity. Furthermore LSTMs which are trained on subregular languages have fewer non-zero parameters. We conjecture that this subregular bias in LSTMs is related to the cognitive bias for subregular language observed in human phonology which are both downstream of a simplicity bias in a suitable description language.

pdf bib
Simple Hardware-Efficient PCFGs with Independent Left and Right Productions
Wei Liu | Songlin Yang | Yoon Kim | Kewei Tu

Scaling dense PCFGs to thousands of nonterminals via low-rank parameterizations of the rule probability tensor has been shown to be beneficial for unsupervised parsing. However, PCFGs scaled this way still perform poorly as a language model, and even underperform similarly-sized HMMs. This work introduces SimplePCFG, a simple PCFG formalism with independent left and right productions. Despite imposing a stronger independence assumption than the low-rank approach, we find that this formalism scales more effectively both as a language model and as an unsupervised parser. We further introduce FlashInside, a hardware IO-aware implementation of the inside algorithm for efficiently scaling simple PCFGs. Through extensive experiments on multiple grammar induction benchmarks, we validate the effectiveness of simple PCFGs over low-rank baselines.

pdf bib
R3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context
Qingyuan Tian | Hanlun Zhu | Lei Wang | Yang Li | Yunshi Lan

With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R3 prompting, for CoT reasoning under noisy context. Specifically, R3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R3 prompting method in solving reasoning tasks in LLMs under noisy context.

pdf bib
Quality Estimation-Assisted Automatic Post-Editing
Sourabh Deoghare | Diptesh Kanojia | Fred Blain | Tharindu Ranasinghe | Pushpak Bhattacharyya

Automatic Post-Editing (APE) systems are prone to over-correction of the Machine Translation (MT) outputs. While Word-level Quality Estimation (QE) system can provide a way to curtail the over-correction, a significant performance gain has not been observed thus far by utilizing existing APE and QE combination strategies. In this paper, we propose joint training of a model on APE and QE tasks to improve the APE. Our proposed approach utilizes a multi-task learning (MTL) methodology, which shows significant improvement while treating both tasks as a ‘bargaining game’ during training. Moreover, we investigate various existing combination strategies and show that our approach achieves state-of-the-art performance for a ‘distant’ language pair, viz., English-Marathi. We observe an improvement of 1.09 TER and 1.37 BLEU points over a baseline QE-Unassisted APE system for English-Marathi, while also observing 0.46 TER and 0.62 BLEU points for English-German. Further, we discuss the results qualitatively and show how our approach helps reduce over-correction, thereby improving the APE performance. We also observe that the degree of integration between QE and APE directly correlates with the APE performance gain. We release our code and models publicly.

pdf bib
Adapter Pruning using Tropical Characterization
Rishabh Bhardwaj | Tushar Vaidya | Soujanya Poria

Adapters are widely popular parameter-efficient transfer learning approaches in natural language processing that insert trainable modules in between layers of a pre-trained language model. Apart from several heuristics, however, there has been a lack of studies analyzing the optimal number of adapter parameters needed for downstream applications. Thus, we propose an adapter pruning approach by studying the tropical characteristics of trainable modules. We cast it as an optimization problem that aims to prune parameters from the adapter layers without changing the orientation of underlying tropical hypersurfaces. Our experiments on five NLP datasets show that tropical geometry tends to identify more relevant parameters to prune when compared with the magnitude-based baseline, while a combined approach works best across the tasks.

pdf bib
Self-Supervised Rule Learning to Link Text Segments to Relational Elements of Structured Knowledge
Shajith Ikbal | Udit Sharma | Hima Karanam | Sumit Neelam | Ronny Luss | Dheeraj Sreedhar | Pavan Kapanipathi | Naweed Khan | Kyle Erwin | Ndivhuwo Makondo | Ibrahim Abdelaziz | Achille Fokoue | Alexander Gray | Maxwell Crouse | Subhajit Chaudhury | Chitra Subramanian

We present a neuro-symbolic approach to self-learn rules that serve as interpretable knowledge to perform relation linking in knowledge base question answering systems. These rules define natural language text predicates as a weighted mixture of knowledge base paths. The weights learned during training effectively serve the mapping needed to perform relation linking. We use popular masked training strategy to self-learn the rules. A key distinguishing aspect of our work is that the masked training operate over logical forms of the sentence instead of their natural language text form. This offers opportunity to extract extended context information from the structured knowledge source and use that to build robust and human readable rules. We evaluate accuracy and usefulness of such learned rules by utilizing them for prediction of missing kinship relation in CLUTRR dataset and relation linking in a KBQA system using SWQ-WD dataset. Results demonstrate the effectiveness of our approach - its generalizability, interpretability and ability to achieve an average performance gain of 17% on CLUTRR dataset.

pdf bib
TaTA: A Multilingual Table-to-Text Dataset for African Languages
Sebastian Gehrmann | Sebastian Ruder | Vitaly Nikolaev | Jan Botha | Michael Chavinda | Ankur Parikh | Clara Rivera

Existing data-to-text generation datasets are mostly limited to English. To address this lack of data, we create Table-to-Text in African languages (TaTA), the first large multilingual table-to-text dataset with a focus on African languages. We created TaTA by transcribing figures and accompanying text in bilingual reports by the Demographic and Health Surveys Program, followed by professional translation to make the dataset fully parallel. TaTA includes 8,700 examples in nine languages including four African languages (Hausa, Igbo, Swahili, and Yorùbá) and a zero-shot test language (Russian). We additionally release screenshots of the original figures for future research on multilingual multi-modal approaches. Through an in-depth human evaluation, we show that TaTA is challenging for current models and that less than half the outputs from an mT5-XXL-based model are understandable and attributable to the source data. Our results highlight a) the need for validating metrics; and b) the importance of domain-specific metrics.

pdf bib
Explain-then-translate: an analysis on improving program translation with self-generated explanations
Zilu Tang | Mayank Agarwal | Alexander Shypula | Bailin Wang | Derry Wijaya | Jie Chen | Yoon Kim

This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.

pdf bib
Can Brain Signals Reveal Inner Alignment with Human Languages?
Jielin Qiu | William Han | Jiacheng Zhu | Mengdi Xu | Douglas Weber | Bo Li | Ding Zhao

Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at https://github.com/Jason-Qiu/EEG_Language_Alignment.

pdf bib
DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Extraction
Gang Zhao | Xiaocheng Gong | Xinjie Yang | Guanting Dong | Shudong Lu | Si Li

Most current Event Extraction (EE) methods focus on the high-resource scenario, which requires a large amount of annotated data and can hardly be applied to low-resource domains. To address EE more effectively with limited resources, we propose the Demonstration-enhanced Schema-guided Generation (DemoSG) model, which benefits low-resource EE from two aspects: Firstly, we propose the demonstration-based learning paradigm for EE to fully use the annotated data, which transforms them into demonstrations to illustrate the extraction process and help the model learn effectively. Secondly, we formulate EE as a natural language generation task guided by schema-based prompts, thereby leveraging label semantics and promoting knowledge transfer in low-resource scenarios. We conduct extensive experiments under in-domain and domain adaptation low-resource settings on three datasets, and study the robustness of DemoSG. The results show that DemoSG significantly outperforms current methods in low-resource scenarios.

pdf bib
GLGR: Question-aware Global-to-Local Graph Reasoning for Multi-party Dialogue Reading Comprehension
Yanling Li | Bowei Zou | Yifan Fan | Xibo Li | Ai Ti Aw | Yu Hong

Graph reasoning contributes to the integration of discretely-distributed attentive information (clues) for Multi-party Dialogue Reading Comprehension (MDRC). This is attributed primarily to multi-hop reasoning over global conversational structures. However, existing approaches barely apply questions for anti-noise graph reasoning. More seriously, the local semantic structures in utterances are neglected, although they are beneficial for bridging across semantically-related clues. In this paper, we propose a question-aware global-to-local graph reasoning approach. It expands the canonical Interlocutor-Utterance graph by introducing a question node, enabling comprehensive global graph reasoning. More importantly, it constructs a semantic-role graph for each utterance, and accordingly performs local graph reasoning conditioned on the semantic relations. We design a two-stage encoder network to implement the progressive reasoning from the global graph to local. The experiments on the benchmark datasets Molweni and FriendsQA show that our approach yields significant improvements, compared to BERT and ELECTRA baselines. It achieves 73.6% and 77.2% F1-scores on Molweni and FriendsQA, respectively, outperforming state-of-the-art methods that employ different pretrained language models as backbones.

pdf bib
Towards Mitigating LLM Hallucination via Self Reflection
Ziwei Ji | Tiezheng Yu | Yan Xu | Nayeon Lee | Etsuko Ishii | Pascale Fung

Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of “hallucination”, where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.

pdf bib
Making Body Movement in Sign Language Corpus Accessible for Linguists and Machines with Three-Dimensional Normalization of MediaPipe
Victor Skobov | Mayumi Bono

Linguists can access movement in the sign language video corpus through manual annotation or computational methods. The first relies on a predefinition of features, and the second requires technical knowledge. Methods like MediaPipe and OpenPose are now more often used in sign language processing. MediaPipe detects a two-dimensional (2D) body pose in a single image with a limited approximation of the depth coordinate. Such 2D projection of a three-dimensional (3D) body pose limits the potential application of the resulting models outside the capturing camera settings and position. 2D pose data does not provide linguists with direct and human-readable access to the collected movement data. We propose our four main contributions: A novel 3D normalization method for MediaPipe’s 2D pose, a novel human-readable way of representing the 3D normalized pose data, an analysis of Japanese Sign Language (JSL) sociolinguistic features using the proposed techniques, where we show how an individual signer can be identified based on unique personal movement patterns suggesting a potential threat to anonymity. Our method outperforms the common 2D normalization on a small, diverse JSL dataset. We demonstrate its benefit for deep learning approaches by significantly outperforming the pose-based state-of-the-art models on the open sign language recognition benchmark.

pdf bib
XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Sebastian Ruder | Jonathan Clark | Alexander Gutkin | Mihir Kale | Min Ma | Massimo Nicosia | Shruti Rijhwani | Parker Riley | Jean-Michel Sarr | Xinyi Wang | John Wieting | Nitish Gupta | Anna Katanova | Christo Kirov | Dana Dickinson | Brian Roark | Bidisha Samanta | Connie Tao | David Adelani | Vera Axelrod | Isaac Caswell | Colin Cherry | Dan Garrette | Reeve Ingle | Melvin Johnson | Dmitry Panteleev | Partha Talukdar

Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models.

pdf bib
DiffuVST: Narrating Fictional Scenes with Global-History-Guided Denoising Models
Shengguang Wu | Mei Yuan | Qi Su

Recent advances in image and video creation, especially AI-based image synthesis, have led to the production of numerous visual scenes that exhibit a high level of abstractness and diversity. Consequently, Visual Storytelling (VST), a task that involves generating meaningful and coherent narratives from a collection of images, has become even more challenging and is increasingly desired beyond real-world imagery. While existing VST techniques, which typically use autoregressive decoders, have made significant progress, they suffer from low inference speed and are not well-suited for synthetic scenes. To this end, we propose a novel diffusion-based system DiffuVST, which models the generation of a series of visual descriptions as a single conditional denoising process. The stochastic and non-autoregressive nature of DiffuVST at inference time allows it to generate highly diverse narratives more efficiently. In addition, DiffuVST features a unique design with bi-directional text history guidance and multimodal adapter modules, which effectively improve inter-sentence coherence and image-to-text fidelity. Extensive experiments on the story generation task covering four fictional visual-story datasets demonstrate the superiority of DiffuVST over traditional autoregressive models in terms of both text quality and inference speed.

pdf bib
DiFair: A Benchmark for Disentangled Assessment of Gender Knowledge and Bias
Mahdi Zakizadeh | Kaveh Miandoab | Mohammad Pilehvar

Numerous debiasing techniques have been proposed to mitigate the gender bias that is prevalent in pretrained language models. These are often evaluated on datasets that check the extent to which the model is gender-neutral in its predictions. Importantly, this evaluation protocol overlooks the possible adverse impact of bias mitigation on useful gender knowledge. To fill this gap, we propose **DiFair**, a manually curated dataset based on masked language modeling objectives. **DiFair** allows us to introduce a unified metric, *gender invariance score*, that not only quantifies a model’s biased behavior, but also checks if useful gender knowledge is preserved. We use **DiFair** as a benchmark for a number of widely-used pretained language models and debiasing techniques. Experimental results corroborate previous findings on the existing gender biases, while also demonstrating that although debiasing techniques ameliorate the issue of gender bias, this improvement usually comes at the price of lowering useful gender knowledge of the model.

pdf bib
Transformer-Based Language Model Surprisal Predicts Human Reading Times Best with About Two Billion Training Tokens
Byung-Doh Oh | William Schuler

Recent psycholinguistic studies have drawn conflicting conclusions about the relationship between the quality of a language model and the ability of its surprisal estimates to predict human reading times, which has been speculated to be due to the large gap in both the amount of training data and model capacity across studies. The current work aims to consolidate these findings by evaluating surprisal estimates from Transformer-based language model variants that vary systematically in the amount of training data and model capacity on their ability to predict human reading times. The results show that surprisal estimates from most variants with contemporary model capacities provide the best fit after seeing about two billion training tokens, after which they begin to diverge from humanlike expectations. Additionally, newly-trained smaller model variants reveal a ‘tipping point’ at convergence, after which the decrease in language model perplexity begins to result in poorer fits to human reading times. These results suggest that the massive amount of training data is mainly responsible for the poorer fit achieved by surprisal from larger pre-trained language models, and that a certain degree of model capacity is necessary for Transformer-based language models to capture humanlike expectations.

pdf bib
ExplainCPE: A Free-text Explanation Benchmark of Chinese Pharmacist Examination
Dongfang Li | Jindi Yu | Baotian Hu | Zhenran Xu | Min Zhang

In the field of Large Language Models (LLMs), researchers are increasingly exploring their effectiveness across a wide range of tasks. However, a critical area that requires further investigation is the interpretability of these models, particularly the ability to generate rational explanations for their decisions. Most existing explanation datasets are limited to the English language and the general domain, which leads to a scarcity of linguistic diversity and a lack of resources in specialized domains, such as medical. To mitigate this, we propose ExplainCPE, a challenging medical dataset consisting of over 7K problems from Chinese Pharmacist Examination, specifically tailored to assess the model-generated explanations. From the overall results, only GPT-4 passes the pharmacist examination with a 75.7% accuracy, while other models like ChatGPT fail. Further detailed analysis of LLM-generated explanations reveals the limitations of LLMs in understanding medical text and executing computational reasoning. With the increasing importance of AI safety and trustworthiness, ExplainCPE takes a step towards improving and evaluating the interpretability of LLMs in the medical domain.

pdf bib
CLASS: A Design Framework for Building Intelligent Tutoring Systems Based on Learning Science principles
Shashank Sonkar | Naiming Liu | Debshila Mallick | Richard Baraniuk

We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for building advanced Intelligent Tutoring Systems (ITS) powered by high-performance Large Language Models (LLMs). The CLASS framework empowers ITS with two key capabilities. First, through a carefully curated scaffolding dataset, CLASS equips ITS with essential problem-solving strategies, enabling it to provide tutor-like, step-by-step guidance to students. Second, by using a dynamic conversational dataset, CLASS assists ITS in facilitating natural language interactions, fostering engaging student-tutor conversations. The CLASS framework also provides valuable insights into ITS’s internal decision-making process which allows seamless integration of user feedback, thus enabling continuous refinement and improvement. We also present a proof-of-concept ITS, referred to as SPOCK, which is trained using the CLASS framework with a focus on introductory college level biology content. A carefully constructed protocol was developed for SPOCK’s preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK’s capability to break down questions into manageable subproblems and provide encouraging responses to students.

pdf bib
Normal-Abnormal Decoupling Memory for Medical Report Generation
Guosheng Zhao | Yan Yan | Zijian Zhao

The automatic generation of medical reports plays a crucial role in clinical automation. In contrast to natural images, radiological images exhibit a high degree of similarity, while medical data are prone to data bias and complex noise, posing challenges for existing methods in capturing nuanced visual information. To address these challenges, we introduce a novel normal-abnormal semantic decoupling network that utilizes abnormal pattern memory. Different from directly optimizing the network using medical reports, we optimize visual extraction through the extraction of abnormal semantics from the reports. Moreover, we independently learn normal semantics based on abnormal semantics, ensuring that the optimization of the visual network remains unaffected by normal semantics learning. Then, we divided the words in the report into four parts: normal/abnormal sentences and normal/abnormal semantics, optimizing the network with distinct weights for each partition. The two semantic components, along with visual information, are seamlessly integrated to facilitate the generation of precise and coherent reports. This approach mitigates the impact of noisy normal semantics and reports. Moreover, we develop a novel encoder for abnormal pattern memory, which improves the network’s ability to detect anomalies by capturing and embedding the abnormal patterns of images in the visual encoder. This approach demonstrates excellent performance on the benchmark MIMIC-CXR, surpassing the current state-of-the-art methods.

pdf bib
mmT5: Modular Multilingual Pre-Training Solves Source Language Hallucinations
Jonas Pfeiffer | Francesco Piccinno | Massimo Nicosia | Xinyi Wang | Machel Reid | Sebastian Ruder

Multilingual sequence-to-sequence models perform poorly with increased language coverage and fail to consistently generate text in the correct target language in few-shot settings. To address these challenges, we propose mmT5, a modular multilingual sequence-to-sequence model. mmT5 utilizes language-specific modules during pre-training, which disentangle language-specific information from language-agnostic information. We identify representation drift during fine-tuning as a key limitation of modular generative models and develop strategies that enable effective zero-shot transfer. Our model outperforms mT5 at the same parameter sizes by a large margin on representative natural language understanding and generation tasks in 40+ languages. Compared to mT5, mmT5 raises the rate of generating text in the correct language under zero-shot settings from 7% to 99%, thereby greatly alleviating the source language hallucination problem.

pdf bib
ImageNetVC: Zero- and Few-Shot Visual Commonsense Evaluation on 1000 ImageNet Categories
Heming Xia | Qingxiu Dong | Lei Li | Jingjing Xu | Tianyu Liu | Ziwei Qin | Zhifang Sui

Recently, Large Language Models (LLMs) have been serving as general-purpose interfaces, posing a significant demand for comprehensive visual knowledge. However, it remains unclear how well current LLMs and their visually augmented counterparts (VaLMs) can master visual commonsense knowledge. To investigate this, we propose ImageNetVC, a human-annotated dataset specifically designed for zero- and few-shot visual commonsense evaluation across 1,000 ImageNet categories. Utilizing ImageNetVC, we benchmark the fundamental visual commonsense knowledge of both unimodal LLMs and VaLMs. Furthermore, we analyze the factors affecting the visual commonsense knowledge of large-scale models, providing insights into the development of language models enriched with visual commonsense knowledge. Our code and dataset are available at https://github.com/hemingkx/ImageNetVC.

pdf bib
MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition
Besnik Fetahu | Zhiyu Chen | Sudipta Kar | Oleg Rokhlenko | Shervin Malmasi

We present MULTICONER V2, a dataset for fine-grained Named Entity Recognition covering 33 entity classes across 12 languages, in both monolingual and multilingual settings. This dataset aims to tackle the following practical challenges in NER: (i) effective handling of fine-grained classes that include complex entities like movie titles, and (ii) performance degradation due to noise generated from typing mistakes or OCR errors. The dataset is compiled from open resources like Wikipedia and Wikidata, and is publicly available. Evaluation based on the XLM-RoBERTa baseline highlights the unique challenges posed by MULTICONER V2: (i) the fine-grained taxonomy is challenging, where the scores are low with macro-F1=0.63 (across all languages), and (ii) the corruption strategy significantly impairs performance, with entity corruption resulting in 9% lower performance relative to non-entity corruptions across all languages. This highlights the greater impact of entity noise in contrast to context noise.

pdf bib
A Query-Parallel Machine Reading Comprehension Framework for Low-resource NER
Yuhao Zhang | Yongliang Wang

Named entity recognition (NER) is a fundamental task in natural language processing. Recently, NER has been formulated as a machine reading comprehension (MRC) task, in which manually-crafted queries are used to extract entities of different types. However, current MRC-based NER techniques are limited to extracting a single type of entities at a time and are largely geared towards resource-rich settings. This renders them inefficient during the inference phase, while also leaving their potential untapped for utilization in low-resource settings. We suggest a query-parallel MRC-based approach to address these issues, which is capable of extracting multiple entity types concurrently and is applicable to both resource-rich and resource-limited settings. Specifically, we propose a query-parallel encoder which uses a query-segmented attention mechanism to isolate the semantics of queries and model the query-context interaction with a unidirectional flow. This allows for easier generalization to new entity types or transfer to new domains. After obtaining the query and context representations through the encoder, they are fed into a query-conditioned biaffine predictor to extract multiple entities at once. The model is trained with parameter-efficient tuning technique, making it more data-efficient. We conduct extensive experiments and demonstrate that our model performs competitively against strong baseline methods in resource-rich settings, and achieves state-of-the-art results in low-resource settings, including training-from-scratch, in-domain transfer and cross-domain transfer tasks.

pdf bib
BiSPN: Generating Entity Set and Relation Set Coherently in One Pass
Yuxin He | Buzhou Tang

By modeling the interaction among instances and avoiding error propagation, Set Prediction Networks (SPNs) achieve state-of-the-art performance on the tasks of named entity recognition and relation triple extraction respectively. However, how to jointly extract entities and relation triples via SPNs remains an unexplored problem, where the main challenge is the maintenance of coherence between the predicted entity/relation sets during one-pass generation. In this work, we present Bipartite Set Prediction Network (BiSPN), a novel joint entity-relation extraction model that can efficiently generate entity set and relation set in parallel. To overcome the challenge of coherence, BiSPN is equipped with a novel bipartite consistency loss as well as an entity-relation linking loss during training. Experiments on three biomedical/clinical datasets and a general-domain dataset show that BiSPN achieves new state of the art in knowledge-intensive scene and performs competitively in general-domain, while being more efficient than two-stage joint extraction methods.

pdf bib
MEEP: Is this Engaging? Prompting Large Language Models for Dialogue Evaluation in Multilingual Settings
Amila Ferron | Amber Shore | Ekata Mitra | Ameeta Agrawal

As dialogue systems become more popular, evaluation of their response quality gains importance. Engagingness highly correlates with overall quality and creates a sense of connection that gives human participants a more fulfilling experience. Although qualities like coherence and fluency are readily measured with well-worn automatic metrics, evaluating engagingness often relies on human assessment, which is a costly and time-consuming process. Existing automatic engagingness metrics evaluate the response without the conversation history, are designed for one dataset, or have limited correlation with human annotations. Furthermore, they have been tested exclusively on English conversations. Given that dialogue systems are increasingly available in languages beyond English, multilingual evaluation capabilities are essential. We propose that large language models (LLMs) may be used for evaluation of engagingness in dialogue through prompting, and ask how prompt constructs and translated prompts compare in a multilingual setting. We provide a prompt-design taxonomy for engagingness and find that using selected prompt elements with LLMs, including our comprehensive definition of engagingness, outperforms state-of-the-art methods on evaluation of engagingness in dialogue across multiple languages.

pdf bib
Exploring the Impact of Corpus Diversity on Financial Pretrained Language Models
Jaeyoung Choe | Keonwoong Noh | Nayeon Kim | Seyun Ahn | Woohwan Jung

Over the past few years, various domain-specific pretrained language models (PLMs) have been proposed and have outperformed general-domain PLMs in specialized areas such as biomedical, scientific, and clinical domains. In addition, financial PLMs have been studied because of the high economic impact of financial data analysis. However, we found that financial PLMs were not pretrained on sufficiently diverse financial data. This lack of diverse training data leads to a subpar generalization performance, resulting in general-purpose PLMs, including BERT, often outperforming financial PLMs on many downstream tasks. To address this issue, we collected a broad range of financial corpus and trained the Financial Language Model (FiLM) on these diverse datasets. Our experimental results confirm that FiLM outperforms not only existing financial PLMs but also general domain PLMs. Furthermore, we provide empirical evidence that this improvement can be achieved even for unseen corpus groups.

pdf bib
LLMDet: A Third Party Large Language Models Generated Text Detection Tool
Kangxi Wu | Liang Pang | Huawei Shen | Xueqi Cheng | Tat-Seng Chua

Generated texts from large language models (LLMs) are remarkably close to high-quality human-authored text, raising concerns about their potential misuse in spreading false information and academic misconduct. Consequently, there is an urgent need for a highly practical detection tool capable of accurately identifying the source of a given text. However, existing detection tools typically rely on access to LLMs and can only differentiate between machine-generated and human-authored text, failing to meet the requirements of fine-grained tracing, intermediary judgment, and rapid detection. Therefore, we propose LLMDet, a model-specific, secure, efficient, and extendable detection tool, that can source text from specific LLMs, such as GPT-2, OPT, LLaMA, and others. In LLMDet, we record the next-token probabilities of salient n-grams as features to calculate proxy perplexity for each LLM. By jointly analyzing the proxy perplexities of LLMs, we can determine the source of the generated text. Experimental results show that LLMDet yields impressive detection performance while ensuring speed and security, achieving 98.54% precision and about × 5.0 faster for recognizing human-authored text. Additionally, LLMDet can effortlessly extend its detection capabilities to a new open-source model. We will provide an open-source tool at https://github.com/TrustedLLM/LLMDet.

pdf bib
RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning
Wenjun Hou | Yi Cheng | Kaishuai Xu | Wenjie Li | Jiang Liu

Automating radiology report generation can significantly alleviate radiologists’ workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient’s current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.

pdf bib
Causal Intervention for Abstractive Related Work Generation
Jiachang Liu | Qi Zhang | Chongyang Shi | Usman Naseem | Shoujin Wang | Liang Hu | Ivor Tsang

Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models’ generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.

pdf bib
G-SPEED: General SParse Efficient Editing MoDel
Haoke Zhang | Yue Wang | Juntao Li | Xiabing Zhou | Min Zhang

Large Language Models (LLMs) have demonstrated incredible capabilities in understanding, generating, and manipulating languages. Through human-model interactions, LLMs can automatically understand human-issued instructions and output the expected contents, which can significantly increase working efficiency. In various types of real-world demands, editing-oriented tasks account for a considerable proportion, which involves an interactive process that entails the continuous refinement of existing texts to meet specific criteria. Due to the need for multi-round human-model interaction and the generation of complicated editing tasks, there is an emergent need for efficient general editing models. In this paper, we propose General SParse Efficient Editing MoDel (G-SPEED), which can fulfill diverse editing requirements through a single model while maintaining low computational costs. Specifically, we first propose a novel unsupervised text editing data clustering algorithm to deal with the data scarcity problem. Subsequently, we introduce a sparse editing model architecture to mitigate the inherently limited learning capabilities of small language models. The experimental outcomes indicate that G-SPEED, with its 508M parameters, can surpass LLMs equipped with 175B parameters. Our code and model checkpoints are available at https://github.com/Banner-Z/G-SPEED.

pdf bib
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Boyi Deng | Wenjie Wang | Fuli Feng | Yang Deng | Qifan Wang | Xiangnan He

Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs.

pdf bib
Smart “Chef”: Verifying the Effect of Role-based Paraphrasing for Aspect Term Extraction
Jiaxiang Chen | Yu Hong | Qingting Xu | Jianmin Yao

We tackle Aspect Term Extraction (ATE), a task of automatically extracting aspect terms from sentences. The current Pretrained Language Model (PLM) based extractors have achieved significant improvements. They primarily benefit from context-aware encoding. However, a considerable number of sentences in ATE corpora contain uninformative or low-quality contexts. Such sentences frequently act as “troublemakers” during test. In this study, we explore the context-oriented quality improvement method. Specifically, we propose to automatically rewrite the sentences from the perspectives of virtual experts with different roles, such as a “chef” in the restaurant domain. On this basis, we perform ATE over the paraphrased sentences during test, using the well-trained extractors without any change. In the experiments, we leverage ChatGPT to determine virtual experts in the considered domains, and induce ChatGPT to generate paraphrases conditioned on the roles of virtual experts. We experiment on the benchmark SemEval datasets, including Laptop-domain L14 and Restaurant-domain R14-16. The experimental results show that our approach effectively recalls the inconspicuous aspect terms like “al di la”, although it reduces the precision. In addition, it is proven that our approach can be substantially improved by redundancy elimination and multi-role voting. More importantly, our approach can be used to expand the predictions obtained on the original sentences. This yields state-of-the-art performance (i.e., F1-scores of 86.2%, 89.3%, 77.7%, 82.7% on L14 and R14-16) without retraining or fine-tuning the baseline extractors.

pdf bib
Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning
Yougang Lyu | Jitai Hao | Zihan Wang | Kai Zhao | Shen Gao | Pengjie Ren | Zhumin Chen | Fang Wang | Zhaochun Ren

Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.

pdf bib
Interpreting Indirect Answers to Yes-No Questions in Multiple Languages
Zijie Wang | Md Hossain | Shivam Mathur | Terry Melo | Kadir Ozler | Keun Park | Jacob Quintero | MohammadHossein Rezaei | Shreya Shakya | Md Uddin | Eduardo Blanco

Yes-no questions expect a yes or no for an answer, but people often skip polar keywords. Instead, they answer with long explanations that must be interpreted. In this paper, we focus on this challenging problem and release new benchmarks in eight languages. We present a distant supervision approach to collect training data, and demonstrate that direct answers (i.e., with polar keywords) are useful to train models to interpret indirect answers (i.e., without polar keywords). We show that monolingual fine-tuning is beneficial if training data can be obtained via distant supervision for the language of interest (5 languages). Additionally, we show that cross-lingual fine-tuning is always beneficial (8 languages).

pdf bib
Generalizing Few-Shot Named Entity Recognizers to Unseen Domains with Type-Related Features
Zihan Wang | Ziqi Zhao | Zhumin Chen | Pengjie Ren | Maarten de Rijke | Zhaochun Ren

Few-shot named entity recognition (NER) has shown remarkable progress in identifying entities in low-resource domains. However, few-shot NER methods still struggle with out-of-domain (OOD) examples due to their reliance on manual labeling for the target domain. To address this limitation, recent studies enable generalization to an unseen target domain with only a few labeled examples using data augmentation techniques. Two important challenges remain: First, augmentation is limited to the training data, resulting in minimal overlap between the generated data and OOD examples. Second, knowledge transfer is implicit and insufficient, severely hindering model generalizability and the integration of knowledge from the source domain. In this paper, we propose a framework, prompt learning with type-related features (PLTR), to address these challenges. To identify useful knowledge in the source domain and enhance knowledge transfer, PLTR automatically extracts entity type-related features (TRFs) based on mutual information criteria. To bridge the gap between training and OOD data, PLTR generates a unique prompt for each unseen example by selecting relevant TRFs. We show that PLTR achieves significant performance improvements on in-domain and cross-domain datasets. The use of PLTR facilitates model adaptation and increases representation similarities between the source and unseen domains.

pdf bib
Intervention-Based Alignment of Code Search with Execution Feedback
Hojae Han | Minsoo Kim | Seung-won Hwang | Nan Duan | Shuai Lu

One of the fundamental goals in code search is to retrieve a functionally correct code for a given natural language query. As annotating for correctness requires executing test cases (i.e. obtaining execution feedback), existing code search training datasets approximate text-code co-occurrences as positive execution feedback. However, this approximation may misalign models’ retrieval decisions from ground-truth correctness. To address such limitation, we propose Code Intervention-based Reinforcement Learning (CIRL) that perturbs training code to result in misalignment (i.e. code intervention), then tests models’ decisions and corrects them with the execution feedback by reinforcement learning. The first technical contribution of CIRL is to induce the execution feedback from perturbation, without actual execution. Secondly, CIRL introduces structural perturbations using abstract syntax trees, going beyond simple lexical changes. Experimental results on various datasets demonstrate the effectiveness of CIRL compared to conventional approaches.

pdf bib
Enhancing Neural Machine Translation with Semantic Units
Langlin Huang | Shuhao Gu | Zhang Zhuocheng | Yang Feng

Conventional neural machine translation (NMT) models typically use subwords and words as the basic units for model input and comprehension. However, complete words and phrases composed of several tokens are often the fundamental units for expressing semantics, referred to as semantic units. To address this issue, we propose a method Semantic Units for Machine Translation (SU4MT) which models the integral meanings of semantic units within a sentence, and then leverages them to provide a new perspective for understanding the sentence. Specifically, we first propose Word Pair Encoding (WPE), a phrase extraction method to help identify the boundaries of semantic units. Next, we design an Attentive Semantic Fusion (ASF) layer to integrate the semantics of multiple subwords into a single vector: the semantic unit representation. Lastly, the semantic-unit-level sentence representation is concatenated to the token-level one, and they are combined as the input of encoder. Experimental results demonstrate that our method effectively models and leverages semantic-unit-level information and outperforms the strong baselines.

pdf bib
DRAFT: Dense Retrieval Augmented Few-shot Topic classifier Framework
Keonwoo Kim | Younggun Lee

With the growing volume of diverse information, the demand for classifying arbitrary topics has become increasingly critical. To address this challenge, we introduce DRAFT, a simple framework designed to train a classifier for few-shot topic classification. DRAFT uses a few examples of a specific topic as queries to construct Customized dataset with a dense retriever model. Multi-query retrieval (MQR) algorithm, which effectively handles multiple queries related to a specific topic, is applied to construct the Customized dataset. Subsequently, we fine-tune a classifier using the Customized dataset to identify the topic. To demonstrate the efficacy of our proposed approach, we conduct evaluations on both widely used classification benchmark datasets and manually constructed datasets with 291 diverse topics, which simulate diverse contents encountered in real-world applications. DRAFT shows competitive or superior performance compared to baselines that use in-context learning, such as GPT-3 175B and InstructGPT 175B, on few-shot topic classification tasks despite having 177 times fewer parameters, demonstrating its effectiveness.

pdf bib
A Framework for Exploring Player Perceptions of LLM-Generated Dialogue in Commercial Video Games
Nader Akoury | Qian Yang | Mohit Iyyer

The growing capabilities of large language models (LLMs) have inspired recent efforts to integrate LLM-generated dialogue into video games. However, evaluation remains a major challenge: how do we assess the player experience in a commercial game augmented with LLM-generated dialogue? To explore this question, we introduce a dynamic evaluation framework for the dialogue management systems that govern the task-oriented dialogue often found in roleplaying video games. We first extract dialogue from the widely-acclaimed role-playing game *Disco Elysium: The Final Cut*, which contains 1.1M words of dialogue spread across a complex graph of utterances where node reachability depends on game state (e.g., whether a certain item is held). Using this dataset, we have GPT-4 perform *dialogue infilling* to generate grounded utterances based on game state represented via code. In a statistically robust study of 28 players recruited from the r/DiscoyElysium subreddit, the LLM outputs are evaluated against the game designers’ writing via both preference judgments and free-form feedback using a web interface that recreates the game’s core conversation functionality. Overall, the game designers’ prose is significantly preferred to GPT-4 generations, with participants citing reasons such as improved logical flow and grounding with the game state. To spur more principled future research in this area, we release our web interface and tools to enable researchers to build upon our work. https://pl.aiwright.dev

pdf bib
Generative Calibration for In-context Learning
Zhongtao Jiang | Yuanzhe Zhang | Cao Liu | Jun Zhao | Kang Liu

As one of the most exciting features of large language models (LLMs), in-context learning is a mixed blessing. While it allows users to fast-prototype a task solver with only a few training examples, the performance is generally sensitive to various configurations of the prompt such as the choice or order of the training examples. In this paper, we for the first time theoretically and empirically identify that such a paradox is mainly due to the label shift of the in-context model to the data distribution, in which LLMs shift the label marginal p(y) while having a good label conditional p(x|y). With this understanding, we can simply calibrate the in-context predictive distribution by adjusting the label marginal, which is estimated via Monte-Carlo sampling over the in-context model, i.e., generation of LLMs. We call our approach as generative calibration. We conduct exhaustive experiments with 12 text classification tasks and 12 LLMs scaling from 774M to 33B, generally find that the proposed method greatly and consistently outperforms the ICL as well as state-of-the-art calibration methods, by up to 27% absolute in macro-F1. Meanwhile, the proposed method is also stable under different prompt configurations.

pdf bib
Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation Extraction
Xilai Ma | Jing Li | Min Zhang

Few-shot relation extraction involves identifying the type of relationship between two specific entities within a text, using a limited number of annotated samples. A variety of solutions to this problem have emerged by applying meta-learning and neural graph techniques which typically necessitate a training process for adaptation. Recently, the strategy of in-context learning has been demonstrating notable results without the need of training. Few studies have already utilized in-context learning for zero-shot information extraction. Unfortunately, the evidence for inference is either not considered or implicitly modeled during the construction of chain-of-thought prompts. In this paper, we propose a novel approach for few-shot relation extraction using large language models, named CoT-ER, chain-of-thought with explicit evidence reasoning. In particular, CoT-ER first induces large language models to generate evidences using task-specific and concept-level knowledge. Then these evidences are explicitly incorporated into chain-of-thought prompting for relation extraction. Experimental results demonstrate that our CoT-ER approach (with 0% training data) achieves competitive performance compared to the fully-supervised (with 100% training data) state-of-the-art approach on the FewRel1.0 and FewRel2.0 datasets.

pdf bib
AdaTranS: Adapting with Boundary-based Shrinking for End-to-End Speech Translation
Xingshan Zeng | Liangyou Li | Qun Liu

To alleviate the data scarcity problem in End-to-end speech translation (ST), pre-training on data for speech recognition and machine translation is considered as an important technique. However, the modality gap between speech and text prevents the ST model from efficiently inheriting knowledge from the pre-trained models. In this work, we propose AdaTranS for end-to-end ST. It adapts the speech features with a new shrinking mechanism to mitigate the length mismatch between speech and text features by predicting word boundaries. Experiments on the MUST-C dataset demonstrate that AdaTranS achieves better performance than the other shrinking-based methods, with higher inference speed and lower memory usage. Further experiments also show that AdaTranS can be equipped with additional alignment losses to further improve performance.

pdf bib
No offence, Bert - I insult only humans! Multilingual sentence-level attack on toxicity detection networks
Sergey Berezin | Reza Farahbakhsh | Noel Crespi

We introduce a simple yet efficient sentence-level attack on black-box toxicity detector models. By adding several positive words or sentences to the end of a hateful message, we are able to change the prediction of a neural network and pass the toxicity detection system check. This approach is shown to be working on seven languages from three different language families. We also describe the defence mechanism against the aforementioned attack and discuss its limitations.

pdf bib
Manipulating the Perceived Personality Traits of Language Models
Graham Caron | Shashank Srivastava

Psychology research has long explored aspects of human personality like extroversion, agreeableness and emotional stability, three of the personality traits that make up the ‘Big Five’. Categorizations like the ‘Big Five’ are commonly used to assess and diagnose personality types. In this work, we explore whether text generated from large language models exhibits consistency in it’s perceived ‘Big Five’ personality traits. For example, is a language model such as GPT2 likely to respond in a consistent way if asked to go out to a party? We also show that when exposed to different types of contexts (such as personality descriptions, or answers to diagnostic questions about personality traits), language models such as BERT and GPT2 consistently identify and mirror personality markers in those contexts. This behavior illustrates an ability to be manipulated in a predictable way (with correlations up to 0.84 between intended and realized changes in personality traits), and frames them as tools for controlling personas in applications such as dialog systems. We contribute two data-sets of personality descriptions of humans subjects.

pdf bib
WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia
Sina Semnani | Violet Yao | Heidi Zhang | Monica Lam

This paper presents the first few-shot LLM-based chatbot that almost never hallucinates and has high conversationality and low latency. WikiChat is grounded on the English Wikipedia, the largest curated free-text corpus. WikiChat generates a response from an LLM, retains only the grounded facts, and combines them with additional information it retrieves from the corpus to form factual and engaging responses. We distill WikiChat based on GPT-4 into a 7B-parameter LLaMA model with minimal loss of quality, to significantly improve its latency, cost and privacy, and facilitate research and deployment. Using a novel hybrid human-and-LLM evaluation methodology, we show that our best system achieves 97.3% factual accuracy in simulated conversations. It significantly outperforms all retrieval-based and LLM-based baselines, and by 3.9%, 38.6% and 51.0% on head, tail and recent knowledge compared to GPT-4. Compared to previous state-of-the-art retrieval-based chatbots, WikiChat is also significantly more informative and engaging, just like an LLM. WikiChat achieves 97.9% factual accuracy in conversations with human users about recent topics, 55.0% better than GPT-4, while receiving significantly higher user ratings and more favorable comments.

pdf bib
Automated Few-Shot Classification with Instruction-Finetuned Language Models
Rami Aly | Xingjian Shi | Kaixiang Lin | Aston Zhang | Andrew Wilson

A particularly successful class of approaches for few-shot learning combines language models with prompts - hand-crafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction finetuned language models are remarkably robust towards some dimensions of a prompt’s design. We subsequently propose a simple method to eliminate the need for handcrafted prompts, named AuT-Few. This approach consists of (i) a prompt retrieval module that selects suitable task instructions from the instruction-tuning knowledge base, and (ii) the generation of two distinct, semantically meaningful, class descriptions and a selection mechanism via cross-validation. Over 12 datasets, spanning 8 classification tasks, we show that AuT-Few outperforms current state-of-the-art few-shot learning methods. Moreover, AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark. Notably, these results are achieved without task-specific handcrafted prompts on unseen tasks.

pdf bib
Meta-Learning of Prompt Generation for Lightweight Prompt Engineering on Language-Model-as-a-Service
Hyeonmin Ha | Jihye Lee | Wookje Han | Byung-Gon Chun

Recently, many companies have been providing the capabilities of large language models as services. These Language-Model-as-a-Service (LMaaS) offerings support a variety of user tasks through in-context learning from prompts, which include instructions and demonstrations of the task. However, for users, manually crafting prompts or running automatic prompt tuning methods themselves can be demanding. Despite these challenges, LMaaS providers do not offer automatic prompt engineering methods as part of their services. One of the major obstacles to deploying them on an LMaaS is the heavy computational costs associated with automatic prompt engineering methods. These methods are typically designed to iterate through tens of thousands of examples, which impose unaffordable overheads for LMaaS providers. In this paper, we introduce MetaL-Prompt, a novel lightweight automatic prompt generation method for LMaaS. MetaL-Prompt meta-trains a prompt generation model (PGM) to enable robust learning by the language model from the contexts created by the generated prompts (i.e., in-context learning). Thanks to our meta-learning approach, a PGM can generate prompts for unseen tasks without requiring additional training for those specific tasks. Furthermore, the PGM can generate prompts with a single forward pass, significantly reducing computational costs compared to previous methods. We evaluate MetaL-Prompt on a range of unseen tasks and find that it improves performance by up to 19.4% in terms of mean F1 score on QA datasets compared to the state-of-the-art baseline P-tuning, with limited computational cost.

pdf bib
Beneath Surface Similarity: Large Language Models Make Reasonable Scientific Analogies after Structure Abduction
Siyu Yuan | Jiangjie Chen | Xuyang Ge | Yanghua Xiao | Deqing Yang

The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures. Despite the attention previous research has given to word analogies, this work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies, raising questions about the efficacy of word analogies as a measure of analogical reasoning skills akin to human cognition. In response to this, our paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems. In support of this task, we establish a benchmark called SCAR, containing 400 scientific analogies from 13 distinct fields, tailored for evaluating analogical reasoning with structure abduction. The empirical evidence underlines the continued challenges faced by LLMs, including ChatGPT and GPT-4, in mastering this task, signifying the need for future exploration to enhance their abilities.

pdf bib
HiCL: Hierarchical Contrastive Learning of Unsupervised Sentence Embeddings
Zhuofeng Wu | Chaowei Xiao | VG Vinod Vydiswaran

In this paper, we propose a hierarchical contrastive learning framework, HiCL, which considers local segment-level and global sequence-level relationships to improve training efficiency and effectiveness. Traditional methods typically encode a sequence in its entirety for contrast with others, often neglecting local representation learning, leading to challenges in generalizing to shorter texts. Conversely, HiCL improves its effectiveness by dividing the sequence into several segments and employing both local and global contrastive learning to model segment-level and sequence-level relationships. Further, considering the quadratic time complexity of transformers over input tokens, HiCL boosts training efficiency by first encoding short segments and then aggregating them to obtain the sequence representation. Extensive experiments show that HiCL enhances the prior top-performing SNCSE model across seven extensively evaluated STS tasks, with an average increase of +0.2% observed on BERTlarge and +0.44% on RoBERTalarge.

pdf bib
Density-Aware Prototypical Network for Few-Shot Relation Classification
Jianfeng Wu | Mengting Hu | Yike Wu | Bingzhe Wu | Yalan Xie | Mingming Liu | Renhong Cheng

In recent years, few-shot relation classification has evoked many research interests. Yet a more challenging problem, i.e. none-of-the-above (NOTA), is under-explored. Existing works mainly regard NOTA as an extra class and treat it the same as known relations. However, such a solution ignores the overall instance distribution, where NOTA instances are actually outliers and distributed unnaturally compared with known ones. In this paper, we propose a density-aware prototypical network (D-Proto) to treat various instances distinctly. Specifically, we design unique training objectives to separate known instances and isolate NOTA instances, respectively. This produces an ideal instance distribution, where known instances are dense yet NOTAs have a small density. Moreover, we propose a NOTA detection module to further enlarge the density of known samples, and discriminate NOTA and known samples accurately. Experimental results demonstrate that the proposed method outperforms strong baselines with robustness towards various NOTA rates. The code will be made public after the paper is accepted.

pdf bib
Improved Training of Deep Text Clustering
Zonghao Yang | Wenpeng Hu | Yushan Tan | Zhunchen Luo

The classical deep clustering optimization methods basically leverage information such as clustering centers, mutual information, and distance metrics to construct implicit generalized labels to establish information feedback (weak supervision) and thus optimize the deep model. However, the resulting generalized labels have different degrees of errors in the whole clustering process due to the limitation of clustering accuracy, which greatly interferes with the clustering process. To this end, this paper proposes a general deep clustering optimization method from the perspective of empirical risk minimization, using the correlation relationship between the samples. Experiments on two classical deep clustering methods demonstrate the necessity and effectiveness of the method. Code is available at https://github.com/yangzonghao1024/DCGLU.

pdf bib
RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder for Language Modeling
Jingcheng Deng | Liang Pang | Huawei Shen | Xueqi Cheng

Retrieval-augmented language models show promise in addressing issues like outdated information and hallucinations in language models (LMs). However, current research faces two main problems: 1) determining what information to retrieve, and 2) effectively combining retrieved information during generation. We argue that valuable retrieved information should not only be related to the current source text but also consider the future target text, given the nature of LMs that model future tokens. Moreover, we propose that aggregation using latent variables derived from a compact latent space is more efficient than utilizing explicit raw text, which is limited by context length and susceptible to noise. Therefore, we introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE). It encodes the text corpus into a latent space, capturing current and future information from both source and target text. Additionally, we leverage the VAE to initialize the latent space and adopt the probabilistic form of the retrieval generation paradigm by expanding the Gaussian prior distribution into a Gaussian mixture distribution. Theoretical analysis provides an optimizable upper bound for RegaVAE. Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.

pdf bib
RefGPT: Dialogue Generation of GPT, by GPT, and for GPT
Dongjie Yang | Ruifeng Yuan | Yuantao Fan | Yifei Yang | Zili Wang | Shusen Wang | Hai Zhao

Large Language Models (LLMs) have attained the impressive capability to resolve a wide range of NLP tasks by fine-tuning high-quality instruction data. However, collecting human-written data of high quality, especially multi-turn dialogues, is expensive and unattainable for most people. Though previous studies have used powerful LLMs to generate the dialogues automatically, they all suffer from generating untruthful dialogues because of the model hallucination. Therefore, we propose a method called RefGPT to generate enormous truthful and customized dialogues without worrying about factual errors caused by the model hallucination. RefGPT solves the model hallucination in dialogue generation by restricting the LLMs to leverage the given reference instead of reciting their own knowledge to generate dialogues. Additionally, RefGPT adds detailed controls on every utterance to enable high customization capability, which previous studies have ignored. On the basis of RefGPT, we also propose two high-quality dialogue datasets generated by GPT-4, namely **RefGPT-Fact** and **RefGPT-Code**. RefGPT-Fact is a dataset with 100k multi-turn dialogues based on factual knowledge and RefGPT-Code has 76k multi-turn dialogues covering a wide range of coding scenarios. Our code and datasets are released in https://github.com/mutonix/RefGPT.

pdf bib
INA: An Integrative Approach for Enhancing Negotiation Strategies with Reward-Based Dialogue Agent
Zishan Ahmad | Suman Saurabh | Vaishakh Menon | Asif Ekbal | Roshni Ramnani | Anutosh Maitra

In this paper, we propose a novel negotiation agent designed for the online marketplace. Our dialogue agent is integrative in nature i.e, it possesses the capability to negotiate on price as well as other factors, such as the addition or removal of items from a deal bundle, thereby offering a more flexible and comprehensive negotiation experience. To enable this functionality, we create a new dataset called Integrative Negotiation Dataset (IND). For this dataset creation, we introduce a new semi-automated data creation method, which combines defining negotiation intents, actions, and intent-action simulation between users and the agent to generate potential dialogue flows. Finally, the prompting of GPT-J, a state-of-the-art language model, is done to generate dialogues for a given intent, with a human-in-the-loop process for post-editing and refining minor errors to ensure high data quality. We first train a maximum likelihood loss based model on IND, and then employ a set of novel rewards specifically tailored for the negotiation task to train our Integrative Negotiation Agent (INA). These rewards incentivize the agent to learn effective negotiation strategies that can adapt to various contextual requirements and price proposals. We train our model and conduct experiments to evaluate the effectiveness of our reward-based dialogue agent for negotiation. Our results demonstrate that the proposed approach and reward functions significantly enhance the negotiation capabilities of the dialogue agent. The INA successfully engages in integrative negotiations, displaying the ability to dynamically adjust prices and negotiate the inclusion or exclusion of items in a deal bundle.

pdf bib
Large Language Models are Better Reasoners with Self-Verification
Yixuan Weng | Minjun Zhu | Fei Xia | Bin Li | Shizhu He | Shengping Liu | Bin Sun | Kang Liu | Jun Zhao

Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By performing a backward verification of the answers that LLM deduced for itself, we can obtain interpretable answer validation scores to select the candidate answer with the highest score. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.

pdf bib
Multi-Granularity Information Interaction Framework for Incomplete Utterance Rewriting
Haowei Du | Dinghao Zhang | Chen Li | Yang Li | Dongyan Zhao

Recent approaches in Incomplete Utterance Rewriting (IUR) fail to capture the source of important words, which is crucial to edit the incomplete utterance, and introduce words from irrelevant utterances. We propose a novel and effective multi-task information interaction framework including context selection, edit matrix construction, and relevance merging to capture the multi-granularity of semantic information. Benefiting from fetching the relevant utterance and figuring out the important words, our approach outperforms existing state-of-the-art models on two benchmark datasets Restoration-200K and CANAND in this field.

pdf bib
Accuracy is not enough: Evaluating Personalization in Summarizers
Rahul Vansh | Darsh Rank | Sourish Dasgupta | Tanmoy Chakraborty

Text summarization models are evaluated in terms of their accuracy and quality using various measures such as ROUGE, BLEU, METEOR, BERTScore, PYRAMID, readability, and several other recently proposed ones. The central objective of all accuracy measures is to evaluate the model’s ability to capture saliency accurately. Since saliency is subjective w.r.t the readers’ preferences, there cannot be a fit-all summary for a given document. This means that in many use-cases, summarization models need to be personalized w.r.t user-profiles. However, to our knowledge, there is no measure to evaluate the degree-of-personalization of a summarization model. In this paper, we first establish that existing accuracy measures cannot evaluate the degree of personalization of any summarization model, and then propose a novel measure, called EGISES, for automatically computing the same. Using the PENS dataset released by Microsoft Research, we analyze the degree of personalization of ten different state-of-the-art summarization models (both extractive and abstractive), five of which are explicitly trained for personalized summarization, and the remaining are appropriated to exhibit personalization. We conclude by proposing a generalized accuracy measure, called P-Accuracy, for designing accuracy measures that should also take personalization into account and demonstrate the robustness and reliability of the measure through meta-evaluation.

pdf bib
For Generated Text, Is NLI-Neutral Text the Best Text?
Michail Mersinias | Kyle Mahowald

We explore incorporating natural language inference (NLI) into the text generative pipeline by using a pre-trained NLI model to assess whether a generated sentence entails, contradicts, or is neutral to the prompt and preceding text. First, we show that the NLI task is predictive of generation errors made by GPT-3. We use these results to develop an NLI-informed generation procedure for GPT-J. Then, we evaluate these generations by obtaining human annotations on error types and overall quality. We find that an NLI strategy of maximizing entailment improves text generation when the nucleus sampling randomness parameter value is high, while one which maximizes contradiction is in fact productive when the parameter value is low. Overall, though, we demonstrate that an NLI strategy of maximizing the neutral class provides the highest quality of generated text (significantly better than the vanilla generations), regardless of parameter value.

pdf bib
Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review
Reem Bin-Hezam | Mark Stevenson

Technology Assisted Review (TAR) stopping rules aim to reduce the cost of manually assessing documents for relevance by minimising the number of documents that need to be examined to ensure a desired level of recall. This paper extends an effective stopping rule using information derived from a text classifier that can be trained without the need for any additional annotation. Experiments on multiple data sets (CLEF e-Health, TREC Total Recall, TREC Legal and RCV1) showed that the proposed approach consistently improves performance and outperforms several alternative methods.

pdf bib
Complexity-Guided Curriculum Learning for Text Graphs
Nidhi Vakil | Hadi Amiri

Curriculum learning provides a systematic approach to training. It refines training progressively, tailors training to task requirements, and improves generalization through exposure to diverse examples. We present a curriculum learning approach that builds on existing knowledge about text and graph complexity formalisms for training with text graph data. The core part of our approach is a novel data scheduler, which employs “spaced repetition” and complexity formalisms to guide the training process. We demonstrate the effectiveness of the proposed approach on several text graph tasks and graph neural network architectures. The proposed model gains more and uses less data; consistently prefers text over graph complexity indices throughout training, while the best curricula derived from text and graph complexity indices are equally effective; and it learns transferable curricula across GNN models and datasets. In addition, we find that both node-level (local) and graph-level (global) graph complexity indices, as well as shallow and traditional text complexity indices play a crucial role in effective curriculum learning.

pdf bib
CoVariance-based Causal Debiasing for Entity and Relation Extraction
Lin Ren | Yongbin Liu | Yixin Cao | Chunping Ouyang

Joint entity and relation extraction tasks aim to recognize named entities and extract relations simultaneously. Suffering from a variety of data biases, such as data selection bias, and distribution bias (out of distribution, long-tail distribution), serious concerns can be witnessed to threaten the model’s transferability, robustness, and generalization. In this work, we address the above problems from a causality perspective. We propose a novel causal framework called c ̲ovariance and  ̲variance  ̲optimization framework (OVO) to optimize feature representations and conduct general debiasing. In particular, the proposed  ̲covariance  ̲optimizing (COP) minimizes characterizing features’ covariance for alleviating the selection and distribution bias and enhances feature representation in the feature space. Furthermore, based on the causal backdoor adjustment, we propose \\underlinevariance  ̲optimizing (VOP) separates samples in terms of label information and minimizes the variance of each dimension in the feature vectors of the same class label for mitigating the distribution bias further. By applying it to three strong baselines in two widely used datasets, the results demonstrate the effectiveness and generalization of OVO for joint entity and relation extraction tasks. Furthermore, a fine-grained analysis reveals that OVO possesses the capability to mitigate the impact of long-tail distribution.

pdf bib
Multi-label and Multi-target Sampling of Machine Annotation for Computational Stance Detection
Zhengyuan Liu | Hai Leong Chieu | Nancy Chen

Data collection from manual labeling provides domain-specific and task-aligned supervision for data-driven approaches, and a critical mass of well-annotated resources is required to achieve reasonable performance in natural language processing tasks. However, manual annotations are often challenging to scale up in terms of time and budget, especially when domain knowledge, capturing subtle semantic features, and reasoning steps are needed. In this paper, we investigate the efficacy of leveraging large language models on automated labeling for computational stance detection. We empirically observe that while large language models show strong potential as an alternative to human annotators, their sensitivity to task-specific instructions and their intrinsic biases pose intriguing yet unique challenges in machine annotation. We introduce a multi-label and multi-target sampling strategy to optimize the annotation quality. Experimental results on the benchmark stance detection corpora show that our method can significantly improve performance and learning efficacy.

pdf bib
In What Languages are Generative Language Models the Most Formal? Analyzing Formality Distribution across Languages
Asım Ersoy | Gerson Vizcarra | Tahsin Mayeesha | Benjamin Muller

Multilingual generative language models (LMs) are increasingly fluent in a large variety of languages. Trained on the concatenation of corpora in multiple languages, they enable powerful transfer from high-resource languages to low-resource ones. However, it is still unknown what cultural biases are induced in the predictions of these models. In this work, we focus on one language property highly influenced by culture: formality. We analyze the formality distributions of XGLM and BLOOM’s predictions, two popular generative multilingual language models, in 5 languages. We classify 1,200 generations per language as formal, informal, or incohesive and measure the impact of the prompt formality on the predictions. Overall, we observe a diversity of behaviors across the models and languages. For instance, XGLM generates informal text in Arabic and Bengali when conditioned with informal prompts, much more than BLOOM. In addition, even though both models are highly biased toward the formal style when prompted neutrally, we find that the models generate a significant amount of informal predictions even when prompted with formal text. We release with this work 6,000 annotated samples, paving the way for future work on the formality of generative multilingual LMs.

pdf bib
MaXM: Towards Multilingual Visual Question Answering
Soravit Changpinyo | Linting Xue | Michal Yarom | Ashish Thapliyal | Idan Szpektor | Julien Amelot | Xi Chen | Radu Soricut

Visual Question Answering (VQA) has been primarily studied through the lens of the English language. Yet, tackling VQA in other languages in the same manner would require a considerable amount of resources. In this paper, we propose scalable solutions to multilingual visual question answering (mVQA), on both data and modeling fronts. We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers. Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages. Finally, we develop a simple, lightweight, and effective approach as well as benchmark state-of-the-art English and multilingual VQA models. We hope that our benchmark encourages further research on mVQA.

pdf bib
Efficient Latent Variable Modeling for Knowledge-Grounded Dialogue Generation
Gunsoo Han | Daejin Jo | Daniel Nam | Eunseop Yoon | Taehwan Kwon | Seungeun Rho | Kyoung-Woon On | Chang Yoo | Sungwoong Kim

Knowledge-grounded dialogue generation requires first retrieving appropriate external knowledge based on a conversational context and then generating a response grounded on the retrieved knowledge. In general, these two sequential modules, a knowledge retriever and a response generator, have been separately trained in a supervised manner. However, obtaining intermediate labels of the ground-truth knowledge is expensive, especially in open-domain conversations. Latent variable modeling avoids this need for the labels. In this paper, we propose an efficient algorithm for this latent variable modeling that is able to leverage a large amount of dialogue data. Rather than directly training the complex retriever, we adapt a query generator with an off-the-shelf retriever, and the query generator and response generator are simultaneously trained over the latent variable of query. Moreover, we employ lower bound of the evidence as a training objective and modify it to robustly perform the joint training. Experimental results on diverse knowledge-grounded dialogue datasets show that the proposed algorithm significantly outperforms the supervised learning algorithm even without the use of the annotated knowledge while maintaining efficiency and scalability.

pdf bib
Ask To The Point: Open-Domain Entity-Centric Question Generation
Yuxiang Liu | Jie Huang | Kevin Chang

We introduce a new task called *entity-centric question generation* (ECQG), motivated by real-world applications such as topic-specific learning, assisted reading, and fact-checking. The task aims to generate questions from an entity perspective. To solve ECQG, we propose a coherent PLM-based framework GenCONE with two novel modules: content focusing and question verification. The content focusing module first identifies a focus as “what to ask” to form draft questions, and the question verification module refines the questions afterwards by verifying the answerability. We also construct a large-scale open-domain dataset from SQuAD to support this task. Our extensive experiments demonstrate that GenCONE significantly and consistently outperforms various baselines, and two modules are effective and complementary in generating high-quality questions.

pdf bib
Self-prompted Chain-of-Thought on Large Language Models for Open-domain Multi-hop Reasoning
Jinyuan Wang | Junlong Li | Hai Zhao

In open-domain question-answering (ODQA), most existing questions require single-hop reasoning on commonsense. To further extend this task, we officially introduce open-domain multi-hop reasoning (ODMR) by answering multi-hop questions with explicit reasoning steps in open-domain setting. Recently, large language models (LLMs) have found significant utility in facilitating ODQA without external corpus. Furthermore, chain-of-thought (CoT) prompting boosts the reasoning capability of LLMs to a greater extent with manual or automated paradigms. However, existing automated methods lack of quality assurance, while manual approaches suffer from limited scalability and poor diversity, hindering the capabilities of LLMs. In this paper, we propose Self-prompted Chain-of-Thought (SP-CoT), an automated framework to mass-produce high quality CoTs of LLMs, by LLMs and for LLMs. SP-CoT introduces an automated generation pipeline of high quality ODMR datasets, an adaptive sampler for in-context CoT selection and self-prompted inference via in-context learning. Extensive experiments on four multi-hop question-answering benchmarks show that our proposed SP-CoT not only significantly surpasses the previous SOTA methods on large-scale (175B) LLMs, but also nearly doubles the zero-shot performance of small-scale (13B) LLMs. Further analysis reveals the remarkable capability of SP-CoT to elicit direct and concise intermediate reasoning steps by recalling ~50% of intermediate answers on MuSiQue-Ans dataset.

pdf bib
CASE: Commonsense-Augmented Score with an Expanded Answer Space
Wenkai Chen | Sahithya Ravi | Vered Shwartz

LLMs have demonstrated impressive zero-shot performance on NLP tasks thanks to the knowledge they acquired in their training. In multiple-choice QA tasks, the LM probabilities are used as an imperfect measure of the plausibility of each answer choice. One of the major limitations of the basic score is that it treats all words as equally important. We propose CASE, a Commonsense-Augmented Score with an Expanded Answer Space. CASE addresses this limitation by assigning importance weights for individual words based on their semantic relations to other words in the input. The dynamic weighting approach outperforms basic LM scores, not only because it reduces noise from unimportant words, but also because it informs the model of implicit commonsense knowledge that may be useful for answering the question. We then also follow prior work in expanding the answer space by generating lexically-divergent answers that are conceptually-similar to the choices. When combined with answer space expansion, our method outperforms strong baselines on 5 commonsense benchmarks. We further show these two approaches are complementary and may be especially beneficial when using smaller LMs.

pdf bib
GRENADE: Graph-Centric Language Model for Self-Supervised Representation Learning on Text-Attributed Graphs
Yichuan Li | Kaize Ding | Kyumin Lee

Self-supervised representation learning on text-attributed graphs, which aims to create expressive and generalizable representations for various downstream tasks, has received increasing research attention lately. However, existing methods either struggle to capture the full extent of structural context information or rely on task-specific training labels, which largely hampers their effectiveness and generalizability in practice. To solve the problem of self-supervised representation learning on text-attributed graphs, we develop a novel Graph-Centric Language model – GRENADE. Specifically, GRENADE harnesses the synergy of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms: graph-centric contrastive learning and graph-centric knowledge alignment. The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs. Through extensive experiments, GRENADE shows its superiority over state-of-the-art methods.

pdf bib
Sources of Hallucination by Large Language Models on Inference Tasks
Nick McKenna | Tianyi Li | Liang Cheng | Mohammad Hosseini | Mark Johnson | Mark Steedman

Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as “indices’ to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.

pdf bib
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer
Qingru Zhang | Dhananjay Ram | Cole Hawkins | Sheng Zha | Tuo Zhao

Pretrained transformer models have demonstrated remarkable performance across various natural language processing tasks. These models leverage the attention mechanism to capture long- and short-range dependencies in the sequence. However, the (full) attention mechanism incurs high computational cost – quadratic in the sequence length, which is not affordable in tasks with long sequences, e.g., inputs with 8k tokens. Although sparse attention can be used to improve computational efficiency, as suggested in existing work, it has limited modeling capacity and often fails to capture complicated dependencies in long sequences. To tackle this challenge, we propose MASFormer, an easy-to-implement transformer variant with mixed attention spans. Specifically, MASFormer is equipped with full attention to capture long-range dependencies, but only at a small number of layers. For the remaining layers, MASformer only employs sparse attention to capture short-range dependencies. Our experiments on natural language modeling and generation tasks show that a decoder-only MASFormer model of 1.3B parameters can achieve competitive performance to vanilla transformers with full attention while significantly reducing computational cost (up to 75%). Additionally, we investigate the effectiveness of continual training with long sequence data and how sequence length impacts downstream generation performance, which may be of independent interest.

pdf bib
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined Knowledge
Jinyuan Li | Han Li | Zhuo Pan | Di Sun | Jiahao Wang | Wenkun Zhang | Gang Pan

Multimodal Named Entity Recognition (MNER) on social media aims to enhance textual entity prediction by incorporating image-based clues. Existing studies mainly focus on maximizing the utilization of pertinent image information or incorporating external knowledge from explicit knowledge bases. However, these methods either neglect the necessity of providing the model with external knowledge, or encounter issues of high redundancy in the retrieved knowledge. In this paper, we present PGIM — a two-stage framework that aims to leverage ChatGPT as an implicit knowledge base and enable it to heuristically generate auxiliary knowledge for more efficient entity prediction. Specifically, PGIM contains a Multimodal Similar Example Awareness module that selects suitable examples from a small number of predefined artificial samples. These examples are then integrated into a formatted prompt template tailored to the MNER and guide ChatGPT to generate auxiliary refined knowledge. Finally, the acquired knowledge is integrated with the original text and fed into a downstream model for further processing. Extensive experiments show that PGIM outperforms state-of-the-art methods on two classic MNER datasets and exhibits a stronger robustness and generalization capability.

pdf bib
Understanding HTML with Large Language Models
Izzeddin Gur | Ofir Nachum | Yingjie Miao | Mustafa Safdari | Austin Huang | Aakanksha Chowdhery | Sharan Narang | Noah Fiedel | Aleksandra Faust

Large language models (LLMs) have shown exceptional performance on a variety of natural language tasks. Yet, their capabilities for HTML understanding – i.e., parsing the raw HTML of a webpage, with applications to automation of web-based tasks, crawling, and browser-assisted retrieval – have not been fully explored. We contribute HTML understanding models (fine-tuned LLMs) and an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Description Generation for HTML inputs, and (iii) Autonomous Web Navigation of HTML pages. While previous work has developed dedicated architectures and training procedures for HTML understanding, we show that LLMs pretrained on standard natural language corpora transfer remarkably well to HTML understanding tasks. For instance, when fine-tuned on data from the MiniWoB benchmark, LLMs successfully complete 50% more tasks using 192x less data compared to the previous best supervised model. We create and open-source a large-scale HTML dataset distilled and auto-labeled from CommonCrawl

pdf bib
The PEACE-Reviews dataset: Modeling Cognitive Appraisals in Emotion Text Analysis
Gerard Yeo | Kokil Jaidka

Cognitive appraisal plays a pivotal role in deciphering emotions. Recent studies have delved into its significance, yet the interplay between various forms of cognitive appraisal and specific emotions, such as joy and anger, remains an area of exploration in consumption contexts. Our research introduces the PEACE-Reviews dataset, a unique compilation of annotated autobiographical accounts where individuals detail their emotional and appraisal experiences during interactions with personally significant products or services. Focusing on the inherent variability in consumer experiences, this dataset offers an in-depth analysis of participants’ psychological traits, their evaluative feedback on purchases, and the resultant emotions. Notably, the PEACE-Reviews dataset encompasses emotion, cognition, individual traits, and demographic data. We also introduce preliminary models that predict certain features based on the autobiographical narratives.

pdf bib
UReader: Universal OCR-free Visually-situated Language Understanding with Multimodal Large Language Model
Jiabo Ye | Anwen Hu | Haiyang Xu | Qinghao Ye | Ming Yan | Guohai Xu | Chenliang Li | Junfeng Tian | Qi Qian | Ji Zhang | Qin Jin | Liang He | Xin Lin | Fei Huang

Text is ubiquitous in our visual world, conveying crucial information, such as in documents, websites, and everyday photographs. In this work, we propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM). By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters and the training cost is much lower than previous work following domain-specific pretraining and finetuning paradigms. Concretely, UReader is jointly finetuned on a wide range of Visually-situated Language Understanding tasks via a unified instruction format. To enhance the visual text and semantic understanding, we further apply two auxiliary tasks with the same format, namely text reading and key points generation tasks. We design a shape-adaptive cropping module before the encoder-decoder architecture of MLLM to leverage the frozen low-resolution vision encoder for processing high-resolution images. Without downstream finetuning, our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks, across 5 domains: documents, tables, charts, natural images, and webpage screenshots. Codes and instruction-tuning datasets will be released.

pdf bib
Loose lips sink ships: Mitigating Length Bias in Reinforcement Learning from Human Feedback
Wei Shen | Rui Zheng | Wenyu Zhan | Jun Zhao | Shihan Dou | Tao Gui | Qi Zhang | Xuanjing Huang

Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn’t equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.

pdf bib
Filling the Image Information Gap for VQA: Prompting Large Language Models to Proactively Ask Questions
Ziyue Wang | Chi Chen | Peng Li | Yang Liu

Large Language Models (LLMs) demonstrate impressive reasoning ability and the maintenance of world knowledge not only in natural language tasks, but also in some vision-language tasks such as open-domain knowledge-based visual question answering (OK-VQA). As images are invisible to LLMs, researchers convert images to text to engage LLMs into the visual question reasoning procedure. This leads to discrepancies between images and their textual representations presented to LLMs, which consequently impedes final reasoning performance. To fill the information gap and better leverage the reasoning capability, we design a framework that enables LLMs to proactively ask relevant questions to unveil more details in the image, along with filters for refining the generated information. We validate our idea on OK-VQA and A-OKVQA. Our method continuously boosts the performance of baselines methods by an average gain of 2.15% on OK-VQA, and achieves consistent improvements across different LLMs.

pdf bib
Take a Closer Look at Multilinguality! Improve Multilingual Pre-Training Using Monolingual Corpora Only
Jinliang Lu | Yu Lu | Jiajun Zhang

Recent studies have revealed the remarkable cross-lingual capability of multilingual pre-trained language models (mPLMs), even when pre-trained without parallel corpora (mono-mPLMs). Intuitively, semantic alignments may be the reason behind such capability but remain under-explored. In this work, we investigate the alignment properties from the token perspective in mono-mPLMs and find that the alignments correspond to the geometric similarity of embedding space across different languages. Nevertheless, mono-mPLMs tend to damage this geometric similarity at the higher layers due to the lack of cross-lingual interactions, thus limiting their cross-lingual transfer capabilities. To address this issue, we introduce token-level and semantic-level code-switched masked language modeling, employing the self-induced token alignments to explicitly improve cross-lingual interactions over layers of mono-mPLMs without relying on parallel sentences. We evaluate our method on various natural language understanding tasks and unsupervised machine translation tasks. The results demonstrate that our methods outperform the strong baselines and achieve comparable performance with mPLMs trained with parallel corpora.

pdf bib
LogiCoT: Logical Chain-of-Thought Instruction Tuning
Hanmeng Liu | Zhiyang Teng | Leyang Cui | Chaoli Zhang | Qiji Zhou | Yue Zhang

Generative Pre-trained Transformer 4 (GPT-4) demonstrates impressive chain-of-thought reasoning ability. Recent work on self-instruction tuning, such as Alpaca, has focused on enhancing the general proficiency of models. These instructions enable the model to achieve performance comparable to GPT-3.5 on general tasks like open-domain text generation and paraphrasing. However, they fall short of helping the model handle complex reasoning tasks. To bridge the gap, this paper presents LogiCoT, a new instruction-tuning dataset for Logical Chain-of-Thought reasoning with GPT-4. We elaborate on the process of harvesting instructions for prompting GPT-4 to generate chain-of-thought rationales. LogiCoT serves as an instruction set for teaching models of logical reasoning and elicits general reasoning skills.

pdf bib
Hiding in Plain Sight: Tweets with Hate Speech Masked by Homoglyphs
Portia Cooper | Mihai Surdeanu | Eduardo Blanco

To avoid detection by current NLP monitoring applications, progenitors of hate speech often replace one or more letters in offensive words with homoglyphs, visually similar Unicode characters. Harvesting real-world hate speech containing homoglyphs is challenging due to the vast replacement possibilities. We developed a character substitution scraping method and assembled the Offensive Tweets with Homoglyphs (OTH) Dataset (N=90,788) with more than 1.5 million occurrences of 1,281 non-Latin characters (emojis excluded). In an annotated sample (n=700), 40.14% of the tweets were found to contain hate speech. We assessed the performance of seven transformer-based hate speech detection models and found that they performed poorly in a zero-shot setting (F1 scores between 0.04 and 0.52) but normalizing the data dramatically improved detection (F1 scores between 0.59 and 0.71). Training the models using the annotated data further boosted performance (highest micro-averaged F1 score=0.88, using five-fold cross validation). This study indicates that a dataset containing homoglyphs known and unknown to the scraping script can be collected, and that neural models can be trained to recognize camouflaged real-world hate speech.

pdf bib
Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models
Qianlong Wang | Keyang Ding | Bin Liang | Min Yang | Ruifeng Xu

Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models.

pdf bib
High-quality argumentative information in low resources approaches improve counter-narrative generation
Damián Furman | Pablo Torres | José Rodríguez | Diego Letzen | Maria Martinez | Laura Alemany

It has been shown that high quality fine-tuning boosts the performance of language models, even if the size of the fine-tuning is small. In this work we show how highly targeted fine-tuning improves the task of hate speech counter-narrative generation in user-generated text, even for very small sizes of training (1722 counter-narratives for English and 355 for Spanish). Providing a small subset of examples focusing on single argumentative strategies, together with the argumentative analysis relevant to that strategy, yields counter-narratives that are as satisfactory as providing the whole set of counter-narratives. We also show that a good base model is required for the fine-tuning to have a positive impact. Indeed, for Spanish, the counter-narratives obtained without fine-tuning are mostly unacceptable, and, while fine-tuning improves their overall quality, the performance still remains quite unsatisfactory.

pdf bib
A Reference-free Segmentation Quality Index (SegReFree)
Evan Lucas | Dylan Kangas | Timothy Havens

Topic segmentation, in the context of natural language processing, is the process of finding boundaries in a sequence of sentences that separate groups of adjacent sentences at shifts in semantic meaning. Currently, assessing the quality of a segmentation is done by comparing segmentation boundaries selected by a human or algorithm to those selected by a known good reference. This means that it is not possible to quantify the quality of a segmentation without a human annotator, which can be costly and time consuming. This work seeks to improve assessment of segmentation by proposing a reference-free segmentation quality index (SegReFree). The metric takes advantage of the fact that segmentation at a sentence level generally seeks to identify segment boundaries at semantic boundaries within the text. The proposed metric uses a modified cluster validity metric with semantic embeddings of the sentences to determine the quality of the segmentation. Multiple segmentation data sets are used to compare our proposed metric with existing reference-based segmentation metrics by progressively degrading the reference segmentation while computing all possible metrics; through this process, a strong correlation with existing segmentation metrics is shown. A Python library implementing the metric is released under the GNU General Public License and the repository is available at https://github.com/evan-person/reference_free_segmentation_metric.

pdf bib
In-context Learning for Few-shot Multimodal Named Entity Recognition
Chenran Cai | Qianlong Wang | Bin Liang | Bing Qin | Min Yang | Kam-Fai Wong | Ruifeng Xu

Thanks in part to the availability of copious annotated resources for some entity categories, existing studies have achieved superior performance in multimodal named entity recognition (MNER). However, in the real-world scenario, it is infeasible to enumerate all entity categories in advance. Therefore, in this paper, we formulate a new few-shot multimodal named entity recognition (FewMNER) task, which aims to effectively locate and identify named entities for a text-image pair only using a small number of labeled examples. Further, we explore the merit of in-context learning (ICL) and propose a novel framework to deal with FewMNER, where three points are taken into account: i.e., converting visual modality, selecting useful examples, and designing an effective task demonstration. Specifically, we first employ an image caption model to convert images into textual descriptions, enabling large language models to absorb information from visual modality. Then, we use the ranking of the sum of similarity rankings from both text and image modalities to select k-nearest examples, which form a demonstration context. Finally, we utilize the MNER definition and the meaning of each entity category as effective instruction. Extensive experimental results demonstrate that our framework outperforms baselines under several few-shot settings.

pdf bib
On Uncertainty Calibration and Selective Generation in Probabilistic Neural Summarization: A Benchmark Study
Polina Zablotskaia | Du Phan | Joshua Maynez | Shashi Narayan | Jie Ren | Jeremiah Liu

Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty. This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications. Probabilistic deep learning methods are common solutions to the miscalibration problem. However, their relative effectiveness in complex autoregressive summarization tasks are not well-understood. In this work, we thoroughly investigate different state-of-the-art probabilistic methods’ effectiveness in improving the uncertainty quality of the neural summarization models, across three large-scale benchmarks with varying difficulty using our newly introduced evaluation protocol. We show that the probabilistic methods consistently improve the model’s generation and uncertainty quality, leading to improved selective generation performance (i.e., abstaining from low-quality summaries) in practice. We also reveal notable failure patterns of probabilistic methods widely-adopted in NLP community (e.g., Deep Ensemble and Monte Carlo Dropout), cautioning the importance of choosing appropriate method for the data setting.

pdf bib
Handshape-Aware Sign Language Recognition: Extended Datasets and Exploration of Handshape-Inclusive Methods
Xuan Zhang | Kevin Duh

The majority of existing work on sign language recognition encodes signed videos without explicitly acknowledging the phonological attributes of signs. Given that handshape is a vital parameter in sign languages, we explore the potential of handshape-aware sign language recognition. We augment the PHOENIX14T dataset with gloss-level handshape labels, resulting in the new PHOENIX14T-HS dataset. Two unique methods are proposed for handshape-inclusive sign language recognition: a single-encoder network and a dual-encoder network, complemented by a training strategy that simultaneously optimizes both the CTC loss and frame-level cross-entropy loss. The proposed methodology consistently outperforms the baseline performance. The dataset and code can be accessed at: www.anonymous.com.

pdf bib
SimCKP: Simple Contrastive Learning of Keyphrase Representations
Minseok Choi | Chaeheon Gwak | Seho Kim | Si Kim | Jaegul Choo

Keyphrase generation (KG) aims to generate a set of summarizing words or phrases given a source document, while keyphrase extraction (KE) aims to identify them from the text. Because the search space is much smaller in KE, it is often combined with KG to predict keyphrases that may or may not exist in the corresponding document. However, current unified approaches adopt sequence labeling and maximization-based generation that primarily operate at a token level, falling short in observing and scoring keyphrases as a whole. In this work, we propose SimCKP, a simple contrastive learning framework that consists of two stages: 1) An extractor-generator that extracts keyphrases by learning context-aware phrase-level representations in a contrastive manner while also generating keyphrases that do not appear in the document; 2) A reranker that adapts scores for each generated phrase by likewise aligning their representations with the corresponding document. Experimental results on multiple benchmark datasets demonstrate the effectiveness of our proposed approach, which outperforms the state-of-the-art models by a significant margin.

pdf bib
LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain
Joel Niklaus | Veton Matoshi | Pooja Rani | Andrea Galassi | Matthias Stürmer | Ilias Chalkidis

Lately, propelled by phenomenal advances around the transformer architecture, the legal NLP field has enjoyed spectacular growth. To measure progress, well-curated and challenging benchmarks are crucial. Previous efforts have produced numerous benchmarks for general NLP models, typically based on news or Wikipedia. However, these may not fit specific domains such as law, with its unique lexicons and intricate sentence structures. Even though there is a rising need to build NLP systems for languages other than English, many benchmarks are available only in English and no multilingual benchmark exists in the legal NLP field. We survey the legal NLP literature and select 11 datasets covering 24 languages, creating LEXTREME. To fairly compare models, we propose two aggregate scores, i.e., dataset aggregate score and language aggregate score. Our results show that even the best baseline only achieves modest results, and also ChatGPT struggles with many tasks. This indicates that LEXTREME remains a challenging task with ample room for improvement. To facilitate easy use for researchers and practitioners, we release LEXTREME on huggingface along with a public leaderboard and the necessary code to evaluate models. We also provide a public Weights and Biases project containing all runs for transparency.

pdf bib
Three Questions Concerning the Use of Large Language Models to Facilitate Mathematics Learning
An-Zi Yen | Wei-Ling Hsu

Due to the remarkable language understanding and generation abilities of large language models (LLMs), their use in educational applications has been explored. However, little work has been done on investigating the pedagogical ability of LLMs in helping students to learn mathematics. In this position paper, we discuss the challenges associated with employing LLMs to enhance students’ mathematical problem-solving skills by providing adaptive feedback. Apart from generating the wrong reasoning processes, LLMs can misinterpret the meaning of the question, and also exhibit difficulty in understanding the given questions’ rationales when attempting to correct students’ answers. Three research questions are formulated.

pdf bib
Simultaneous Machine Translation with Tailored Reference
Shoutao Guo | Shaolei Zhang | Yang Feng

Simultaneous machine translation (SiMT) generates translation while reading the whole source sentence. However, existing SiMT models are typically trained using the same reference disregarding the varying amounts of available source information at different latency. Training the model with ground-truth at low latency may introduce forced anticipations, whereas utilizing reference consistent with the source word order at high latency results in performance degradation. Consequently, it is crucial to train the SiMT model with appropriate reference that avoids forced anticipations during training while maintaining high quality. In this paper, we propose a novel method that provides tailored reference for the SiMT models trained at different latency by rephrasing the ground-truth. Specifically, we introduce the tailor, induced by reinforcement learning, to modify ground-truth to the tailored reference. The SiMT model is trained with the tailored reference and jointly optimized with the tailor to enhance performance. Importantly, our method is applicable to a wide range of current SiMT approaches. Experiments on three translation tasks demonstrate that our method achieves state-of-the-art performance in both fixed and adaptive policies.

pdf bib
Dynamic Voting for Efficient Reasoning in Large Language Models
Mingfeng Xue | Dayiheng Liu | Wenqiang Lei | Xingzhang Ren | Baosong Yang | Jun Xie | Yidan Zhang | Dezhong Peng | Jiancheng Lv

Multi-path voting methods like Self-consistency have been used to mitigate reasoning errors in large language models caused by factual errors and illusion generation. However, these methods require excessive computing resources as they generate numerous reasoning paths for each problem. And our experiments show that on the arithmetic reasoning task, SVAMP, half of the problems fail to obtain noticeable accuracy gains when voting with more than three paths. In this paper, we propose a novel multi-path voting technique called Dynamic Voting, which effectively reduces the number of reasoning paths during multi-path voting while preserving accuracies by applying early exiting for problems that large language models can confidently solve. Experimental evaluations on arithmetic, commonsense, and symbolic reasoning tasks under few-shot and zero-shot settings demonstrate that Dynamic Voting achieves comparable accuracies employing significantly fewer reasoning paths. Notably, one of our Dynamic Voting strategies outperforms Self-consistency using only 24.7% of the number of paths on the LetterConcat task in the few-shot setting. Furthermore, Dynamic Voting showcases strong robustness in threshold selection. It also demonstrates excellent generalizability when combined with other voting techniques, different models, and diverse prompts.

pdf bib
On Surgical Fine-tuning for Language Encoders
Abhilasha Lodha | Gayatri Belapurkar | Saloni Chalkapurkar | Yuanming Tao | Reshmi Ghosh | Samyadeep Basu | Dmitrii Petrov | Soundararajan Srinivasan

Fine-tuning all the layers of a pre-trained neural language encoder (either using all the parameters or using parameter-efficient methods) is often the de-facto way of adapting it to a new task. We show evidence that for different downstream language tasks, fine-tuning only a subset of layers is sufficient to obtain performance that is close to and often better than fine-tuning all the layers in the language encoder. We propose an efficient metric based on the diagonal of the Fisher information matrix (FIM score), to select the candidate layers for selective fine-tuning. We show, empirically on GLUE and SuperGLUE tasks and across distinct language encoders, that this metric can effectively select layers leading to a strong downstream performance. Our work highlights that task-specific information corresponding to a given downstream task is often localized within a few layers, and tuning only those is sufficient for strong performance. Additionally, we demonstrate the robustness of the FIM score to rank layers in a manner that remains constant during the optimization process.

pdf bib
AutoPlan: Automatic Planning of Interactive Decision-Making Tasks With Large Language Models
Siqi Ouyang | Lei Li

Recent large language models (LLMs) are promising for making decisions in grounded environments. However, LLMs frequently fail in complex decision-making tasks due to the misalignment between the pre-trained knowledge in LLMs and the actual rules in the environment. Existing methods require either costly gradient computation or lengthy in-context demonstrations. In this paper, we propose AutoPlan, an approach to guide LLM-based agents to accomplish interactive decision-making tasks. AutoPlan augments the LLM prompt with a task-solving plan and optimizes it through iterative experience collection and reflection. Our experiments show that AutoPlan, though using no in-context demonstrations, achieves success rates on par with the baselines using human-written demonstrations on ALFWorld and even outperforms them by 8% on HotpotQA. The code is available at https://github.com/owaski/AutoPlan.

pdf bib
Measuring Faithful and Plausible Visual Grounding in VQA
Daniel Reich | Felix Putze | Tanja Schultz

Metrics for Visual Grounding (VG) in Visual Question Answering (VQA) systems primarily aim to measure a system’s reliance on relevant parts of the image when inferring an answer to the given question. Lack of VG has been a common problem among state-of-the-art VQA systems and can manifest in over-reliance on irrelevant image parts or a disregard for the visual modality entirely. Although inference capabilities of VQA models are often illustrated by a few qualitative illustrations, most systems are not quantitatively assessed for their VG properties. We believe, an easily calculated criterion for meaningfully measuring a system’s VG can help remedy this shortcoming, as well as add another valuable dimension to model evaluations and analysis. To this end, we propose a new VG metric that captures if a model a) identifies question-relevant objects in the scene, and b) actually relies on the information contained in the relevant objects when producing its answer, i.e., if its visual grounding is both “faithful” and “plausible”. Our metric, called Faithful & Plausible Visual Grounding (FPVG), is straightforward to determine for most VQA model designs. We give a detailed description of FPVG and evaluate several reference systems spanning various VQA architectures. Code to support the metric calculations on the GQA data set is available on GitHub.

pdf bib
Improving Zero-shot Reader by Reducing Distractions from Irrelevant Documents in Open-Domain Question Answering
Sukmin Cho | Jeongyeon Seo | Soyeong Jeong | Jong Park

Large language models (LLMs) enable zero-shot approaches in open-domain question answering (ODQA), yet with limited advancements as the reader is compared to the retriever. This study aims at the feasibility of a zero-shot reader that addresses the challenges of computational cost and the need for labeled data. We find that LLMs are distracted due to irrelevant documents in the retrieved set and the overconfidence of the generated answers when they are exploited as zero-shot readers. To tackle these problems, we mitigate the impact of such documents via Distraction-aware Answer Selection (DAS) with a negation-based instruction and score adjustment for proper answer selection. Experimental results show that our approach successfully handles distraction across diverse scenarios, enhancing the performance of zero-shot readers. Furthermore, unlike supervised readers struggling with unseen data, zero-shot readers demonstrate outstanding transferability without any training.

pdf bib
Can you Summarize my learnings? Towards Perspective-based Educational Dialogue Summarization
Raghav Jain | Tulika Saha | Jhagrut Lalwani | Sriparna Saha

The steady increase in the utilization of Virtual Tutors (VT) over recent years has allowed for a more efficient, personalized, and interactive AI-based learning experiences. A vital aspect in these educational chatbots is summarizing the conversations between the VT and the students, as it is critical in consolidating learning points and monitoring progress. However, the approach to summarization should be tailored according to the perspective. Summarization from the VTs perspective should emphasize on its teaching efficiency and potential improvements. Conversely, student-oriented summaries should distill learning points, track progress, and suggest scope for improvements. Based on this hypothesis, in this work, we propose a new task of Multi-modal Perspective based Dialogue Summarization (MM-PerSumm), demonstrated in an educational setting. Towards this aim, we introduce a novel dataset, CIMA-Summ that summarizes educational dialogues from three unique perspectives: the Student, the Tutor, and a Generic viewpoint. In addition, we propose an Image and Perspective-guided Dialogue Summarization (IP-Summ) model which is a Seq2Seq language model incorporating (i) multi-modal learning from images and (ii) a perspective-based encoder that constructs a dialogue graph capturing the intentions and actions of both the VT and the student, enabling the summarization of a dialogue from diverse perspectives. Lastly, we conduct detailed analyses of our model’s performance, highlighting the aspects that could lead to optimal modeling of IP-Summ.

pdf bib
Adaptive Textual Label Noise Learning based on Pre-trained Models
Shaohuan Cheng | Wenyu Chen | Fu Mingsheng | Xuanting Xie | Hong Qu

The label noise in real-world scenarios is unpredictable and can even be a mixture of different types of noise. To meet this challenge, we develop an adaptive textual label noise learning framework based on pre-trained models, which consists of an adaptive warm-up stage and a hybrid training stage. Specifically, an early stopping method, relying solely on the training set, is designed to dynamically terminate the warm-up process based on the model’s fit level to different noise scenarios. The hybrid training stage incorporates several generalization strategies to gradually correct mislabeled instances, thereby making better use of noisy data. Experiments on multiple datasets demonstrate that our approach performs comparably or even surpasses the state-of-the-art methods in various noise scenarios, including scenarios with the mixture of multiple types of noise.

pdf bib
Towards Informative Open-ended Text Generation with Dynamic Knowledge Triples
Zixuan Ren | Yang Zhao | Chengqing Zong

Pretrained language models (PLMs), especially large language models (LLMs) demonstrate impressive capabilities in open-ended text generation. While our statistical results show that LLMs often suffer from over-concentrated information, where the generated texts overly focus on the given prompt and fail to provide sufficient background and detailed information as humans do. To address this issue, we propose a dynamic knowledge-guided informative open-ended text generation approach, that utilizes a knowledge graph to help the model generate more contextually related entities and detailed facts. Specifically, we first employ a local knowledge filter to extract relevant knowledge from the comprehensive knowledge graph for a given topic sentence. Then we introduce a dynamic knowledge selector to predict the entity to be mentioned in the subsequent sentence. Finally, we utilize a knowledge-enhanced text generator to produce a more informative output. To evaluate the effectiveness of our approach, we evaluate the proposed approach in two scenarios: fine-tuning for small PLMs and prompt tuning for LLMs. Experimental results show that our approach could generate more informative texts than baselines.

pdf bib
Novel Relation Detection: Discovering Unknown Relation Types via Multi-Strategy Self-Supervised Learning
Qingbin Liu | Yin Kung | Yanchao Hao | Dianbo Sui | Siyuan Cheng | Xi Chen | Ningyu Zhang | Jiaoyan Chen

Conventional approaches to relation extraction can only recognize predefined relation types. In the real world, new or out-of-scope relation types may keep challenging the deployed models. In this paper, we formalize such a challenging problem as Novel Relation Detection (NRD), which aims to discover potential new relation types based on training samples of known relations. To this end, we construct two NRD datasets and exhaustively investigate a variety of out-of-scope detection methods. We further propose an effective NRD method that utilizes multi-strategy self-supervised learning to handle the problem of shallow semantic similarity in the NRD task. Experimental results demonstrate the effectiveness of our method, which significantly outperforms previous state-of-the-art methods on both datasets.

pdf bib
Ask Language Model to Clean Your Noisy Translation Data
Quinten Bolding | Baohao Liao | Brandon Denis | Jun Luo | Christof Monz

TTransformer models have demonstrated remarkable performance in neural machine translation (NMT). However, their vulnerability to noisy input poses a significant challenge in practical implementation, where generating clean output from noisy input is crucial. The MTNT dataset is widely used as a benchmark for evaluating the robustness of NMT models against noisy input. Nevertheless, its utility is limited due to the presence of noise in both the source and target sentences. To address this limitation, we focus on cleaning the noise from the target sentences in MTNT, making it more suitable as a benchmark for noise evaluation. Leveraging the capabilities of large language models (LLMs), we observe their impressive abilities in noise removal. For example, they can remove emojis while considering their semantic meaning. Additionally, we show that LLM can effectively rephrase slang, jargon, and profanities. The resulting datasets, called C-MTNT, exhibit significantly less noise in the target sentences while preserving the semantic integrity of the original sentences. Our human and GPT-4 evaluations also lead to a consistent conclusion that LLM performs well on this task. Lastly, experiments on C-MTNT showcased its effectiveness in evaluating the robustness of NMT models, highlighting the potential of advanced language models for data cleaning and emphasizing C-MTNT as a valuable resource.

pdf bib
Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users
Yohan Jo | Xinyan Zhao | Arijit Biswas | Nikoletta Basiou | Vincent Auvray | Nikolaos Malandrakis | Angeliki Metallinou | Alexandros Potamianos

While most task-oriented dialogues assume conversations between the agent and one user at a time, dialogue systems are increasingly expected to communicate with multiple users simultaneously who make decisions collaboratively. To facilitate development of such systems, we release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent. To collect this dataset, each user utterance from MultiWOZ 2.2 was replaced with a small chat between two users that is semantically and pragmatically consistent with the original user utterance, thus resulting in the same dialogue state and system response. These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios, e.g., social chatter and deliberation. Supported by this data, we propose the novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query that retains only task-relevant information and that is directly consumable by the dialogue system. We demonstrate that in multi-user dialogues, using predicted rewrites substantially improves dialogue state tracking without modifying existing dialogue systems that are trained for single-user dialogues. Further, this method surpasses training a medium-sized model directly on multi-user dialogues and generalizes to unseen domains.

pdf bib
Extractive Summarization via ChatGPT for Faithful Summary Generation
Haopeng Zhang | Xiao Liu | Jiawei Zhang

Extractive summarization is a crucial task in natural language processing that aims to condense long documents into shorter versions by directly extracting sentences. The recent introduction of large language models has attracted significant interest in the NLP community due to its remarkable performance on a wide range of downstream tasks. This paper first presents a thorough evaluation of ChatGPT’s performance on extractive summarization and compares it with traditional fine-tuning methods on various benchmark datasets. Our experimental analysis reveals that ChatGPT exhibits inferior extractive summarization performance in terms of ROUGE scores compared to existing supervised systems, while achieving higher performance based on LLM-based evaluation metrics. In addition, we explore the effectiveness of in-context learning and chain-of-thought reasoning for enhancing its performance. Furthermore, we find that applying an extract-then-generate pipeline with ChatGPT yields significant performance improvements over abstractive baselines in terms of summary faithfulness. These observations highlight potential directions for enhancing ChatGPT’s capabilities in faithful summarization using two-stage approaches.

pdf bib
MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
Yuyan Chen | Zhihao Wen | Ge Fan | Zhengyu Chen | Wei Wu | Dayiheng Liu | Zhixu Li | Bang Liu | Yanghua Xiao

Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.

pdf bib
PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for Personality Detection
Tao Yang | Tianyuan Shi | Fanqi Wan | Xiaojun Quan | Qifan Wang | Bingzhe Wu | Jiaxiang Wu

Recent advances in large language models (LLMs), such as ChatGPT, have showcased remarkable zero-shot performance across various NLP tasks. However, the potential of LLMs in personality detection, which involves identifying an individual’s personality from their written texts, remains largely unexplored. Drawing inspiration from Psychological Questionnaires, which are carefully designed by psychologists to evaluate individual personality traits through a series of targeted items, we argue that these items can be regarded as a collection of well-structured chain-of-thought (CoT) processes. By incorporating these processes, LLMs can enhance their capabilities to make more reasonable inferences on personality from textual input. In light of this, we propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner. In particular, we employ a LLM as an AI assistant with a specialization in text analysis. We prompt the assistant to rate individual items at each turn and leverage the historical rating results to derive a conclusive personality preference. Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection, achieving an average F1 score improvement of 4.23/10.63 points on two benchmark datasets compared to the standard prompting method. Our code is available at https://github.com/TaoYang225/PsyCoT.

pdf bib
Harnessing the power of LLMs: Evaluating human-AI text co-creation through the lens of news headline generation
Zijian Ding | Alison Smith-Renner | Wenjuan Zhang | Joel Tetreault | Alejandro Jaimes

To explore how humans can best leverage LLMs for writing and how interacting with these models affects feelings of ownership and trust in the writing process, we compared common human-AI interaction types (e.g., guiding system, selecting from system outputs, post-editing outputs) in the context of LLM-assisted news headline generation. While LLMs alone can generate satisfactory news headlines, on average, human control is needed to fix undesirable model outputs. Of the interaction methods, guiding and selecting model output added the most benefit with the lowest cost (in time and effort). Further, AI assistance did not harm participants’ perception of control compared to freeform editing.

pdf bib
NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval
Uri Katz | Matan Vetzler | Amir Cohen | Yoav Goldberg

Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained—and intersectional—entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.

pdf bib
SWEET - Weakly Supervised Person Name Extraction for Fighting Human Trafficking
Javin Liu | Hao Yu | Vidya Sujaya | Pratheeksha Nair | Kellin Pelrine | Reihaneh Rabbany

In this work, we propose a weak supervision pipeline SWEET: Supervise Weakly for Entity Extraction to fight Trafficking for extracting person names from noisy escort advertisements. Our method combines the simplicity of rule-matching (through antirules, i.e., negated rules) and the generalizability of large language models fine-tuned on benchmark, domain-specific and synthetic datasets, treating them as weak labels. One of the major challenges in this domain is limited labeled data. SWEET addresses this by obtaining multiple weak labels through labeling functions and effectively aggregating them. SWEET outperforms the previous supervised SOTA method for this task by 9% F1 score on domain data and better generalizes to common benchmark datasets. Furthermore, we also release HTGEN, a synthetically generated dataset of escort advertisements (built using ChatGPT) to facilitate further research within the community.

pdf bib
Watermarking LLMs with Weight Quantization
Linyang Li | Botian Jiang | Pengyu Wang | Ke Ren | Hang Yan | Xipeng Qiu

Abuse of large language models reveals high risks as large language models are being deployed at an astonishing speed. It is important to protect the model weights to avoid malicious usage that violates licenses of open-source large language models. This paper proposes a novel watermarking strategy that plants watermarks in the quantization process of large language models without pre-defined triggers during inference. The watermark works when the model is used in the fp32 mode and remains hidden when the model is quantized to int8, in this way, the users can only inference the model without further supervised fine-tuning of the model. We successfully plant the watermark into open-source large language model weights including GPT-Neo and LLaMA. We hope our proposed method can provide a potential direction for protecting model weights in the era of large language model applications.

pdf bib
Disentangling Extraction and Reasoning in Multi-hop Spatial Reasoning
Roshanak Mirzaee | Parisa Kordjamshidi

Spatial reasoning over text is challenging as the models not only need to extract the direct spatial information from the text but also reason over those and infer implicit spatial relations. Recent studies highlight the struggles even large language models encounter when it comes to performing spatial reasoning over text. In this paper, we explore the potential benefits of disentangling the processes of information extraction and reasoning in models to address this challenge. To explore this, we design various models that disentangle extraction and reasoning(either symbolic or neural) and compare them with state-of-the-art(SOTA) baselines with no explicit design for these parts. Our experimental results consistently demonstrate the efficacy of disentangling, showcasing its ability to enhance models’ generalizability within realistic data domains.

pdf bib
PsyAttention: Psychological Attention Model for Personality Detection
Baohua Zhang | Yongyi Huang | Wenyao Cui | Zhang Huaping | Jianyun Shang

Work on personality detection has tended to incorporate psychological features from different personality models, such as BigFive and MBTI. There are more than 900 psychological features, each of which is helpful for personality detection. However, when used in combination, the application of different calculation standards among these features may result in interference between features calculated using distinct systems, thereby introducing noise and reducing performance. This paper adapts different psychological models in the proposed PsyAttention for personality detection, which can effectively encode psychological features, reducing their number by 85%. In experiments on the BigFive and MBTI models, PysAttention achieved average accuracy of 65.66% and 86.30%, respectively, outperforming state-of-the-art methods, indicating that it is effective at encoding psychological features.

pdf bib
RoAST: Robustifying Language Models via Adversarial Perturbation with Selective Training
Jaehyung Kim | Yuning Mao | Rui Hou | Hanchao Yu | Davis Liang | Pascale Fung | Qifan Wang | Fuli Feng | Lifu Huang | Madian Khabsa

Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.

pdf bib
The Law and NLP: Bridging Disciplinary Disconnects
Robert Mahari | Dominik Stammbach | Elliott Ash | Alex Pentland

Legal practice is intrinsically rooted in the fabric of language, yet legal practitioners and scholars have been slow to adopt tools from natural language processing (NLP). At the same time, the legal system is experiencing an access to justice crisis, which could be partially alleviated with NLP. In this position paper, we argue that the slow uptake of NLP in legal practice is exacerbated by a disconnect between the needs of the legal community and the focus of NLP researchers. In a review of recent trends in the legal NLP literature, we find limited overlap between the legal NLP community and legal academia. Our interpretation is that some of the most popular legal NLP tasks fail to address the needs of legal practitioners. We discuss examples of legal NLP tasks that promise to bridge disciplinary disconnects and highlight interesting areas for legal NLP research that remain underexplored.

pdf bib
Symbolization, Prompt, and Classification: A Framework for Implicit Speaker Identification in Novels
Yue Chen | Tianwei He | Hongbin Zhou | Jia-Chen Gu | Heng Lu | Zhen-Hua Ling

Speaker identification in novel dialogues can be widely applied to various downstream tasks, such as producing multi-speaker audiobooks and converting novels into scripts. However, existing state-of-the-art methods are limited to handling explicit narrative patterns like “Tom said, '...'", unable to thoroughly understand long-range contexts and to deal with complex cases. To this end, we propose a framework named SPC, which identifies implicit speakers in novels via symbolization, prompt, and classification. First, SPC symbolizes the mentions of candidate speakers to construct a unified label set. Then, by inserting a prompt we re-formulate speaker identification as a classification task to minimize the gap between the training objectives of speaker identification and the pre-training task. Two auxiliary tasks are also introduced in SPC to enhance long-range context understanding. Experimental results show that SPC outperforms previous methods by a large margin of 4.8% accuracy on the web novel collection, which reduces 47% of speaker identification errors, and also outperforms the emerging ChatGPT. In addition, SPC is more accurate in implicit speaker identification cases that require long-range context semantic understanding.

pdf bib
Open-Ended Instructable Embodied Agents with Memory-Augmented Large Language Models
Gabriel Sarch | Yue Wu | Michael Tarr | Katerina Fragkiadaki

Pre-trained and frozen LLMs can effectively map simple scene re-arrangement instructions to programs over a robot’s visuomotor functions through appropriate few-shot example prompting. To parse open-domain natural language and adapt to a user’s idiosyncratic procedures, not known during prompt engineering time, fixed prompts fall short. In this paper, we introduce HELPER, an embodied agent equipped with an external memory of language-program pairs that parses free-form human-robot dialogue into action programs through retrieval-augmented LLM prompting: relevant memories are retrieved based on the current dialogue, instruction, correction or VLM description, and used as in-context prompt examples for LLM querying. The memory is expanded during deployment to include pairs of user’s language and action plans, to assist future inferences and personalize them to the user’s language and routines. HELPER sets a new state-of-the-art in the TEACh benchmark in both Execution from Dialog History (EDH) and Trajectory from Dialogue (TfD), with 1.7x improvement over the previous SOTA for TfD. Our models, code and video results can be found in our project’s website: https://helper-agent-llm.github.io.

pdf bib
ACT-SQL: In-Context Learning for Text-to-SQL with Automatically-Generated Chain-of-Thought
Hanchong Zhang | Ruisheng Cao | Lu Chen | Hongshen Xu | Kai Yu

Recently Large Language Models (LLMs) have been proven to have strong abilities in various domains and tasks. We study the problem of prompt designing in the text-to-SQL task and attempt to improve the LLMs’ reasoning ability when generating SQL queries. Besides the trivial few-shot in-context learning setting, we design our chain-of-thought (CoT) prompt with a similar method to schema linking. We provide a method named ACT-SQL to automatically generate auto-CoT exemplars and thus the whole process doesn’t need manual labeling. Our approach is cost-saving since we only use the LLMs’ API call once when generating one SQL query. Furthermore, we extend our in-context learning method to the multi-turn text-to-SQL task. The experiment results show that the LLMs’ performance can benefit from our ACT-SQL approach. Our approach achieves SOTA performance on the Spider dev set among existing in-context learning approaches.

pdf bib
Manifold-Preserving Transformers are Effective for Short-Long Range Encoding
Ayan Sengupta | Md Akhtar | Tanmoy Chakraborty

Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.

pdf bib
ASPIRO: Any-shot Structured Parsing-error-Induced ReprOmpting for Consistent Data-to-Text Generation
Martin Vejvar | Yasutaka Fujimoto

We present ASPIRO, an approach for structured data verbalisation into short template sentences in zero to few-shot settings. Unlike previous methods, our approach prompts Large Language Models (LLMs) to directly produce entity-agnostic templates, rather than relying on LLMs to faithfully copy the given example entities, or validating/crafting the templates manually. We incorporate LLM re-prompting, triggered by algorithmic parsing checks, as well as the PARENT metric induced consistency validation to identify and rectify template generation problems in real-time. ASPIRO, compared to direct LLM output, averages 66% parsing error rate reduction in generated verbalisations of RDF triples on the DART dataset. Our best 5-shot text-davinci-003 setup, scoring BLEU of 50.62, METEOR of 45.16, BLEURT of 0.82, NUBIA of 0.87, and PARENT of 0.8962 on the Rel2Text dataset, competes effectively with recent fine-tuned pretrained language models.

pdf bib
Detecting Syntactic Change with Pre-trained Transformer Models
Liwen Hou | David Smith

We investigate the ability of Transformer-based language models to find syntactic differences between the English of the early 1800s and that of the late 1900s. First, we show that a fine-tuned BERT model can distinguish between text from these two periods using syntactic information only; to show this, we employ a strategy to hide semantic information from the text. Second, we make further use of fine-tuned BERT models to identify specific instances of syntactic change and specific words for which a new part of speech was introduced. To do this, we employ an automatic part-of-speech (POS) tagger and use it to train corpora-specific taggers based only on BERT representations pretrained on different corpora. Notably, our methods of identifying specific candidates for syntactic change avoid using any automatic POS tagger on old text, where its performance may be unreliable; instead, our methods only use untagged old text together with tagged modern text. We examine samples and distributional properties of the model output to validate automatically identified cases of syntactic change. Finally, we use our techniques to confirm the historical rise of the progressive construction, a known example of syntactic change.

pdf bib
Can Word Sense Distribution Detect Semantic Changes of Words?
Xiaohang Tang | Yi Zhou | Taichi Aida | Procheta Sen | Danushka Bollegala

Semantic Change Detection of words is an important task for various NLP applications that must make time-sensitive predictions. Some words are used over time in novel ways to express new meanings, and these new meanings establish themselves as novel senses of existing words. On the other hand, Word Sense Disambiguation (WSD) methods associate ambiguous words with sense ids, depending on the context in which they occur. Given this relationship between WSD and SCD, we explore the possibility of predicting whether a target word has its meaning changed between two corpora collected at different time steps, by comparing the distributions of senses of that word in each corpora. For this purpose, we use pretrained static sense embeddings to automatically annotate each occurrence of the target word in a corpus with a sense id. Next, we compute the distribution of sense ids of a target word in a given corpus. Finally, we use different divergence or distance measures to quantify the semantic change of the target word across the two given corpora. Our experimental results on SemEval 2020 Task 1 dataset show that word sense distributions can be accurately used to predict semantic changes of words in English, German, Swedish and Latin.

pdf bib
Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection
Zheye Deng | Weiqi Wang | Zhaowei Wang | Xin Liu | Yangqiu Song

Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task. Our code and data are publicly available at https://github.com/HKUST-KnowComp/GOLD.

pdf bib
Improving Conversational Recommendation Systems via Bias Analysis and Language-Model-Enhanced Data Augmentation
Xi Wang | Hossein Rahmani | Jiqun Liu | Emine Yilmaz

Conversational Recommendation System (CRS) is a rapidly growing research area that has gained significant attention alongside advancements in language modelling techniques. However, the current state of conversational recommendation faces numerous challenges due to its relative novelty and limited existing contributions. In this study, we delve into benchmark datasets for developing CRS models and address potential biases arising from the feedback loop inherent in multi-turn interactions, including selection bias and multiple popularity bias variants. Drawing inspiration from the success of generative data via using language models and data augmentation techniques, we present two novel strategies, ‘Once-Aug’ and ‘PopNudge’, to enhance model performance while mitigating biases. Through extensive experiments on ReDial and TG-ReDial benchmark datasets, we show a consistent improvement of CRS techniques with our data augmentation approaches and offer additional insights on addressing multiple newly formulated biases.

pdf bib
Exploring Graph Pre-training for Aspect-based Sentiment Analysis
Xiaoyi Bao | Zhongqing Wang | Guodong Zhou

Existing studies tend to extract the sentiment elements in a generative manner in order to avoid complex modeling. Despite their effectiveness, they ignore importance of the relationships between sentiment elements that could be crucial, making the large pre-trained generative models sub-optimal for modeling sentiment knowledge. Therefore, we introduce two pre-training paradigms to improve the generation model by exploring graph pre-training that targeting to strengthen the model in capturing the elements’ relationships. Specifically, We first employ an Element-level Graph Pre-training paradigm, which is designed to improve the structure awareness of the generative model. Then, we design a Task Decomposition Pre-training paradigm to make the generative model generalizable and robust against various irregular sentiment quadruples. Extensive experiments show the superiority of our proposed method, validate the correctness of our motivation.

pdf bib
DemaFormer: Damped Exponential Moving Average Transformer with Energy-Based Modeling for Temporal Language Grounding
Thong Nguyen | Xiaobao Wu | Xinshuai Dong | Cong-Duy Nguyen | See-Kiong Ng | Anh Luu

Temporal Language Grounding seeks to localize video moments that semantically correspond to a natural language query. Recent advances employ the attention mechanism to learn the relations between video moments and the text query. However, naive attention might not be able to appropriately capture such relations, resulting in ineffective distributions where target video moments are difficult to separate from the remaining ones. To resolve the issue, we propose an energy-based model framework to explicitly learn moment-query distributions. Moreover, we propose DemaFormer, a novel Transformer-based architecture that utilizes exponential moving average with a learnable damping factor to effectively encode moment-query inputs. Comprehensive experiments on four public temporal language grounding datasets showcase the superiority of our methods over the state-of-the-art baselines.

pdf bib
Test-time Augmentation for Factual Probing
Go Kamoda | Benjamin Heinzerling | Keisuke Sakaguchi | Kentaro Inui

Factual probing is a method that uses prompts to test if a language model “knows” certain world knowledge facts. A problem in factual probing is that small changes to the prompt can lead to large changes in model output. Previous work aimed to alleviate this problem by optimizing prompts via text mining or fine-tuning. However, such approaches are relation-specific and do not generalize to unseen relation types. Here, we propose to use test-time augmentation (TTA) as a relation-agnostic method for reducing sensitivity to prompt variations by automatically augmenting and ensembling prompts at test time. Experiments show improved model calibration, i.e., with TTA, model confidence better reflects prediction accuracy. Improvements in prediction accuracy are observed for some models, but for other models, TTA leads to degradation. Error analysis identifies the difficulty of producing high-quality prompt variations as the main challenge for TTA.

pdf bib
Methodological Insights in Detecting Subtle Semantic Shifts with Contextualized and Static Language Models
Sanne Hoeken | Özge Alacam | Antske Fokkens | Pia Sommerauer

In this paper, we investigate automatic detection of subtle semantic shifts between social communities of different political convictions in Dutch and English. We perform a methodological study comparing methods using static and contextualized language models. We investigate the impact of specializing contextualized models through fine-tuning on target corpora, word sense disambiguation and sentiment. We furthermore propose a new approach using masked token prediction, that relies on behavioral information, specifically the most probable substitutions, instead of geometrical comparison of representations. Our results show that methods using static models and our masked token prediction method can detect differences in connotation of politically loaded terms, whereas methods that rely on measuring the distance between contextualized representations are not providing clear signals, even in synthetic scenarios of extreme shifts.

pdf bib
Disfluent Cues for Enhanced Speech Understanding in Large Language Models
Morteza Rohanian | Farhad Nooralahzadeh | Omid Rohanian | David Clifton | Michael Krauthammer

In computational linguistics, the common practice is to “clean” disfluent content from spontaneous speech. However, we hypothesize that these disfluencies might serve as more than mere noise, potentially acting as informative cues. We use a range of pre-trained models for a reading comprehension task involving disfluent queries, specifically featuring different types of speech repairs. The findings indicate that certain disfluencies can indeed improve model performance, particularly those stemming from context-based adjustments. However, large-scale language models struggle to handle repairs involving decision-making or the correction of lexical or syntactic errors, suggesting a crucial area for potential improvement. This paper thus highlights the importance of a nuanced approach to disfluencies, advocating for their potential utility in enhancing model performance rather than their removal.

pdf bib
Watermarking PLMs on Classification Tasks by Combining Contrastive Learning with Weight Perturbation
Chenxi Gu | Xiaoqing Zheng | Jianhan Xu | Muling Wu | Cenyuan Zhang | Chengsong Huang | Hua Cai | Xuanjing Huang

Large pre-trained language models (PLMs) have achieved remarkable success, making them highly valuable intellectual property due to their expensive training costs. Consequently, model watermarking, a method developed to protect the intellectual property of neural models, has emerged as a crucial yet underexplored technique. The problem of watermarking PLMs has remained unsolved since the parameters of PLMs will be updated when fine-tuned on downstream datasets, and then embedded watermarks could be removed easily due to the catastrophic forgetting phenomenon. This study investigates the feasibility of watermarking PLMs by embedding backdoors that can be triggered by specific inputs. We employ contrastive learning during the watermarking phase, allowing the representations of specific inputs to be isolated from others and mapped to a particular label after fine-tuning. Moreover, we demonstrate that by combining weight perturbation with the proposed method, watermarks can be embedded in a flatter region of the loss landscape, thereby increasing their robustness to watermark removal. Extensive experiments on multiple datasets demonstrate that the embedded watermarks can be robustly extracted without any knowledge about downstream tasks, and with a high success rate.

pdf bib
BanLemma: A Word Formation Dependent Rule and Dictionary Based Bangla Lemmatizer
Sadia Afrin | Md. Shahad Mahmud Chowdhury | Md. Islam | Faisal Khan | Labib Chowdhury | Md. Mahtab | Nazifa Chowdhury | Massud Forkan | Neelima Kundu | Hakim Arif | Mohammad Mamun Or Rashid | Mohammad Amin | Nabeel Mohammed

Lemmatization holds significance in both natural language processing (NLP) and linguistics, as it effectively decreases data density and aids in comprehending contextual meaning. However, due to the highly inflected nature and morphological richness, lemmatization in Bangla text poses a complex challenge. In this study, we propose linguistic rules for lemmatization and utilize a dictionary along with the rules to design a lemmatizer specifically for Bangla. Our system aims to lemmatize words based on their parts of speech class within a given sentence. Unlike previous rule-based approaches, we analyzed the suffix marker occurrence according to the morpho-syntactic values and then utilized sequences of suffix markers instead of entire suffixes. To develop our rules, we analyze a large corpus of Bangla text from various domains, sources, and time periods to observe the word formation of inflected words. The lemmatizer achieves an accuracy of 96.36% when tested against a manually annotated test dataset by trained linguists and demonstrates competitive performance on three previously published Bangla lemmatization datasets. We are making the code and datasets publicly available at https://github.com/eblict-gigatech/BanLemma in order to contribute to the further advancement of Bangla NLP.

pdf bib
Exploring the Sensitivity of LLMs’ Decision-Making Capabilities: Insights from Prompt Variations and Hyperparameters
Manikanta Loya | Divya Sinha | Richard Futrell

The advancement of Large Language Models (LLMs) has led to their widespread use across a broad spectrum of tasks, including decision-making. Prior studies have compared the decision-making abilities of LLMs with those of humans from a psychological perspective. However, these studies have not always properly accounted for the sensitivity of LLMs’ behavior to hyperparameters and variations in the prompt. In this study, we examine LLMs’ performance on the Horizon decision-making task studied by Binz and Schulz (2023), analyzing how LLMs respond to variations in prompts and hyperparameters. By experimenting on three OpenAI language models possessing different capabilities, we observe that the decision-making abilities fluctuate based on the input prompts and temperature settings. Contrary to previous findings, language models display a human-like exploration–exploitation tradeoff after simple adjustments to the prompt.

pdf bib
Search Augmented Instruction Learning
Hongyin Luo | Tianhua Zhang | Yung-Sung Chuang | Yuan Gong | Yoon Kim | Xixin Wu | Helen Meng | James Glass

Large language models (LLMs) have been significantly improved by instruction fine-tuning, but still lack transparency and the ability to utilize up-to-date knowledge and information. In this work, we propose search-augmented instruction learning (SAIL), which grounds the language generation and instruction following abilities on complex search results generated by in-house and external search engines. With an instruction tuning corpus, we collect search results for each training case from different search APIs and domains, and construct a new search-grounded training set containing (instruction, grounding information, response) triplets. We then fine-tune the LLaMA-7B model on the constructed training set. Since the collected results contain unrelated and disputing languages, the model needs to learn to ground on trustworthy search results, filter out distracting passages, and generate the target response. The search result-denoising process entails explicit trustworthy information selection and multi-hop reasoning, since the retrieved passages might be informative but not contain the instruction-following answer. Experiments show that the fine-tuned SAIL-7B model has a strong instruction-following ability, and it performs significantly better on transparency-sensitive tasks, including open-ended question answering and fact checking.

pdf bib
“Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in LLM-Generated Reference Letters
Yixin Wan | George Pu | Jiao Sun | Aparna Garimella | Kai-Wei Chang | Nanyun Peng

Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.

pdf bib
TextMixer: Mixing Multiple Inputs for Privacy-Preserving Inference
Xin Zhou | Yi Lu | Ruotian Ma | Tao Gui | Qi Zhang | Xuanjing Huang

Pre-trained language models (PLMs) are often deployed as cloud services, enabling users to upload textual data and perform inference remotely. However, users’ personal text often contains sensitive information, and sharing such data directly with the service providers can lead to serious privacy leakage. To address this problem, we introduce a novel privacy-preserving inference framework called MixPi , which prevents plaintext leakage during the inference phase. Inspired by k-anonymity, MixPi aims to obfuscate a user’s private input by mixing it with multiple other inputs, thereby confounding potential privacy attackers. To achieve this, our approach involves: (1) proposing a novel encryption module, Privacy Mixer, which encrypts input from three distinct dimensions: mixing, representation, and position. (2) adopting a pre-trained Multi-input Multi-output network to handle mixed representations and obtain multiple predictions. (3) employing a Privacy Demixer to ensure only the user can decrypt the real output among the multiple predictions. Furthermore, we explore different ways to automatically generate synthetic inputs required for mixing. Experimental results on token and sentence classification tasks demonstrate that MixPi greatly surpasses existing privacy-preserving methods in both performance and privacy.

pdf bib
FinePrompt: Unveiling the Role of Finetuned Inductive Bias on Compositional Reasoning in GPT-4
Jeonghwan Kim | Giwon Hong | Sung-Hyon Myaeng | Joyce Whang

Compositional reasoning across texts has been a long-standing challenge in natural language processing. With large language models like GPT-4 taking over the field, prompting techniques such as chain-of-thought (CoT) were proposed to unlock compositional, multi-step reasoning capabilities of LLMs. Despite their success, the prompts demand significant human effort to discover and validate them. Our work draws attention to the idea of transferring task-specific inductive biases from finetuned models to prompts, as a way of improving GPT-4’s compositional reasoning capabilities. To leverage these inductive biases, we formulate prompt templates to ease the transfer of inductive biases. The experimental results on multi-hop question answering and numerical reasoning over text show that our proposed prompt scheme shows competitive zero-shot and few-shot performances compared to existing prompts on complicated reasoning tasks, highlighting the importance of adopting the validated biases of the previous paradigm.

pdf bib
Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning
Aditi Chaudhary | Arun Sampath | Ashwin Sheshadri | Antonios Anastasopoulos | Graham Neubig

One of the challenges in language teaching is how best to organize rules regarding syntax, semantics, or phonology in a meaningful manner. This not only requires content creators to have pedagogical skills, but also have that language’s deep understanding. While comprehensive materials to develop such curricula are available in English and some broadly spoken languages, for many other languages, teachers need to manually create them in response to their students’ needs. This is challenging because i) it requires that such experts be accessible and have the necessary resources, and ii) describing all the intricacies of a language is time-consuming and prone to omission. In this work, we aim to facilitate this process by automatically discovering and visualizing grammar descriptions. We extract descriptions from a natural text corpus that answer questions about morphosyntax (learning of word order, agreement, case marking, or word formation) and semantics (learning of vocabulary). We apply this method for teaching two Indian languages, Kannada and Marathi, which, unlike English, do not have well-developed resources for second language learning. To assess the perceived utility of the extracted material, we enlist the help of language educators from schools in North America to perform a manual evaluation, who find the materials have potential to be used for their lesson preparation and learner evaluation.

pdf bib
Allies: Prompting Large Language Model with Beam Search
Hao Sun | Xiao Liu | Yeyun Gong | Yan Zhang | Daxin Jiang | Linjun Yang | Nan Duan

With the advance of large language models (LLMs), the research field of LLM applications becomes more and more popular and the idea of constructing pipelines to accomplish complex tasks by stacking LLM API calls come true. However, this kind of methods face two limitations: narrow information coverage and low fault tolerance. In this work, we propose a novel method called ALLIES. Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query, enabling an iterative reasoning process. By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly obtainable through retrieval. We take zero-shot open-domain question answering (ODQA) as an application scene and evaluate ALLIES on the widely-used benchmarks, such as NQ, WebQ and TriviaQA. The experimental results demonstrate that ALLIES significantly outperforms other zero-shot baselines, indicating its effectiveness in tackling those challenges. Our code is available in https://github.com/microsoft/SimXNS/tree/main/ALLIES.

pdf bib
Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning
Liangming Pan | Alon Albalak | Xinyi Wang | William Wang

Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems. This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving. Our method first utilizes LLMs to translate a natural language problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference on the formulated problem. We also introduce a self-refinement module, which utilizes the symbolic solver’s error messages to revise symbolic formalizations. We demonstrate Logic-LM’s effectiveness on five logical reasoning datasets: ProofWriter, PrOntoQA, FOLIO, LogicalDeduction, and AR-LSAT. On average, Logic-LM achieves a significant performance boost of 39.2% over using LLM alone with standard prompting and 18.4% over LLM with chain-of-thought prompting. Our findings suggest that Logic-LM, by combining LLMs with symbolic logic, offers a promising avenue for faithful logical reasoning.

pdf bib
SiMFy: A Simple Yet Effective Approach for Temporal Knowledge Graph Reasoning
Zhengtao Liu | Lei Tan | Mengfan Li | Yao Wan | Hai Jin | Xuanhua Shi

Temporal Knowledge Graph (TKG) reasoning, which focuses on leveraging temporal information to infer future facts in knowledge graphs, plays a vital role in knowledge graph completion. Typically, existing works for this task design graph neural networks and recurrent neural networks to respectively capture the structural and temporal information in KGs. Despite their effectiveness, in our practice, we find that they tend to suffer the issues of low training efficiency and insufficient generalization ability, which can be attributed to the over design of model architectures. To this end, this paper aims to figure out whether the current complex model architectures are necessary for temporal knowledge graph reasoning. As a result, we put forward a simple yet effective approach (termed SiMFy), which simply utilizes multilayer perceptron (MLP) to model the structural dependencies of events and adopts a fixed-frequency strategy to incorporate historical frequency during inference. Extensive experiments on real-world datasets demonstrate that our SiMFy can reach state-of-the-art performance with the following strengths: 1) faster convergence speed and better generalization ability; 2) a much smaller time consumption in the training process; and 3) better ability to capture the structural dependencies of events in KGs. These results provide evidence that the substitution of complex models with simpler counterparts is a feasible strategy.

pdf bib
Understanding Translationese in Cross-Lingual Summarization
Jiaan Wang | Fandong Meng | Yunlong Liang | Tingyi Zhang | Jiarong Xu | Zhixu Li | Jie Zhou

Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language documents paired with target-language summaries are rare. To collect large-scale CLS data, existing datasets typically involve translation in their creation. However, the translated text is distinguished from the text originally written in that language, i.e., translationese. In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese. Then we systematically investigate how translationese affects CLS model evaluation and performance when it appears in source documents or target summaries. In detail, we find that (1) the translationese in documents or summaries of test sets might lead to the discrepancy between human judgment and automatic evaluation; (2) the translationese in training sets would harm model performance in real-world applications; (3) though machine-translated documents involve translationese, they are very useful for building CLS systems on low-resource languages under specific training strategies. Lastly, we give suggestions for future CLS research including dataset and model developments. We hope that our work could let researchers notice the phenomenon of translationese in CLS and take it into account in the future.

pdf bib
The Truth, The Whole Truth, and Nothing but the Truth: A New Benchmark Dataset for Hebrew Text Credibility Assessment
Ben Hagag | Reut Tsarfaty

In the age of information overload, it is more important than ever to discern fact from fiction. From the internet to traditional media, we are constantly confronted with a deluge of information, much of which comes from politicians and other public figures who wield significant influence. In this paper, we introduce HeTrue: a new, publicly available dataset for evaluating the credibility of statements made by Israeli public figures and politicians. This dataset consists of 1021 statements, manually annotated by Israeli professional journalists, for their credibility status. Using this corpus, we set out to assess whether the credibility of statements can be predicted based on the text alone. To establish a baseline, we compare text-only methods with others using additional data like metadata, context, and evidence. Furthermore, we develop several credibility assessment models, including a feature-based model that utilizes linguistic features, and state-of-the-art transformer-based models with contextualized embeddings from a pre-trained encoder. Empirical results demonstrate improved performance when models integrate statement and context, outperforming those relying on the statement text alone. Our best model, which also integrates evidence, achieves a 48.3 F1 Score, suggesting that HeTrue is a challenging benchmark, calling for further work on this task.

pdf bib
IndiSocialFT: Multilingual Word Representation for Indian languages in code-mixed environment
Saurabh Kumar | Ranbir Sanasam | Sukumar Nandi

The increasing number of Indian language users on the internet necessitates the development of Indian language technologies. In response to this demand, our paper presents a generalized representation vector for diverse text characteristics, including native scripts, transliterated text, multilingual, code-mixed, and social media-related attributes. We gather text from both social media and well-formed sources and utilize the FastText model to create the “IndiSocialFT” embedding. Through intrinsic and extrinsic evaluation methods, we compare IndiSocialFT with three popular pretrained embeddings trained over Indian languages. Our findings show that the proposed embedding surpasses the baselines in most cases and languages, demonstrating its suitability for various NLP applications.

pdf bib
Adaptive Hinge Balance Loss for Document-Level Relation Extraction
Jize Wang | Xinyi Le | Xiaodi Peng | Cailian Chen

Document-Level Relation Extraction aims at predicting relations between entities from multiple sentences. A common practice is to select multi-label classification thresholds to decide whether a relation exists between an entity pair. However, in the document-level task, most entity pairs do not express any relations, resulting in a highly imbalanced distribution between positive and negative classes. We argue that the imbalance problem affects threshold selection and may lead to incorrect “no-relation” predictions. In this paper, we propose to down-weight the easy negatives by utilizing a distance between the classification threshold and the predicted score of each relation. Our novel Adaptive Hinge Balance Loss measures the difficulty of each relation class with the distance, putting more focus on hard, misclassified relations, i.e. the minority positive relations. Experiment results on Re-DocRED demonstrate the superiority of our approach over other balancing methods. Source codes are available at https://github.com/Jize-W/HingeABL.

pdf bib
Answer-state Recurrent Relational Network (AsRRN) for Constructed Response Assessment and Feedback Grouping
Zhaohui Li | Susan Lloyd | Matthew Beckman | Rebecca Passonneau

STEM educators must trade off the ease of assessing selected response (SR) questions, like multiple choice, with constructed response (CR) questions, where students articulate their own reasoning. Our work addresses a CR type new to NLP but common in college STEM, consisting of multiple questions per context. To relate the context, the questions, the reference responses, and students’ answers, we developed an Answer-state Recurrent Relational Network (AsRRN). In recurrent time-steps, relation vectors are learned for specific dependencies in a computational graph, where the nodes encode the distinct types of text input. AsRRN incorporates contrastive loss for better representation learning, which improves performance and supports student feedback. AsRRN was developed on a new dataset of 6,532 student responses to three, two-part CR questions. AsRRN outperforms classifiers based on LLMs, a previous relational network for CR questions, and few-shot learning with GPT-3.5. Ablation studies show the distinct contributions of AsRRN’s dependency structure, the number of time steps in the recurrence, and the contrastive loss.

pdf bib
Low-Resource Comparative Opinion Quintuple Extraction by Data Augmentation with Prompting
Qingting Xu | Yu Hong | Fubang Zhao | Kaisong Song | Yangyang Kang | Jiaxiang Chen | Guodong Zhou

Comparative Opinion Quintuple Extraction (COQE) aims to predict comparative opinion quintuples from comparative sentences. These quintuples include subject, object, shareable aspect, comparative opinion, and preference. The existing pipeline-based COQE method fails in error propagation. In addition, the complexity and insufficient amounts of annotated data hinder the performance of COQE models. In this paper, we introduce a novel approach called low-resource comparative opinion quintuple extraction by Data Augmentation with Prompting (DAP). Firstly, we present an end-to-end model architecture better suited to the data augmentation method from triplets to quintuples and can effectively avoid error propagation. Additionally, we introduce a data-centric augmentation approach that leverages the robust generative abilities of ChatGPT and integrates transfer learning techniques. Experimental results over three datasets (Camera, Car, Ele) demonstrate that our approach yields substantial improvements and achieves state-of-the-art results. The source code and data are publicly released at: https://github.com/qtxu-nlp/COQE-DAP.

pdf bib
A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection
Shiping Yang | Renliang Sun | Xiaojun Wan

Large Language Models (LLMs) have shown their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark named PHD, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on two datasets. The experimental results demonstrate that the proposed method considerably outperforms the baselines while costing fewer tokens and less time. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.

pdf bib
Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation
Heming Xia | Tao Ge | Peiyi Wang | Si-Qing Chen | Furu Wei | Zhifang Sui

We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter – an independent model specially optimized for efficient and accurate drafting – and Spec-Verification – a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5x speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4x~2x speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.

pdf bib
APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection
Pei Wang | Keqing He | Yutao Mou | Xiaoshuai Song | Yanan Wu | Jingang Wang | Yunsen Xian | Xunliang Cai | Weiran Xu

Detecting out-of-domain (OOD) intents from user queries is essential for a task-oriented dialogue system. Previous OOD detection studies generally work on the assumption that plenty of labeled IND intents exist. In this paper, we focus on a more practical few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data that may belong to IND or OOD. The new scenario carries two key challenges: learning discriminative representations using limited IND data and leveraging unlabeled mixed data. Therefore, we propose an adaptive prototypical pseudo-labeling(APP) method for few-shot OOD detection, including a prototypical OOD detection framework (ProtoOOD) to facilitate low-resourceOOD detection using limited IND data, and an adaptive pseudo-labeling method to produce high-quality pseudo OOD and IND labels. Extensive experiments and analysis demonstrate the effectiveness of our method for few-shot OOD detection.

pdf bib
2INER: Instructive and In-Context Learning on Few-Shot Named Entity Recognition
Jiasheng Zhang | Xikai Liu | Xinyi Lai | Yan Gao | Shusen Wang | Yao Hu | Yiqing Lin

Prompt-based learning has emerged as a powerful technique in natural language processing (NLP) due to its ability to leverage pre-training knowledge for downstream few-shot tasks. In this paper, we propose 2INER, a novel text-to-text framework for Few-Shot Named Entity Recognition (NER) tasks. Our approach employs instruction finetuning based on InstructionNER to enable the model to effectively comprehend and process task-specific instructions, including both main and auxiliary tasks. We also introduce a new auxiliary task, called Type Extracting, to enhance the model’s understanding of entity types in the overall semantic context of a sentence. To facilitate in-context learning, we concatenate examples to the input, enabling the model to learn from additional contextual information. Experimental results on four datasets demonstrate that our approach outperforms existing Few-Shot NER methods and remains competitive with state-of-the-art standard NER algorithms.

pdf bib
Generative Emotion Cause Triplet Extraction in Conversations with Commonsense Knowledge
Fanfan Wang | Jianfei Yu | Rui Xia

Emotion Cause Triplet Extraction in Conversations (ECTEC) aims to simultaneously extract emotion utterances, emotion categories, and cause utterances from conversations. However, existing studies mainly decompose the ECTEC task into multiple subtasks and solve them in a pipeline manner. Moreover, since conversations tend to contain many informal and implicit expressions, it often requires external knowledge and reasoning-based inference to accurately identify emotional and causal clues implicitly mentioned in the context, which are ignored by previous work. To address these limitations, in this paper, we propose a commonSense knowledge-enHanced generAtive fRameworK named SHARK, which formulates the ECTEC task as an index generation problem and generates the emotion-cause-category triplets in an end-to-end manner with a sequence-to-sequence model. Furthermore, we propose to incorporate both retrieved and generated commonsense knowledge into the generative model via a dual-view gate mechanism and a graph attention layer. Experimental results show that our SHARK model consistently outperforms several competitive systems on two benchmark datasets. Our source codes are publicly released at https://github.com/NUSTM/SHARK.

pdf bib
Proto-lm: A Prototypical Network-Based Framework for Built-in Interpretability in Large Language Models
Sean Xie | Soroush Vosoughi | Saeed Hassanpour

Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), but their lack of interpretability has been a major concern. Current methods for interpreting LLMs are post hoc, applied after inference time, and have limitations such as their focus on low-level features and lack of explainability at higher-level text units. In this work, we introduce proto-lm, a prototypical network-based white-box framework that allows LLMs to learn immediately interpretable embeddings during the fine-tuning stage while maintaining competitive performance. Our method’s applicability and interpretability are demonstrated through experiments on a wide range of NLP tasks, and our results indicate a new possibility of creating interpretable models without sacrificing performance. This novel approach to interpretability in LLMs can pave the way for more interpretable models without the need to sacrifice performance. We release our code at https://github.com/yx131/proto-lm.

pdf bib
GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence
Zhihua Wen | Zhiliang Tian | Wei Wu | Yuxin Yang | Yanqi Shi | Zhen Huang | Dongsheng Li

Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories’ complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an “asking-why” prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative’s complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.

pdf bib
KAPALM: Knowledge grAPh enhAnced Language Models for Fake News Detection
Jing Ma | Chen Chen | Chunyan Hou | Xiaojie Yuan

Social media has not only facilitated news consumption, but also led to the wide spread of fake news. Because news articles in social media is usually condensed and full of knowledge entities, existing methods of fake news detection use external entity knowledge. However, majority of these methods focus on news entity information and ignore the structured knowledge among news entities. To address this issue, in this work, we propose a Knowledge grAPh enhAnced Language Model (KAPALM) which is a novel model that fuses coarse- and fine-grained representations of entity knowledge from Knowledge Graphs (KGs). Firstly, we identify entities in news content and link them to entities in KGs. Then, a subgraph of KGs is extracted to provide structured knowledge of entities in KGs and fed into a graph neural network to obtain the coarse-grained knowledge representation. This subgraph is pruned to provide fine-grained knowledge and fed into the attentive graph and graph pooling layer. Finally, we integrate the coarse- and fine-grained entity knowledge representations with the textual representation for fake news detection. The experimental results on two benchmark datasets show that our method is superior to state-of-the-art baselines. In addition, it is competitive in the few-shot scenario.

pdf bib
Comparing the Evaluation and Production of Loophole Behavior in Humans and Large Language Models
Sonia Murthy | Kiera Parece | Sophie Bridgers | Peng Qian | Tomer Ullman

In law, lore, and everyday life, loopholes are commonplace. When people exploit a loophole, they understand the intended meaning or goal of another person, but choose to go with a different interpretation. Past and current AI research has shown that artificial intelligence engages in what seems superficially like the exploitation of loopholes, but this is likely anthropomorphization. It remains unclear to what extent current models, especially Large Language Models (LLMs), capture the pragmatic understanding required for engaging in loopholes. We examined the performance of LLMs on two metrics developed for studying loophole behavior in humans: evaluation (ratings of trouble, upset, and humor), and generation (coming up with new loopholes in a given context). We conducted a fine-grained comparison of state-of-the-art LLMs to humans, and find that while many of the models rate loophole behaviors as resulting in less trouble and upset than outright non-compliance (in line with adults), they struggle to recognize the humor in the creative exploitation of loopholes in the way that humans do. Furthermore, only two of the models, GPT 3 and 3.5, are capable of generating loopholes of their own, with GPT3.5 performing closest to the human baseline.

pdf bib
InstructExcel: A Benchmark for Natural Language Instruction in Excel
Justin Payan | Swaroop Mishra | Mukul Singh | Carina Negreanu | Christian Poelitz | Chitta Baral | Subhro Roy | Rasika Chakravarthy | Benjamin Van Durme | Elnaz Nouri

With the evolution of Large Language Models (LLMs) we can solve increasingly more complex NLP tasks across various domains, including spreadsheets. This work investigates whether LLMs can generate code (Excel OfficeScripts, a TypeScript API for executing many tasks in Excel) that solves Excel specific tasks provided via natural language user instructions. To do so we introduce a new large-scale benchmark, InstructExcel, created by leveraging the ‘Automate’ feature in Excel to automatically generate OfficeScripts from users’ actions. Our benchmark includes over 10k samples covering 170+ Excel operations across 2,000 publicly available Excel spreadsheets. Experiments across various zero-shot and few-shot settings show that InstructExcel is a hard benchmark for state of the art models like GPT-4. We observe that (1) using GPT-4 over GPT-3.5, (2) providing more in-context examples, and (3) dynamic prompting can help improve performance on this benchmark.

pdf bib
Hallucination Detection for Grounded Instruction Generation
Lingjun Zhao | Khanh Nguyen | Hal Daumé III

We investigate the problem of generating instructions to guide humans to navigate in simulated residential environments. A major issue with current models is hallucination: they generate references to actions or objects that are inconsistent with what a human follower would perform or encounter along the described path. We develop a model that detects these hallucinated references by adopting a model pre-trained on a large corpus of image-text pairs, and fine-tuning it with a contrastive loss that separates correct instructions from instructions containing synthesized hallucinations. Our final model outperforms several baselines, including using word probability estimated by the instruction-generation model, and supervised models based on LSTM and Transformer.

pdf bib
Definitions Matter: Guiding GPT for Multi-label Classification
Youri Peskine | Damir Korenčić | Ivan Grubisic | Paolo Papotti | Raphael Troncy | Paolo Rosso

Large language models have recently risen in popularity due to their ability to perform many natural language tasks without requiring any fine-tuning. In this work, we focus on two novel ideas: (1) generating definitions from examples and using them for zero-shot classification, and (2) investigating how an LLM makes use of the definitions. We thoroughly analyze the performance of GPT-3 model for fine-grained multi-label conspiracy theory classification of tweets using zero-shot labeling. In doing so, we asses how to improve the labeling by providing minimal but meaningful context in the form of the definitions of the labels. We compare descriptive noun phrases, human-crafted definitions, introduce a new method to help the model generate definitions from examples, and propose a method to evaluate GPT-3’s understanding of the definitions. We demonstrate that improving definitions of class labels has a direct consequence on the downstream classification results.

pdf bib
ECHo: A Visio-Linguistic Dataset for Event Causality Inference via Human-Centric Reasoning
Yuxi Xie | Guanzhen Li | Min-Yen Kan

We introduce ECHo (Event Causality Inference via Human-Centric Reasoning), a diagnostic dataset of event causality inference grounded in visio-linguistic social scenarios. ECHo employs real-world human-centric deductive information building on a television crime drama. ECHo requires the Theory-of-Mind (ToM) ability to understand and reason about social interactions based on multimodal information. Using ECHo, we propose a unified Chain-of-Thought (CoT) framework to assess the reasoning capability of current AI systems. Our ToM-enhanced CoT pipeline accommodates various large foundation models in both zero-shot and few-shot visio-linguistic reasoning. We use this framework to scrutinize recent large foundation models such as InstructGPT and MiniGPT-4 on three diagnostic human-centric tasks. Further analysis demonstrates ECHo as a challenging dataset to expose imperfections and inconsistencies in reasoning. Our data and code are publicly available at [https://github.com/YuxiXie/ECHo](https://github.com/YuxiXie/ECHo).

pdf bib
An Empirical Study of Instruction-tuning Large Language Models in Chinese
Qingyi Si | Tong Wang | Zheng Lin | Xu Zhang | Yanan Cao | Weiping Wang

The success of ChatGPT validates the potential of large language models (LLMs) in artificial general intelligence (AGI). Subsequently, the release of LLMs has sparked the open-source community’s interest in instruction-tuning, which is deemed to accelerate ChatGPT’s replication process. However, research on instruction-tuning LLMs in Chinese, the world’s most spoken language, is still in its early stages. Therefore, this paper makes an in-depth empirical study of instruction-tuning LLMs in Chinese, which can serve as a cookbook that provides valuable findings for effectively customizing LLMs that can better respond to Chinese instructions. Specifically, we systematically explore the impact of LLM bases, parameter-efficient methods, instruction data types, which are the three most important elements for instruction-tuning. Besides, we also conduct experiment to study the impact of other factors, e.g., chain-of-thought data and human-value alignment. We hope that this empirical study can make a modest contribution to the open Chinese version of ChatGPT. This paper will release a powerful Chinese LLM that is comparable to ChatGLM. The code and data are available at https: //github.com/PhoebusSi/Alpaca-CoT.

pdf bib
Debiasing Multimodal Models via Causal Information Minimization
Vaidehi Patil | Adyasha Maharana | Mohit Bansal

Most existing debiasing methods for multimodal models, including causal intervention and inference methods, utilize approximate heuristics to represent the biases, such as shallow features from early stages of training or unimodal features for multimodal tasks like VQA, etc., which may not be accurate. In this paper, we study bias arising from confounders in a causal graph for multimodal data, and examine a novel approach that leverages causally-motivated information minimization to learn the confounder representations. Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data. Hence, minimizing the information content of features obtained from a pretrained biased model helps learn the simplest predictive features that capture the underlying data distribution. We treat these features as confounder representations and use them via methods motivated by causal theory to remove bias from models. We find that the learned confounder representations indeed capture dataset biases and the proposed debiasing methods improve out-of-distribution (OOD) performance on multiple multimodal datasets without sacrificing in-distribution performance. Additionally, we introduce a novel metric to quantify the sufficiency of spurious features in models’ predictions that further demonstrates the effectiveness of our proposed methods.

pdf bib
Evaluating Emotion Arcs Across Languages: Bridging the Global Divide in Sentiment Analysis
Daniela Teodorescu | Saif Mohammad

Emotion arcs capture how an individual (or a population) feels over time. They are widely used in industry and research; however, there is little work on evaluating the automatically generated arcs. This is because of the difficulty of establishing the true (gold) emotion arc. Our work, for the first time, systematically and quantitatively evaluates automatically generated emotion arcs. We also compare two common ways of generating emotion arcs: Machine-Learning (ML) models and Lexicon-Only (LexO) methods. By running experiments on 18 diverse datasets in 9 languages, we show that despite being markedly poor at instance level emotion classification, LexO methods are highly accurate at generating emotion arcs when aggregating information from hundreds of instances. We also show, through experiments on six indigenous African languages, as well as Arabic, and Spanish, that automatic translations of English emotion lexicons can be used to generate high-quality emotion arcs in less-resource languages. This opens up avenues for work on emotions in languages from around the world; which is crucial for commerce, public policy, and health research in service of speakers often left behind. Code and resources: https://github.com/dteodore/EmotionArcs

pdf bib
Multi-step Jailbreaking Privacy Attacks on ChatGPT
Haoran Li | Dadi Guo | Wei Fan | Mingshi Xu | Jie Huang | Fanpu Meng | Yangqiu Song

With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given appropriate prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI’s ChatGPT and the New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause new privacy threats. To this end, we conduct extensive experiments to support our claims and discuss LLMs’ privacy implications.

pdf bib
Chain-of-Thought Embeddings for Stance Detection on Social Media
Joseph Gatto | Omar Sharif | Sarah Preum

Stance detection on social media is challenging for Large Language Models (LLMs), as emerging slang and colloquial language in online conversations often contain deeply implicit stance labels. Chain-of-Thought (COT) prompting has recently been shown to improve performance on stance detection tasks — alleviating some of these issues. However, COT prompting still struggles with implicit stance identification. This challenge arises because many samples are initially challenging to comprehend before a model becomes familiar with the slang and evolving knowledge related to different topics, all of which need to be acquired through the training data. In this study, we address this problem by introducing COT Embeddings which improve COT performance on stance detection tasks by embedding COT reasonings and integrating them into a traditional RoBERTa-based stance detection pipeline. Our analysis demonstrates that 1) text encoders can leverage COT reasonings with minor errors or hallucinations that would otherwise distort the COT output label. 2) Text encoders can overlook misleading COT reasoning when a sample’s prediction heavily depends on domain-specific patterns. Our model achieves SOTA performance on multiple stance detection datasets collected from social media.

pdf bib
Using LLM for Improving Key Event Discovery: Temporal-Guided News Stream Clustering with Event Summaries
Nishanth Nakshatri | Siyi Liu | Sihao Chen | Dan Roth | Dan Goldwasser | Daniel Hopkins

Understanding and characterizing the discus- sions around key events in news streams is important for analyzing political discourse. In this work, we study the problem of identification of such key events and the news articles associated with those events from news streams. We propose a generic framework for news stream clustering that analyzes the temporal trend of news articles to automatically extract the underlying key news events that draw significant media attention. We characterize such key events by generating event summaries, based on which we form document clusters in an unsupervised fashion. We evaluate our simple yet effective framework, and show that it produces more coherent event-focused clusters. To demonstrate the utility of our approach, and facilitate future research along the line, we use our framework to construct KeyEvents, a dataset of 40k articles with 611 key events from 11 topics.

pdf bib
Descriptive Prompt Paraphrasing for Target-Oriented Multimodal Sentiment Classification
Dan Liu | Lin Li | Xiaohui Tao | Jian Cui | Qing Xie

Target-Oriented Multimodal Sentiment Classification (TMSC) aims to perform sentiment polarity on a target jointly considering its corresponding multiple modalities including text, image, and others. Current researches mainly work on either of two types of targets in a decentralized manner. One type is entity, such as a person name, a location name, etc. and the other is aspect, such as ‘food’, ‘service’, etc. We believe that this target type based division in task modelling is not necessary because the sentiment polarity of the specific target is not governed by its type but its context. For this reason, we propose a unified model for target-oriented multimodal sentiment classification, so called UnifiedTMSC. It is prompt-based language modelling and performs well on four datasets spanning the above two target types. Specifically, we design descriptive prompt paraphrasing to reformulate TMSC task via (1) task paraphrasing, which obtains paraphrased prompts based on the task description through a paraphrasing rule, and (2) image prefix tuning, which optimizes a small continuous image vector throughout the multimodal representation space of text and images. Conducted on two entity-level multimodal datasets: Twitter-2015 and Twitter-2017, and two aspect-level multimodal datasets: Multi-ZOL and MASAD, the experimental results show the effectiveness of our UnifiedTMSC.

pdf bib
Joint Semantic and Strategy Matching for Persuasive Dialogue
Chuhao Jin | Yutao Zhu | Lingzhen Kong | Shijie Li | Xiao Zhang | Ruihua Song | Xu Chen | Huan Chen | Yuchong Sun | Yu Chen | Jun Xu

Persuasive dialogue aims to persuade users to achieve some targets by conversations. While previous persuasion models have achieved notable successes, they mostly base themselves on utterance semantic matching, and an important aspect has been ignored, that is, the strategy of the conversations, for example, the agent can choose an emotional-appeal strategy to impress users. Compared with utterance semantics, conversation strategies are high-level concepts, which can be informative and provide complementary information to achieve effective persuasions. In this paper, we propose to build a persuasion model by jointly modeling the conversation semantics and strategies, where we design a BERT-like module and an auto-regressive predictor to match the semantics and strategies, respectively. Experimental results indicate that our proposed approach can significantly improve the state-of-the-art baseline by 5% on a small dataset and 37% on a large dataset in terms of Recall@1. Detailed analyses show that the auto-regressive predictor contributes most to the final performance.

pdf bib
Non-Autoregressive Sentence Ordering
Yi Bin | Wenhao Shi | Bin Ji | Jipeng Zhang | Yujuan Ding | Yang Yang

Existing sentence ordering approaches generally employ encoder-decoder frameworks with the pointer net to recover the coherence by recurrently predicting each sentence step-by-step. Such an autoregressive manner only leverages unilateral dependencies during decoding and cannot fully explore the semantic dependency between sentences for ordering. To overcome these limitations, in this paper, we propose a novel Non-Autoregressive Ordering Network, dubbed NAON, which explores bilateral dependencies between sentences and predicts the sentence for each position in parallel. We claim that the non-autoregressive manner is not just applicable but also particularly suitable to the sentence ordering task because of two peculiar characteristics of the task: 1) each generation target is in deterministic length, and 2) the sentences and positions should match exclusively. Furthermore, to address the repetition issue of the naive non-autoregressive Transformer, we introduce an exclusive loss to constrain the exclusiveness between positions and sentences. To verify the effectiveness of the proposed model, we conduct extensive experiments on several common-used datasets and the experimental results show that our method outperforms all the autoregressive approaches and yields competitive performance compared with the state-of-the-arts. The codes are available at: https://github.com/steven640pixel/nonautoregressive-sentence-ordering.

pdf bib
Large Language Models are Not Yet Human-Level Evaluators for Abstractive Summarization
Chenhui Shen | Liying Cheng | Xuan-Phi Nguyen | Yang You | Lidong Bing

With the recent undeniable advancement in reasoning abilities in large language models (LLMs) like ChatGPT and GPT-4, there is a growing trend for using LLMs on various tasks. One area where LLMs can be employed is as an alternative evaluation metric for complex generative tasks, which generally demands expensive human judges to complement the traditional automatic metrics for various evaluation dimensions such as fluency and consistency. In this work, we conduct extensive analysis to investigate the stability and reliability of LLMs as automatic evaluators for abstractive summarization. We found that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements due to significant limitations. That is, LLM evaluators rate each candidate system inconsistently and are dimension-dependent. They also struggle to compare candidates with close performance and become more unreliable with higher-quality summaries by obtaining a lower correlation with humans. In other words, with better abstractive summarization systems being introduced at a fast pace, LLMs may result in misleading and unreliable evaluations.

pdf bib
Women Wearing Lipstick: Measuring the Bias Between an Object and Its Related Gender
Ahmed Sabir | Lluís Padró

In this paper, we investigate the impact of objects on gender bias in image captioning systems. Our results show that only gender-specific objects have a strong gender bias (e.g., women-lipstick). In addition, we propose a visual semantic-based gender score that measures the degree of bias and can be used as a plug-in for any image captioning system. Our experiments demonstrate the utility of the gender score, since we observe that our score can measure the bias relation between a caption and its related gender; therefore, our score can be used as an additional metric to the existing Object Gender Co-Occ approach.

pdf bib
FREDSum: A Dialogue Summarization Corpus for French Political Debates
Virgile Rennard | Guokan Shang | Damien Grari | Julie Hunter | Michalis Vazirgiannis

Recent advances in deep learning, and especially the invention of encoder-decoder architectures, have significantly improved the performance of abstractive summarization systems. While the majority of research has focused on written documents, we have observed an increasing interest in the summarization of dialogues and multi-party conversations over the past few years. In this paper, we present a dataset of French political debates for the purpose of enhancing resources for multi-lingual dialogue summarization. Our dataset consists of manually transcribed and annotated political debates, covering a range of topics and perspectives. We highlight the importance of high-quality transcription and annotations for training accurate and effective dialogue summarization models, and emphasize the need for multilingual resources to support dialogue summarization in non-English languages. We also provide baseline experiments using state-of-the-art methods, and encourage further research in this area to advance the field of dialogue summarization. Our dataset will be made publicly available for use by the research community, enabling further advances in multilingual dialogue summarization.

pdf bib
Towards Zero-shot Relation Extraction in Web Mining: A Multimodal Approach with Relative XML Path
Zilong Wang | Jingbo Shang

The rapid growth of web pages and the increasing complexity of their structure poses a challenge for web mining models. Web mining models are required to understand semi-structured web pages, particularly when little is known about the subject or template of a new page. Current methods migrate language models to web mining by embedding the XML source code into the transformer or encoding the rendered layout with graph neural networks. However, these approaches do not take into account the relationships between text nodes within and across pages. In this paper, we propose a new approach, ReXMiner, for zero-shot relation extraction in web mining. ReXMiner encodes the shortest relative paths in the Document Object Model (DOM) tree of the web page which is a more accurate and efficient signal for key-value pair extraction within a web page. It also incorporates the popularity of each text node by counting the occurrence of the same text node across different web pages. We use contrastive learning to address the issue of sparsity in relation extraction. Extensive experiments on public benchmarks show that our method, ReXMiner, outperforms the state-of-the-art baselines in the task of zero-shot relation extraction in web mining.

pdf bib
Narrative Style and the Spread of Health Misinformation on Twitter
Achyutarama Ganti | Eslam Ali Hassan Hussein | Steven Wilson | Zexin Ma | Xinyan Zhao

Using a narrative style is an effective way to communicate health information both on and off social media. Given the amount of misinformation being spread online and its potential negative effects, it is crucial to investigate the interplay between narrative communication style and misinformative health content on user engagement on social media platforms. To explore this in the context of Twitter, we start with previously annotated health misinformation tweets (n 15,000) and annotate a subset of the data (n=3,000) for the presence of narrative style. We then use these manually assigned labels to train text classifiers, experimenting with supervised fine-tuning and in-context learning for automatic narrative detection. We use our best model to label remaining portion of the dataset, then statistically analyze the relationship between narrative style, misinformation, and user-level features on engagement, finding that narrative use is connected to increased tweet engagement and can, in some cases, lead to increased engagement with misinformation. Finally, we analyze the general categories of language used in narratives and health misinformation in our dataset.

pdf bib
HadSkip: Homotopic and Adaptive Layer Skipping of Pre-trained Language Models for Efficient Inference
Haoyu Wang | Yaqing Wang | Tianci Liu | Tuo Zhao | Jing Gao

Pre-trained language models (LMs) have brought remarkable performance on numerous NLP tasks. However, they require significant resources and entail high computational costs for inference, making them challenging to deploy in real-world and real-time systems. Existing early exiting methods aim to reduce computational complexity by selecting the layer at which to exit, but suffer from the limitation that they have to sequentially traverse through all layers prior to the selected exit layer, which lacks flexibility and degrades their performance. To solve this problem, we propose a homotopic and adaptive layer skipping fine-tuning method named HadSkip. HadSkip adaptively selects the layers to skip based on a predefined budget. Specifically, we introduce a learnable gate before each layer of the LM to determine whether the current layer should be skipped. To tackle various challenges in training such as discrete gates and the budget constraint, we propose a fine-grained initialization strategy and homotopic optimization strategy. We conduct extensive experiments on the GLUE benchmark, and experimental results demonstrate the proposed HadSkip outperforms all state-of-the-art baselines significantly.

pdf bib
Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosis of Thought Prompting
Zhiyu Chen | Yujie Lu | William Wang

Mental illness remains one of the most critical public health issues of our time, due to the severe scarcity and accessibility limit of professionals. Psychotherapy requires high-level expertise to conduct deep, complex reasoning and analysis on the cognition modeling of the patients. In the era of Large Language Models, we believe it is the right time to develop AI assistance for computational psychotherapy. We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting. DoT performs diagnosis on the patient’s speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas. The generated diagnosis rationales through the three stages are essential for assisting the professionals. Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.

pdf bib
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
Amirhossein Kazemnejad | Mehdi Rezagholizadeh | Prasanna Parthasarathi | Sarath Chandar

While pre-trained language models (PLMs) have shown evidence of acquiring vast amounts of knowledge, it remains unclear how much of this parametric knowledge is actually usable in performing downstream tasks. We propose a systematic framework to measure parametric knowledge utilization in PLMs. Our framework first extracts knowledge from a PLM’s parameters and subsequently constructs a downstream task around this extracted knowledge. Performance on this task thus depends exclusively on utilizing the model’s possessed knowledge, avoiding confounding factors like insufficient signal. As an instantiation, we study factual knowledge of PLMs and measure utilization across 125M to 13B parameter PLMs. We observe that: (1) PLMs exhibit two gaps - in acquired vs. utilized knowledge, (2) they show limited robustness in utilizing knowledge under distribution shifts, and (3) larger models close the acquired knowledge gap but the utilized knowledge gap remains. Overall, our study provides insights into PLMs’ capabilities beyond their acquired knowledge.

pdf bib
Non-compositional Expression Generation Based on Curriculum Learning and Continual Learning
Jianing Zhou | Ziheng Zeng | Hongyu Gong | Suma Bhat

Non-compositional expressions, by virtue of their non-compositionality, are a classic ‘pain in the neck’ for NLP systems. Different from the general language modeling and generation tasks that are primarily compositional, generating non-compositional expressions is more challenging for current neural models, including large pre-trained language models. The main reasons are 1) their non-compositionality, and 2) the limited data resources. Therefore, to make the best use of available data for modeling non-compositionality, we propose a dynamic curriculum learning framework, which learns training examples from easy ones to harder ones thus optimizing the learning step by step but suffers from the forgetting problem. To alleviate the forgetting problem brought by the arrangement of training examples, we also apply a continual learning method into our curriculum learning framework. Our proposed method combined curriculum and continual learning, to gradually improve the model’s performance on the task of non-compositional expression generation. Experiments on idiomatic expression generation and metaphor generation affirm the effectiveness of our proposed curriculum learning framework and the application of continual learning. Our codes are available at https://github.com/zhjjn/CL2Gen.git.

pdf bib
Information Extraction from Legal Wills: How Well Does GPT-4 Do?
Alice Kwak | Cheonkam Jeong | Gaetano Forte | Derek Bambauer | Clayton Morrison | Mihai Surdeanu

This work presents a manually annotated dataset for Information Extraction (IE) from legal wills, and relevant in-context learning experiments on the dataset. The dataset consists of entities, binary relations between the entities (e.g., relations between testator and beneficiary), and n-ary events (e.g., bequest) extracted from 45 legal wills from two US states. This dataset can serve as a foundation for downstream tasks in the legal domain. Another use case of this dataset is evaluating the performance of large language models (LLMs) on this IE task. We evaluated GPT-4 with our dataset to investigate its ability to extract information from legal wills. Our evaluation result demonstrates that the model is capable of handling the task reasonably well. When given instructions and examples as a prompt, GPT-4 shows decent performance for both entity extraction and relation extraction tasks. Nevertheless, the evaluation result also reveals that the model is not perfect. We observed inconsistent outputs (given a prompt) as well as prompt over-generalization.

pdf bib
Transparency at the Source: Evaluating and Interpreting Language Models With Access to the True Distribution
Jaap Jumelet | Willem Zuidema

We present a setup for training, evaluating and interpreting neural language models, that uses artificial, language-like data. The data is generated using a massive probabilistic grammar (based on state-split PCFGs), that is itself derived from a large natural language corpus, but also provides us complete control over the generative process. We describe and release both grammar and corpus, and test for the naturalness of our generated data. This approach allows us define closed-form expressions to efficiently compute exact lower bounds on obtainable perplexity using both causal and masked language modelling. Our results show striking differences between neural language modelling architectures and training objectives in how closely they allow approximating the lower bound on perplexity. Our approach also allows us to directly compare learned representations to symbolic rules in the underlying source. We experiment with various techniques for interpreting model behaviour and learning dynamics. With access to the underlying true source, our results show striking differences and outcomes in learning dynamics between different classes of words.

pdf bib
Continual Generalized Intent Discovery: Marching Towards Dynamic and Open-world Intent Recognition
Xiaoshuai Song | Yutao Mou | Keqing He | Yueyan Qiu | Jinxu Zhao | Pei Wang | Weiran Xu

In a practical dialogue system, users may input out-of-domain (OOD) queries. The Generalized Intent Discovery (GID) task aims to discover OOD intents from OOD queries and extend them to the in-domain (IND) classifier. However, GID only considers one stage of OOD learning, and needs to utilize the data in all previous stages for joint training, which limits its wide application in reality. In this paper, we introduce a new task, Continual Generalized Intent Discovery (CGID), which aims to continuously and automatically discover OOD intents from dynamic OOD data streams and then incrementally add them to the classifier with almost no previous data, thus moving towards dynamic intent recognition in an open world. Next, we propose a method called Prototype-guided Learning with Replay and Distillation (PLRD) for CGID, which bootstraps new intent discovery through class prototypes and balances new and old intents through data replay and feature distillation. Finally, we conduct detailed experiments and analysis to verify the effectiveness of PLRD and understand the key challenges of CGID for future research.

pdf bib
Frugal Prompting for Dialog Models
Bishal Santra | Sakya Basak | Abhinandan De | Manish Gupta | Pawan Goyal

The use of large language models (LLMs) in natural language processing (NLP) tasks is rapidly increasing, leading to changes in how researchers approach problems in the field. To fully utilize these models’ abilities, a better understanding of their behavior for different input protocols is required. With LLMs, users can directly interact with the models through a text-based interface to define and solve various tasks. Hence, understanding the conversational abilities of these LLMs, which may not have been specifically trained for dialog modeling, is also important. This study examines different approaches for building dialog systems using LLMs by considering various aspects of the prompt. As part of prompt tuning, we experiment with various ways of providing instructions, exemplars, current query and additional context. The research also analyzes the representations of dialog history that have the optimal usable-information density. Based on the findings, the paper suggests more compact ways of providing dialog history information while ensuring good performance and reducing model’s inference-API costs. The research contributes to a better understanding of how LLMs can be effectively used for building interactive systems.

pdf bib
The Interpreter Understands Your Meaning: End-to-end Spoken Language Understanding Aided by Speech Translation
Mutian He | Philip Garner

End-to-end spoken language understanding (SLU) remains elusive even with current large pretrained language models on text and speech, especially in multilingual cases. Machine translation has been established as a powerful pretraining objective on text as it enables the model to capture high-level semantics of the input utterance and associations between different languages, which is desired for speech models that work on lower-level acoustic frames. Motivated particularly by the task of cross-lingual SLU, we demonstrate that the task of speech translation (ST) is a good means of pretraining speech models for end-to-end SLU on both intra- and cross-lingual scenarios. By introducing ST, our models reach higher performance over baselines on monolingual and multilingual intent classification as well as spoken question answering using SLURP, MINDS-14, and NMSQA benchmarks. To verify the effectiveness of our methods, we also create new benchmark datasets from both synthetic and real sources, for speech summarization and low-resource/zero-shot transfer from English to French or Spanish. We further show the value of preserving knowledge for the ST pretraining task for better downstream performance, possibly using Bayesian transfer regularizers.

pdf bib
MacLaSa: Multi-Aspect Controllable Text Generation via Efficient Sampling from Compact Latent Space
Hanxing Ding | Liang Pang | Zihao Wei | Huawei Shen | Xueqi Cheng | Tat-Seng Chua

Multi-aspect controllable text generation aims to generate fluent sentences that possess multiple desired attributes simultaneously. Traditional methods either require expensive iteration / searching within the discrete text space during the decoding stage, or train separate controllers for each aspect, resulting in a degradation of text quality due to the discrepancy between different aspects. To address these limitations, we introduce a novel approach for Multi-aspect control, namely MacLaSa, that estimates compact Latent space for multiple aspects, and performs efficient Sampling with a fast sampler. To eliminate the domain discrepancies between different aspects, we first utilize a variational autoencoder (VAE) network to map text sequences from various data sources into close latent representations. The estimated latent space enables the formulation of joint energy-based models and the plugging in of arbitrary attribute discriminators to achieve multi-aspect control. Afterwards, we draw latent samples with a fast sampler based on ordinary differential equations and feed sampled examples to the VAE decoder to produce target text sequences. Experimental results demonstrate that MacLaSa outperforms strong baselines on both attribute relevance and textual quality while maintaining a high inference speed.

pdf bib
HPE: Answering Complex Questions over Text by Hybrid Question Parsing and Execution
Ye Liu | Semih Yavuz | Rui Meng | Dragomir Radev | Caiming Xiong | Shafiq Joty | Yingbo Zhou

The dominant paradigm of textual question answering systems is based on end-to-end neural networks, which excels at answering natural language questions but falls short on complex ones. This stands in contrast to the broad adaptation of semantic parsing approaches over structured data sources (e.g., relational database, knowledge graphs), that convert natural language questions to logical forms and execute them with query engines. Towards combining the strengths of neural and symbolic methods, we propose a framework of question parsing and execution on textual QA. It comprises two central pillars: (1) We parse the question of varying complexity into an intermediate representation, named H-expression, which is composed of simple questions as the primitives and symbolic operations representing the relationships among them; (2) To execute the resulting H-expressions, we design a hybrid executor, which integrates the deterministic rules to translate the symbolic operations with a drop-in neural reader network to answer each decomposed simple question. Hence, the proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking. The resulting H-expressions closely guide the execution process, offering higher precision besides better interpretability while still preserving the advantages of the neural readers for resolving its primitive elements. Our extensive experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings, while also effectively exposing its underlying reasoning process.

pdf bib
Length-Adaptive Distillation: Customizing Small Language Model for Dynamic Token Pruning
Chang Liu | Chongyang Tao | Jianxin Liang | Jiazhan Feng | Tao Shen | Quzhe Huang | Dongyan Zhao

Pre-trained language models greatly improve the performance of various tasks but at a cost of high computation overhead. To facilitate practical applications, there are mainly two lines of research to accelerate model inference: model compression and dynamic computation (e.g., dynamic token pruning). Existing works either adopt these methods individually or simply apply dynamic computation approaches upon a compressed small language model. We argue that they are sub-optimal since the two approaches are separately designed so the compressed model may not be tailored for dynamic computation. To tackle this problem and make compressed small language models faster, we propose Length-Adaptive Distillation, a two-stage knowledge distillation framework that aims to produce a customized small language model for dynamic token pruning. In the general distillation stage, we enforce the student to mimic and reconstruct the teacher’s output based on the dynamically pruned representations. Then in the task-specific distillation stage, the student is further accustomed to token pruning while absorbing the task-specific knowledge. Experimental results on GLUE benchmark demonstrate that our method can make the small language model more customized for dynamic token pruning and achieve better speed-performance trade-off.

pdf bib
Toxicity, Morality, and Speech Act Guided Stance Detection
Apoorva Upadhyaya | Marco Fisichella | Wolfgang Nejdl

In this work, we focus on the task of determining the public attitude toward various social issues discussed on social media platforms. Platforms such as Twitter, however, are often used to spread misinformation, fake news through polarizing views. Existing literature suggests that higher levels of toxicity prevalent in Twitter conversations often spread negativity and delay addressing issues. Further, the embedded moral values and speech acts specifying the intention of the tweet correlate with public opinions expressed on various topics. However, previous works, which mainly focus on stance detection, either ignore the speech act, toxic, and moral features of these tweets that can collectively help capture public opinion or lack an efficient architecture that can detect the attitudes across targets. Therefore, in our work, we focus on the main task of stance detection by exploiting the toxicity, morality, and speech act as auxiliary tasks. We propose a multitasking model TWISTED that initially extracts the valence, arousal, and dominance aspects hidden in the tweets and injects the emotional sense into the embedded text followed by an efficient attention framework to correctly detect the tweet’s stance by using the shared features of toxicity, morality, and speech acts present in the tweet. Extensive experiments conducted on 4 benchmark stance detection datasets (SemEval-2016, P-Stance, COVID19-Stance, and ClimateChange) comprising different domains demonstrate the effectiveness and generalizability of our approach.

pdf bib
Reasoning about Ambiguous Definite Descriptions
Stefan Schouten | Peter Bloem | Ilia Markov | Piek Vossen

Natural language reasoning plays an increasingly important role in improving language models’ ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity

pdf bib
A Framework for Bidirectional Decoding: Case Study in Morphological Inflection
Marc Canby | Julia Hockenmaier

Transformer-based encoder-decoder models that generate outputs in a left-to-right fashion have become standard for sequence-to-sequence tasks. In this paper, we propose a framework for decoding that produces sequences from the “outside-in”: at each step, the model chooses to generate a token on the left, on the right, or join the left and right sequences. We argue that this is more principled than prior bidirectional decoders. Our proposal supports a variety of model architectures and includes several training methods, such as a dynamic programming algorithm that marginalizes out the latent ordering variable. Our model sets state-of-the-art (SOTA) on the 2022 and 2023 shared tasks, beating the next best systems by over 4.7 and 2.7 points in average accuracy respectively. The model performs particularly well on long sequences, can implicitly learn the split point of words composed of stem and affix, and performs better relative to the baseline on datasets that have fewer unique lemmas.

pdf bib
Text-guided 3D Human Generation from 2D Collections
Tsu-Jui Fu | Wenhan Xiong | Yixin Nie | Jingyu Liu | Barlas Oguz | William Wang

3D human modeling has been widely used for engaging interaction in gaming, film, and animation. The customization of these characters is crucial for creativity and scalability, which highlights the importance of controllability. In this work, we introduce Text-guided 3D Human Generation (T3H), where a model is to generate a 3D human, guided by the fashion description. There are two goals: 1) the 3D human should render articulately, and 2) its outfit is controlled by the given text. To address this T3H task, we propose Compositional Cross-modal Human (CCH). CCH adopts cross-modal attention to fuse compositional human rendering with the extracted fashion semantics. Each human body part perceives relevant textual guidance as its visual patterns. We incorporate the human prior and semantic discrimination to enhance 3D geometry transformation and fine-grained consistency, enabling it to learn from 2D collections for data efficiency. We conduct evaluations on DeepFashion and SHHQ with diverse fashion attributes covering the shape, fabric, and color of upper and lower clothing. Extensive experiments demonstrate that CCH achieves superior results for T3H with high efficiency.

pdf bib
Statistically Profiling Biases in Natural Language Reasoning Datasets and Models
Shanshan Huang | Kenny Zhu

Recent studies have shown that many natural language understanding and reasoning datasets contain statistical cues that can be exploited by NLP models, resulting in an overestimation of their capabilities. Existing methods, such as “hypothesis-only” tests and CheckList, are limited in identifying these cues and evaluating model weaknesses. We introduce ICQ (I-See-Cue), a lightweight, general statistical profiling framework that automatically identifies potential biases in multiple-choice NLU datasets without requiring additional test cases. ICQ assesses the extent to which models exploit these biases through black-box testing, addressing the limitations of current methods. In this work, we conduct a comprehensive evaluation of statistical biases in 10 popular NLU datasets and 4 models, confirming prior findings, revealing new insights, and offering an online demonstration system to encourage users to assess their own datasets and models. Furthermore, we present a case study on investigating ChatGPT’s bias, providing valuable recommendations for practical applications.

pdf bib
Verb Conjugation in Transformers Is Determined by Linear Encodings of Subject Number
Sophie Hao | Tal Linzen

Deep architectures such as Transformers are sometimes criticized for having uninterpretable “black-box” representations. We use causal intervention analysis to show that, in fact, some linguistic features are represented in a linear, interpretable format. Specifically, we show that BERT’s ability to conjugate verbs relies on a linear encoding of subject number that can be manipulated with predictable effects on conjugation accuracy. This encoding is found in the subject position at the first layer and the verb position at the last layer, but distributed across positions at middle layers, particularly when there are multiple cues to subject number.

pdf bib
MUX-PLMs: Data Multiplexing for High-throughput Language Models
Vishvak Murahari | Ameet Deshpande | Carlos Jimenez | Izhak Shafran | Mingqiu Wang | Yuan Cao | Karthik Narasimhan

The widespread adoption of large language models such as ChatGPT and Bard has led to unprecedented demand for these technologies. The burgeoning cost of inference for ever-increasing model sizes coupled with hardware shortages has limited affordable access and poses a pressing need for efficiency approaches geared towards high throughput and performance. Multi-input multi-output (MIMO) algorithms such as data multiplexing, offer a promising solution with a many-fold increase in throughput by performing inference for multiple inputs at the cost of a single input. Yet these approaches are not currently performant enough to be deployed in modern systems. We change that by developing MUX-PLMs, a class of high throughput pre-trained language models (PLMs) trained with data multiplexing, that can be fine-tuned for any downstream task to yield high-throughput high-performance. Our novel multiplexing and demultiplexing modules proficiently entangle and disentangle inputs, and enable high-performance high throughput MUX-PLMs that are competitive with vanilla PLMs while achieving 2x/5x inference speedup with only a 1-4 % drop on a broad suite of tasks.

pdf bib
That was the last straw, we need more: Are Translation Systems Sensitive to Disambiguating Context?
Jaechan Lee | Alisa Liu | Orevaoghene Ahia | Hila Gonen | Noah Smith

The translation of ambiguous text presents a challenge for translation systems, as it requires using the surrounding context to disambiguate the intended meaning as much as possible. While prior work has studied ambiguities that result from different grammatical features of the source and target language, we study semantic ambiguities that exist in the source (English in this work) itself. In particular, we focus on idioms that are open to both literal and figurative interpretations (e.g., goose egg), and collect TIDE, a dataset of 512 pairs of English sentences containing idioms with disambiguating context such that one is literal (it laid a goose egg) and another is figurative (they scored a goose egg, as in a score of zero). In experiments, we compare MT-specific models and language models for (i) their preference when given an ambiguous subsentence, (ii) their sensitivity to disambiguating context, and (iii) the performance disparity between figurative and literal source sentences. We find that current MT models consistently translate English idioms literally, even when the context suggests a figurative interpretation. On the other hand, LMs are far more context-aware, although there remain disparities across target languages. Our findings underline the potential of LMs as a strong backbone for context-aware translation.

pdf bib
MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic
Damien Sileo | Antoine Lernould

Theory of Mind (ToM) is a critical component of intelligence but its assessment remains the subject of heated debates. Prior research applied human ToM assessments to natural language processing models using either human-created standardized tests or rule-based templates. However, these methods primarily focus on simplistic reasoning and require further validation. Here, we leverage dynamic epistemic logic to isolate a particular component of ToM and to generate controlled problems. We also introduce new verbalization techniques to express these problems in English natural language. Our findings indicate that some language model scaling (from 70M to 6B and 350M to 174B) does not consistently yield results better than random chance. While GPT-4 demonstrates superior epistemic reasoning capabilities, there is still room for improvement. Our code and datasets are publicly available.

pdf bib
LATENTLOGIC: Learning Logic Rules in Latent Space over Knowledge Graphs
Junnan Liu | Qianren Mao | Chenghua Lin | Yangqiu Song | Jianxin Li

Learning logic rules for knowledge graph reasoning is essential as such rules provide interpretable explanations for reasoning and can be generalized to different domains. However, existing methods often face challenges such as searching in a vast search space (e.g., enumeration of relational paths or multiplication of high-dimensional matrices) and inefficient optimization (e.g., techniques based on reinforcement learning or EM algorithm). To address these limitations, this paper proposes a novel framework called LatentLogic to efficiently mine logic rules by controllable generation in the latent space. Specifically, to map the discrete relational paths into the latent space, we leverage a pre-trained VAE and employ a discriminator to establish an energy-based distribution. Additionally, we incorporate a sampler based on ordinary differential equations, enabling the efficient generation of logic rules in our approach. Extensive experiments on benchmark datasets demonstrate the effectiveness and efficiency of our proposed method.

pdf bib
RobustEmbed: Robust Sentence Embeddings Using Self-Supervised Contrastive Pre-Training
Javad Asl | Eduardo Blanco | Daniel Takabi

Pre-trained language models (PLMs) have demonstrated their exceptional performance across a wide range of natural language processing tasks. The utilization of PLM-based sentence embeddings enables the generation of contextual representations that capture rich semantic information. However, despite their success with unseen samples, current PLM-based representations suffer from poor robustness in adversarial scenarios. In this paper, we propose RobustEmbed, a self-supervised sentence embedding framework that enhances both generalization and robustness in various text representation tasks and against diverse adversarial attacks. By generating high-risk adversarial perturbations to promote higher invariance in the embedding space and leveraging the perturbation within a novel contrastive objective approach, RobustEmbed effectively learns high-quality sentence embeddings. Our extensive experiments validate the superiority of RobustEmbed over previous state-of-the-art self-supervised representations in adversarial settings, while also showcasing relative improvements in seven semantic textual similarity (STS) tasks and six transfer tasks. Specifically, our framework achieves a significant reduction in attack success rate from 75.51% to 39.62% for the BERTAttack attack technique, along with enhancements of 1.20% and 0.40% in STS tasks and transfer tasks, respectively.

pdf bib
More than Votes? Voting and Language based Partisanship in the US Supreme Court
Biaoyan Fang | Trevor Cohn | Timothy Baldwin | Lea Frermann

Understanding the prevalence and dynamics of justice partisanship and ideology in the US Supreme Court is critical in studying jurisdiction. Most research quantifies partisanship based on voting behavior, and oral arguments in the courtroom — the last essential procedure before the final case outcome — have not been well studied for this purpose. To address this gap, we present a framework for analyzing the language of justices in the courtroom for partisan signals, and study how partisanship in speech aligns with voting patterns. Our results show that the affiliated party of justices can be predicted reliably from their oral contributions. We further show a strong correlation between language partisanship and voting ideology.

pdf bib
Automatic Evaluation of Attribution by Large Language Models
Xiang Yue | Boshi Wang | Ziru Chen | Kai Zhang | Yu Su | Huan Sun

A recent focus of large language model (LLM) development, as exemplified by generative search engines, is to incorporate external references to generate and support its claims. However, evaluating the attribution, i.e., verifying whether the generated statement is fully supported by the cited reference, remains an open problem. Although human evaluation is common practice, it is costly and time-consuming. In this paper, we investigate automatic evaluation of attribution given by LLMs. We begin by defining different types of attribution errors, and then explore two approaches for automatic evaluation: prompting LLMs and fine-tuning smaller LMs. The fine-tuning data is repurposed from related tasks such as question answering, fact-checking, natural language inference, and summarization. We manually curate a set of test examples covering 12 domains from a generative search engine, New Bing. Our results on this curated test set and simulated examples from existing benchmarks highlight both promising signals and challenges. We hope our problem formulation, testbeds, and findings will help lay the foundation for future studies on this important problem.

pdf bib
Modeling Highlighting of Metaphors in Multitask Contrastive Learning Paradigms
Meghdut Sengupta | Milad Alshomary | Ingrid Scharlau | Henning Wachsmuth

Metaphorical language, such as “spending time together”, projects meaning from a source domain (here, money) to a target domain (time). Thereby, it highlights certain aspects of the target domain, such as the effort behind the time investment. Highlighting aspects with metaphors (while hiding others) bridges the two domains and is the core of metaphorical meaning construction. For metaphor interpretation, linguistic theories stress that identifying the highlighted aspects is important for a better understanding of metaphors. However, metaphor research in NLP has not yet dealt with the phenomenon of highlighting. In this paper, we introduce the task of identifying the main aspect highlighted in a metaphorical sentence. Given the inherent interaction of source domains and highlighted aspects, we propose two multitask approaches - a joint learning approach and a continual learning approach - based on a finetuned contrastive learning model to jointly predict highlighted aspects and source domains. We further investigate whether (predicted) information about a source domain leads to better performance in predicting the highlighted aspects, and vice versa. Our experiments on an existing corpus suggest that, with the corresponding information, the performance to predict the other improves in terms of model accuracy in predicting highlighted aspects and source domains notably compared to the single-task baselines.

pdf bib
LDM2: A Large Decision Model Imitating Human Cognition with Dynamic Memory Enhancement
Xingjin Wang | Linjing Li | Daniel Zeng

With the rapid development of large language models (LLMs), it is highly demanded that LLMs can be adopted to make decisions to enable the artificial general intelligence. Most approaches leverage manually crafted examples to prompt the LLMs to imitate the decision process of human. However, designing optimal prompts is difficult and the patterned prompts can hardly be generalized to more complex environments. In this paper, we propose a novel model named Large Decision Model with Memory (LDM2), which leverages a dynamic memory mechanism to construct dynamic prompts, guiding the LLMs in making proper decisions according to the faced state. LDM2 consists of two stages: memory formation and memory refinement. In the former stage, human behaviors are decomposed into state-action tuples utilizing the powerful summarizing ability of LLMs. Then, these tuples are stored in the memory, whose indices are generated by the LLMs, to facilitate the retrieval of the most relevant subset of memorized tuples based on the current state. In the latter stage, our LDM2 employs tree exploration to discover more suitable decision processes and enrich the memory by adding valuable state-action tuples. The dynamic circle of exploration and memory enhancement provides LDM2 a better understanding of the global environment. Extensive experiments conducted in two interactive environments have shown that our LDM2 outperforms the baselines in terms of both score and success rate, which demonstrates its effectiveness.

pdf bib
ZARA: Improving Few-Shot Self-Rationalization for Small Language Models
Wei-Lin Chen | An-Zi Yen | Cheng-Kuang Wu | Hen-Hsen Huang | Hsin-Hsi Chen

Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA’s ability to automatically identify plausible and accurate rationale-answer pairs.

pdf bib
ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation
Zi Lin | Zihan Wang | Yongqi Tong | Yangkun Wang | Yuxin Guo | Yujia Wang | Jingbo Shang

Despite remarkable advances that large language models have achieved in chatbots nowadays, maintaining a non-toxic user-AI interactive environment has become increasingly critical nowadays. However, previous efforts in toxicity detection have been mostly based on benchmarks derived from social media contents, leaving the unique challenges inherent to real-world user-AI interactions insufficiently explored. In this work, we introduce ToxicChat, a novel benchmark constructed based on real user queries from an open-source chatbot. This benchmark contains the rich, nuanced phenomena that can be tricky for current toxicity detection models to identify, revealing a significant domain difference when compared to social media contents. Our systematic evaluation of models trained on existing toxicity datasets has shown their shortcomings when applied to this unique domain of ToxicChat. Our work illuminates the potentially overlooked challenges of toxicity detection in real-world user-AI conversations. In the future, ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions.

pdf bib
Mind the Gap: Automated Corpus Creation for Enthymeme Detection and Reconstruction in Learner Arguments
Maja Stahl | Nick Düsterhus | Mei-Hua Chen | Henning Wachsmuth

Writing strong arguments can be challenging for learners. It requires to select and arrange multiple argumentative discourse units (ADUs) in a logical and coherent way as well as to decide which ADUs to leave implicit, so called enthymemes. However, when important ADUs are missing, readers might not be able to follow the reasoning or understand the argument’s main point. This paper introduces two new tasks for learner arguments: to identify gaps in arguments (enthymeme detection) and to fill such gaps (enthymeme reconstruction). Approaches to both tasks may help learners improve their argument quality. We study how corpora for these tasks can be created automatically by deleting ADUs from an argumentative text that are central to the argument and its quality, while maintaining the text’s naturalness. Based on the ICLEv3 corpus of argumentative learner essays, we create 40,089 argument instances for enthymeme detection and reconstruction. Through manual studies, we provide evidence that the proposed corpus creation process leads to the desired quality reduction, and results in arguments that are similarly natural to those written by learners. Finally, first baseline approaches to enthymeme detection and reconstruction demonstrate the corpus’ usefulness.

pdf bib
Dior-CVAE: Pre-trained Language Models and Diffusion Priors for Variational Dialog Generation
Tianyu Yang | Thy Tran | Iryna Gurevych

Current variational dialog models have employed pre-trained language models (PLMs) to parameterize the likelihood and posterior distributions. However, the Gaussian assumption made on the prior distribution is incompatible with these distributions, thus restricting the diversity of generated responses. These models also suffer from posterior collapse, i.e., the decoder tends to ignore latent variables and directly access information captured in the encoder through the cross-attention mechanism. In this work, we propose Dior-CVAE, a hierarchical conditional variational autoencoder (CVAE) with diffusion priors to address these challenges. We employ a diffusion model to increase the complexity of the prior distribution and its compatibility with the distributions produced by a PLM. Also, we propose memory dropout to the cross-attention mechanism, which actively encourages the use of latent variables for response generation. Overall, experiments across two commonly used open-domain dialog datasets show that our method can generate more diverse responses without large-scale dialog pre-training. Code is available at https://github.com/UKPLab/dior-cvae.

pdf bib
Retrieving Multimodal Information for Augmented Generation: A Survey
Ruochen Zhao | Hailin Chen | Weishi Wang | Fangkai Jiao | Xuan Long Do | Chengwei Qin | Bosheng Ding | Xiaobao Guo | Minzhi Li | Xingxuan Li | Shafiq Joty

As Large Language Models (LLMs) become popular, there emerged an important trend of using multimodality to augment the LLMs’ generation ability, which enables LLMs to better interact with the world. However, there lacks a unified perception of at which stage and how to incorporate different modalities. In this survey, we review methods that assist and augment generative models by retrieving multimodal knowledge, whose formats range from images, codes, tables, graphs, to audio. Such methods offer a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. By providing an in-depth review, this survey is expected to provide scholars with a deeper understanding of the methods’ applications and encourage them to adapt existing techniques to the fast-growing field of LLMs.

pdf bib
Improving Contrastive Learning of Sentence Embeddings with Focal InfoNCE
Pengyue Hou | Xingyu Li

The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman’s correlation and representation alignment and uniformity.

pdf bib
The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
Dung Nguyen | Le Nam | Anh Dau | Anh Nguyen | Khanh Nghiem | Jin Guo | Nghi Bui

We present The Vault, an open-source dataset of high quality code-text pairs in multiple programming languages for training large language models to understand and generate code. We propose methods for thoroughly extracting samples that use both rules and deep learning to ensure that they contain high-quality pairs of code and text, resulting in a dataset of 43 million high-quality code-text pairs. We thoroughly evaluated this dataset and discovered that when used to train common code language models (such as CodeT5, CodeBERT, and CodeGen), it outperforms the same models train on other datasets such as CodeSearchNet. These evaluations included common coding tasks such as code generation, code summarization, and code search. The Vault can be used by researchers and practitioners to train a wide range of big language models that understand code. Alternatively, researchers can use our data cleaning methods and scripts to improve their own datasets. We anticipate that using The Vault to train large language models will improve their ability to understand and generate code, propelling AI research and software development forward. We are releasing our source code and a framework to make it easier for others to replicate our results.

pdf bib
SDOH-NLI: a Dataset for Inferring Social Determinants of Health from Clinical Notes
Adam Lelkes | Eric Loreaux | Tal Schuster | Ming-Jun Chen | Alvin Rajkomar

Social and behavioral determinants of health (SDOH) play a significant role in shaping health outcomes, and extracting these determinants from clinical notes is a first step to help healthcare providers systematically identify opportunities to provide appropriate care and address disparities. Progress on using NLP methods for this task has been hindered by the lack of high-quality publicly available labeled data, largely due to the privacy and regulatory constraints on the use of real patients’ information. This paper introduces a new dataset, SDOH-NLI, that is based on publicly available notes and which we release publicly. We formulate SDOH extraction as a natural language inference task, and provide binary textual entailment labels obtained from human raters for a cross product of a set of social history snippets as premises and SDOH factors as hypotheses. Our dataset differs from standard NLI benchmarks in that our premises and hypotheses are obtained independently. We evaluate both “off-the-shelf” entailment models as well as models fine-tuned on our data, and highlight the ways in which our dataset appears more challenging than commonly used NLI datasets.

pdf bib
On the Zero-Shot Generalization of Machine-Generated Text Detectors
Xiao Pu | Jingyu Zhang | Xiaochuang Han | Yulia Tsvetkov | Tianxing He

The rampant proliferation of large language models, fluent enough to generate text indistinguishable from human-written language, gives unprecedented importance to the detection of machine-generated text. This work is motivated by an important research question: How will the detectors of machine-generated text perform on outputs of a new generator, that the detectors were not trained on? We begin by collecting generation data from a wide range of LLMs, and train neural detectors on data from each generator and test its performance on held-out generators. While none of the detectors can generalize to all generators, we observe a consistent and interesting pattern that the detectors trained on data from a medium-size LLM can zero-shot generalize to the larger version. As a concrete application, we demonstrate that robust detectors can be built on an ensemble of training data from medium-sized models.

pdf bib
Complex Event Schema Induction with Knowledge-Enriched Diffusion Model
Yupu Hao | Pengfei Cao | Yubo Chen | Kang Liu | Jiexin Xu | Huaijun Li | Xiaojian Jiang | Jun Zhao

The concept of a complex event schema pertains to the graph structure that represents real-world knowledge of events and their multi-dimensional relationships. However, previous studies on event schema induction have been hindered by challenges such as error propagation and data quality issues. To tackle these challenges, we propose a knowledge-enriched discrete diffusion model. Specifically, we distill the abundant event scenario knowledge of Large Language Models (LLMs) through an object-oriented Python style prompt. We incorporate this knowledge into the training data, enhancing its quality. Subsequently, we employ a discrete diffusion process to generate all nodes and links simultaneously in a non-auto-regressive manner to tackle the problem of error propagation. Additionally, we devise an entity relationship prediction module to complete entity relationships between event arguments. Experimental results demonstrate that our approach achieves outstanding performance across a range of evaluation metrics.

pdf bib
Exploiting Emotion-Semantic Correlations for Empathetic Response Generation
Zhou Yang | Zhaochun Ren | Wang Yufeng | Xiaofei Zhu | Zhihao Chen | Tiecheng Cai | Wu Yunbing | Yisong Su | Sibo Ju | Xiangwen Liao

Empathetic response generation aims to generate empathetic responses by understanding the speaker’s emotional feelings from the language of dialogue. Recent methods capture emotional words in the language of communicators and construct them as static vectors to perceive nuanced emotions. However, linguistic research has shown that emotional words in language are dynamic and have correlations with other grammar semantic roles, i.e., words with semantic meanings, in grammar. Previous methods overlook these two characteristics, which easily lead to misunderstandings of emotions and neglect of key semantics. To address this issue, we propose a dynamical Emotion-Semantic Correlation Model (ESCM) for empathetic dialogue generation tasks. ESCM constructs dynamic emotion-semantic vectors through the interaction of context and emotions. We introduce dependency trees to reflect the correlations between emotions and semantics. Based on dynamic emotion-semantic vectors and dependency trees, we propose a dynamic correlation graph convolutional network to guide the model in learning context meanings in dialogue and generating empathetic responses. Experimental results on the EMPATHETIC-DIALOGUES dataset show that ESCM understands semantics and emotions more accurately and expresses fluent and informative empathetic responses. Our analysis results also indicate that the correlations between emotions and semantics are frequently used in dialogues, which is of great significance for empathetic perception and expression.

pdf bib
Long-Range Language Modeling with Selective Cache
Xinting Huang | Nora Hollenstein

The computational cost of transformer-based language models grows quadratically with the sequence length. In this paper, we introduce the selective cache, which stores the selected key-value pairs from the previous context. By selecting important key-value pairs the model makes better use of the cache so that in limited cache size, a longer context history can be stored. We design three kinds of selection methods. The first is based on human language processing. The key-value pairs are selected if they correspond to tokens that are fixated longer, as recorded in eye-tracking-while-reading experiments. We also incorporate the cognitively-inspired selection process into the language model as a trainable process, resulting in two additional methods with improved performance. The selection task is converted into a pruning task so they can be trained with differentiable masks. We demonstrate that the proposed selective cache improves the language modeling performance across different datasets. With the same number of stored key-value pairs (cache size), our selective cache outperforms XL cache and compressive cache by considerable margins.

pdf bib
Medical Text Simplification: Optimizing for Readability with Unlikelihood Training and Reranked Beam Search Decoding
Lorenzo Jaime Flores | Heyuan Huang | Kejian Shi | Sophie Chheang | Arman Cohan

Text simplification has emerged as an increasingly useful application of AI for bridging the communication gap in specialized fields such as medicine, where the lexicon is often dominated by technical jargon and complex constructs. Despite notable progress, methods in medical simplification sometimes result in the generated text having lower quality and diversity. In this work, we explore ways to further improve the readability of text simplification in the medical domain. We propose (1) a new unlikelihood loss that encourages generation of simpler terms and (2) a reranked beam search decoding method that optimizes for simplicity, which achieve better performance on readability metrics on three datasets. This study’s findings offer promising avenues for improving text simplification in the medical field.

pdf bib
FaLA: Fast Linear Adaptation for Replacing Backbone Models on Edge Devices
Shuo Huang | Lizhen Qu | Xingliang Yuan | Chunyang Chen

In this work, we study the language model backbone replacement problem for personalized downstream tasks in a non-stationary on-device scenario. In real world, company may periodically update the knowledge and architectures of backbones to keep the competitive in the market, meanwhile, to accommodate the users’ own preference, models are personalized to fit users’ own distribution locally. Traditional full model tuning or transfer learning for such replacements often incur considerable local device training costs and necessitate extensive backpropagation within deep transformer layers. Addressing this issue, we propose a novel, lightweight tuning method for personalized NLP classification tasks post-backbone replacement. Our approach leverages a personalized matrix calculated from documents corresponding to users’ old and new backbones. This matrix facilitates top-layer parameter tuning, drastically reducing backpropagation computation. To further mitigate training costs associated with matrix linear optimization, we employ correlation clustering to curate a few examples from personalized cluster sets for individuals. Our method achieves over 1000 times computation reduction in Flops for backpropagation and brings the user-specific initialization for personal matrix yielding significant performance boost compared with popular transfer learning methods.

pdf bib
Intuitive Multilingual Audio-Visual Speech Recognition with a Single-Trained Model
Joanna Hong | Se Park | Yong Ro

We present a novel approach to multilingual audio-visual speech recognition tasks by introducing a single model on a multilingual dataset. Motivated by a human cognitive system where humans can intuitively distinguish different languages without any conscious effort or guidance, we propose a model that can capture which language is given as an input speech by distinguishing the inherent similarities and differences between languages. To do so, we design a prompt fine-tuning technique into the largely pre-trained audio-visual representation model so that the network can recognize the language class as well as the speech with the corresponding language. Our work contributes to developing robust and efficient multilingual audio-visual speech recognition systems, reducing the need for language-specific models.

pdf bib
Controllable Chest X-Ray Report Generation from Longitudinal Representations
Francesco Dalla Serra | Chaoyang Wang | Fani Deligianni | Jeff Dalton | Alison O’Neil

Radiology reports are detailed text descriptions of the content of medical scans. Each report describes the presence/absence and location of relevant clinical findings, commonly including comparison with prior exams of the same patient to describe how they evolved. Radiology reporting is a time-consuming process, and scan results are often subject to delays. One strategy to speed up reporting is to integrate automated reporting systems, however clinical deployment requires high accuracy and interpretability. Previous approaches to automated radiology reporting generally do not provide the prior study as input, precluding comparison which is required for clinical accuracy in some types of scans, and offer only unreliable methods of interpretability. Therefore, leveraging an existing visual input format of anatomical tokens, we introduce two novel aspects: (1) longitudinal representation learning – we input the prior scan as an additional input, proposing a method to align, concatenate and fuse the current and prior visual information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout – a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input. We show through in-depth experiments on the MIMIC-CXR dataset how the proposed approach achieves state-of-the-art results while enabling anatomy-wise controllable report generation.

pdf bib
Is ChatGPT a Good Multi-Party Conversation Solver?
Chao-Hong Tan | Jia-Chen Gu | Zhen-Hua Ling

Large Language Models (LLMs) have emerged as influential instruments within the realm of natural language processing; nevertheless, their capacity to handle multi-party conversations (MPCs) – a scenario marked by the presence of multiple interlocutors involved in intricate information exchanges – remains uncharted. In this paper, we delve into the potential of generative LLMs such as ChatGPT and GPT-4 within the context of MPCs. An empirical analysis is conducted to assess the zero-shot learning capabilities of ChatGPT and GPT-4 by subjecting them to evaluation across three MPC datasets that encompass five representative tasks. The findings reveal that ChatGPT’s performance on a number of evaluated MPC tasks leaves much to be desired, whilst GPT-4’s results portend a promising future. Additionally, we endeavor to bolster performance through the incorporation of MPC structures, encompassing both speaker and addressee architecture. This study provides an exhaustive evaluation and analysis of applying generative LLMs to MPCs, casting a light upon the conception and creation of increasingly effective and robust MPC agents. Concurrently, this work underscores the challenges implicit in the utilization of LLMs for MPCs, such as deciphering graphical information flows and generating stylistically consistent responses.

pdf bib
Improving End-to-End Speech Processing by Efficient Text Data Utilization with Latent Synthesis
Jianqiao Lu | Wenyong Huang | Nianzu Zheng | Xingshan Zeng | Yu Yeung | Xiao Chen

Training a high performance end-to-end speech (E2E) processing model requires an enormous amount of labeled speech data, especially in the era of data-centric artificial intelligence. However, labeled speech data are usually scarcer and more expensive for collection, compared to textual data. We propose Latent Synthesis (LaSyn), an efficient textual data utilization framework for E2E speech processing models. We train a latent synthesizer to convert textual data into an intermediate latent representation of a pre-trained speech model. These pseudo acoustic representations of textual data augment acoustic data for model training. We evaluate LaSyn on low-resource automatic speech recognition (ASR) and spoken language understanding (SLU) tasks. For ASR, LaSyn improves an E2E baseline trained on LibriSpeech train-clean-100, with relative word error rate reductions over 22.3% on different test sets. For SLU, LaSyn improves our E2E baseline by absolute 4.1% for intent classification accuracy and 3.8% for slot filling SLU-F1 on SLURP, and absolute 4.49% and 2.25% for exact match (EM) and EM-Tree accuracies on STOP respectively. With fewer parameters, the results of LaSyn are competitive to published state-of-the-art works. The results demonstrate the quality of the augmented training data.

pdf bib
Bipartite Graph Pre-training for Unsupervised Extractive Summarization with Graph Convolutional Auto-Encoders
Qianren Mao | Shaobo Zhao | Jiarui Li | Xiaolei Gu | Shizhu He | Bo Li | Jianxin Li

Pre-trained sentence representations are crucial for identifying significant sentences in unsupervised document extractive summarization. However, the traditional two-step paradigm of pre-training and sentence-ranking, creates a gap due to differing optimization objectives. To address this issue, we argue that utilizing pre-trained embeddings derived from a process specifically designed to optimize informative and distinctive sentence representations helps rank significant sentences. To do so, we propose a novel graph pre-training auto-encoder to obtain sentence embeddings by explicitly modelling intra-sentential distinctive features and inter-sentential cohesive features through sentence-word bipartite graphs. These fine-tuned sentence embeddings are then utilized in a graph-based ranking algorithm for unsupervised summarization. Our method is a plug-and-play pre-trained model that produces predominant performance for unsupervised summarization frameworks by providing summary-worthy sentence representations. It surpasses heavy BERT- or RoBERTa-based sentence representations in downstream tasks.

pdf bib
Bayesian Multi-Task Transfer Learning for Soft Prompt Tuning
Haeju Lee | Minchan Jeong | Se-Young Yun | Kee-Eung Kim

Prompt tuning, in which prompts are optimized to adapt large-scale pre-trained language models to downstream tasks instead of fine-tuning the full model parameters, has been shown to be particularly effective when the prompts are trained in the multi-task transfer learning setting. These methods generally involve individually training prompts for each source task and then aggregating them to provide the initialization of the prompt for the target task. However, this approach critically ignores the fact that some of the source tasks could be negatively or positively interfering with each other. We argue that when we extract knowledge from source tasks via training source prompts, we need to consider this correlation among source tasks for better transfer to target tasks. To this end, we propose a Bayesian approach where we work with the posterior distribution of prompts across source tasks. We obtain representative source prompts corresponding to the samples from the posterior utilizing Stein Variational Gradient Descent, which are then aggregated to constitute the initial target prompt. We show extensive experimental results on the standard benchmark NLP tasks, where our Bayesian multi-task transfer learning approach outperforms the state-of-the-art methods in many settings. Furthermore, our approach requires no auxiliary models other than the prompt itself, achieving high degree of parameter-efficiency.

pdf bib
CCIM: Cross-modal Cross-lingual Interactive Image Translation
Cong Ma | Yaping Zhang | Mei Tu | Yang Zhao | Yu Zhou | Chengqing Zong

Text image machine translation (TIMT) which translates source language text images into target language texts has attracted intensive attention in recent years. Although the end-to-end TIMT model directly generates target translation from encoded text image features with an efficient architecture, it lacks the recognized source language information resulting in a decrease in translation performance. In this paper, we propose a novel Cross-modal Cross-lingual Interactive Model (CCIM) to incorporate source language information by synchronously generating source language and target language results through an interactive attention mechanism between two language decoders. Extensive experimental results have shown the interactive decoder significantly outperforms end-to-end TIMT models and has faster decoding speed with smaller model size than cascade models.

pdf bib
TRAMS: Training-free Memory Selection for Long-range Language Modeling
Haofei Yu | Cunxiang Wang | Yue Zhang | Wei Bi

The Transformer architecture is crucial for numerous AI models, but it still faces challenges in long-range language modeling. Though several specific transformer architectures have been designed to tackle issues of long-range dependencies, existing methods like Transformer-XL are plagued by a high percentage of ineffective memories. In this study, we present a plug-and-play strategy, known as TRAining-free Memory Selection (TRAMS), that selects tokens participating in attention calculation based on one simple metric. This strategy allows us to keep tokens that are likely to have a high attention score with the current queries and ignore the other ones. We have tested our approach on the word-level benchmark (WikiText-103) and the character-level benchmark (enwik8), and the results indicate an improvement without having additional training or adding additional parameters.

pdf bib
A Critical Analysis of Document Out-of-Distribution Detection
Jiuxiang Gu | Yifei Ming | Yi Zhou | Jason Kuen | Vlad Morariu | Handong Zhao | Ruiyi Zhang | Nikolaos Barmpalios | Anqi Liu | Yixuan Li | Tong Sun | Ani Nenkova

Large-scale pre-training is widely used in recent document understanding tasks. During deployment, one may expect that models should trigger a conservative fallback policy when encountering out-of-distribution (OOD) samples, which highlights the importance of OOD detection. However, most existing OOD detection methods focus on single-modal inputs such as images or texts. While documents are multi-modal in nature, it is underexplored if and how multi-modal information in documents can be exploited for OOD detection. In this work, we first provide a systematic and in-depth analysis on OOD detection for document understanding models. We study the effects of model modality, pre-training, and fine-tuning across various types of OOD inputs. In particular, we find that spatial information is critical for document OOD detection. To better exploit spatial information, we propose a spatial-aware adapter, which serves as a parameter-efficient add-on module to adapt transformer-based language models to the document domain. Extensive experiments show that adding the spatial-aware adapter significantly improves the OOD detection performance compared to directly using the language model and achieves superior performance compared to competitive baselines.

pdf bib
Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting
Ke Wang | Jun Xie | Yuqi Zhang | Yu Zhao

Improving neural machine translation (NMT) systems with prompting has achieved significant progress in recent years. In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting. We propose a unified framework, which can integrate effectively multiple types of knowledge including sentences, terminologies/phrases and translation templates into NMT models. We utilize multiple types of knowledge as prefix-prompts of input for the encoder and decoder of NMT models to guide the translation process. The approach requires no changes to the model architecture and effectively adapts to domain-specific translation without retraining. The experiments on English-Chinese and English-German translation demonstrate that our approach significantly outperform strong baselines, achieving high translation quality and terminology match accuracy.

pdf bib
Active Learning Principles for In-Context Learning with Large Language Models
Katerina Margatina | Timo Schick | Nikolaos Aletras | Jane Dwivedi-Yu

The remarkable advancements in large language models (LLMs) have significantly enhanced predictive performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively perform the task at hand through in-context learning. However, the process of selecting demonstrations for maximizing performance has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. We compare standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Our extensive experimentation involving a diverse range of GPT and OPT models across 24 classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates the importance of using demonstrations that are semantically similar to the domain of the test examples. In fact, we show higher average classification performance using “similar” demonstrations with GPT-2 (124M) than random demonstrations with GPT-Neox (20B). Notably, while diversity sampling shows promise, uncertainty sampling, despite its success in conventional supervised learning AL scenarios, performs poorly in in-context learning.

pdf bib
InteMATs: Integrating Granularity-Specific Multilingual Adapters for Cross-Lingual Transfer
Meizhen Liu | Xu Guo | He Jiakai | Jianye Chen | Fengyu Zhou | Siu Hui

Multilingual language models (MLLMs) have achieved remarkable success in various cross-lingual transfer tasks. However, they suffer poor performance in zero-shot low-resource languages, particularly when dealing with longer contexts. Existing research mainly relies on full-model fine-tuning on large parallel datasets to enhance the cross-lingual alignment of MLLMs, which is computationally expensive. In this paper, we propose InteMATs, a novel approach that integrates multilingual adapters trained on texts of different levels of granularity. To achieve this, we curate a multilingual parallel dataset comprising 42 languages to pre-train sentence-level and document-level adapters under the contrastive learning framework. Extensive experiments demonstrate the effectiveness of InteMATs in improving the cross-lingual transfer performance of MLLMs, especially on low-resource languages. Finally, our comprehensive analyses and ablation studies provide a deep understanding of the high-quality representations derived by InteMATs.

pdf bib
PlugMed: Improving Specificity in Patient-Centered Medical Dialogue Generation using In-Context Learning
Chengfeng Dou | Zhi Jin | Wenpin Jiao | Haiyan Zhao | Yongqiang Zhao | Zhengwei Tao

The patient-centered medical dialogue systems strive to offer diagnostic interpretation services to users who are less knowledgeable about medical knowledge, through emphasizing the importance of providing responses specific to the patients. It is difficult for the large language models (LLMs) to guarantee the specificity of responses in spite of its promising performance even in some tasks in medical field. Inspired by in-context learning, we propose PlugMed, a Plug-and-Play Medical Dialogue System, for addressing this challenge. PlugMed is equipped with two modules, the prompt generation (PG) module and the response ranking (RR) module, to enhances LLMs’ dialogue strategies for improving the specificity of the dialogue. The PG module is designed to stimulate the imitative ability of LLMs by providing them with real dialogues from similar patients as prompts. The RR module incorporates fine-tuned small model as response filter to enable the selection of appropriate responses generated by LLMs. Furthermore, we introduce a new evaluation method based on matching both user’s intent and high-frequency medical term to effectively assess the specificity of the responses. We conduct experimental evaluations on three medical dialogue datasets, and the results, including both automatic and human evaluation, demonstrate the effectiveness of our approach.

pdf bib
CodeTransOcean: A Comprehensive Multilingual Benchmark for Code Translation
Weixiang Yan | Yuchen Tian | Yunzhe Li | Qian Chen | Wen Wang

Recent code translation techniques exploit neural machine translation models to translate source code from one programming language to another to satisfy production compatibility or to improve efficiency of codebase maintenance. Most existing code translation datasets only focus on a single pair of popular programming languages. To advance research on code translation and meet diverse requirements of real-world applications, we construct **CodeTransOcean**, a large-scale comprehensive benchmark that supports the largest variety of programming languages for code translation. CodeTransOcean consists of three novel multilingual datasets, namely, **MultilingualTrans** supporting translations between multiple popular programming languages, **NicheTrans** for translating between niche programming languages and popular ones, and **LLMTrans** for evaluating executability of translated code by large language models (LLMs). CodeTransOcean also includes a novel cross-framework dataset, **DLTrans**, for translating deep learning code across different frameworks. We develop multilingual modeling approaches for code translation and demonstrate their great potential in improving the translation quality of both low-resource and high-resource language pairs and boosting the training efficiency. We also propose a novel evaluation metric **Debugging Success Rate@K** for program-level code translation. Last but not least, we evaluate LLM ChatGPT on our datasets and investigate its potential for fuzzy execution predictions. We build baselines for CodeTransOcean and analyze challenges of code translation for guiding future research. The CodeTransOcean datasets and code are publicly available at https://github.com/WeixiangYAN/CodeTransOcean.

pdf bib
impact of sample selection on in-context learning for entity extraction from scientific writing
Necva Bölücü | Maciej Rybinski | Stephen Wan

Prompt-based usage of Large Language Models (LLMs) is an increasingly popular way to tackle many well-known natural language problems. This trend is due, in part, to the appeal of the In-Context Learning (ICL) prompt set-up, in which a few selected training examples are provided along with the inference request. ICL, a type of few-shot learning, is especially attractive for natural language processing (NLP) tasks defined for specialised domains, such as entity extraction from scientific documents, where the annotation is very costly due to expertise requirements for the annotators. In this paper, we present a comprehensive analysis of in-context sample selection methods for entity extraction from scientific documents using GPT-3.5 and compare these results against a fully supervised transformer-based baseline. Our results indicate that the effectiveness of the in-context sample selection methods is heavily domain-dependent, but the improvements are more notable for problems with a larger number of entity types. More in-depth analysis shows that ICL is more effective for low-resource set-ups of scientific information extraction

pdf bib
Goodtriever: Adaptive Toxicity Mitigation with Retrieval-augmented Models
Luiza Pozzobon | Beyza Ermis | Patrick Lewis | Sara Hooker

Considerable effort has been dedicated to mitigating toxicity, but existing methods often require drastic modifications to model parameters or the use of computationally intensive auxiliary models. Furthermore, previous approaches have often neglected the crucial factor of language’s evolving nature over time. In this work, we present a comprehensive perspective on toxicity mitigation that takes into account its changing nature. We introduce Goodtriever, a flexible methodology that matches the current state-of-the-art toxicity mitigation while achieving 43% relative latency reduction during inference and being more computationally efficient. By incorporating a retrieval-based approach at decoding time, Goodtriever enables toxicity-controlled text generation. Our research advocates for an increased focus on adaptable mitigation techniques, which better reflect the data drift models face when deployed in the wild.

pdf bib
Robustness Tests for Automatic Machine Translation Metrics with Adversarial Attacks
Yichen Huang | Timothy Baldwin

We investigate MT evaluation metric performance on adversarially-synthesized texts, to shed light on metric robustness. We experiment with word- and character-level attacks on three popular machine translation metrics: BERTScore, BLEURT, and COMET. Our human experiments validate that automatic metrics tend to overpenalize adversarially-degraded translations. We also identify inconsistencies in BERTScore ratings, where it judges the original sentence and the adversarially-degraded one as similar, while judging the degraded translation as notably worse than the original with respect to the reference. We identify patterns of brittleness that motivate more robust metric development.

pdf bib
Time-Considerable Dialogue Models via Reranking by Time Dependency
Yuiko Tsunomori | Masakazu Ishihata | Hiroaki Sugiyama

In the last few years, generative dialogue models have shown excellent performance and have been used for various applications. As chatbots become more prevalent in our daily lives, more and more people expect them to behave more like humans, but existing dialogue models do not consider the time information that people are constantly aware of. In this paper, we aim to construct a time-considerable dialogue model that actively utilizes time information. First, we categorize responses by their naturalness at different times and introduce a new metric to classify responses into our categories. Then, we propose a new reranking method to make the existing dialogue model time-considerable using the proposed metric and subjectively evaluate the performances of the obtained time-considerable dialogue models by humans.

pdf bib
Non-Compositionality in Sentiment: New Data and Analyses
Verna Dankers | Christopher Lucas

When natural language phrases are combined, their meaning is often more than the sum of their parts. In the context of NLP tasks such as sentiment analysis, where the meaning of a phrase is its sentiment, that still applies. Many NLP studies on sentiment analysis, however, focus on the fact that sentiment computations are largely compositional. We, instead, set out to obtain non-compositionality ratings for phrases with respect to their sentiment. Our contributions are as follows: a) a methodology for obtaining those non-compositionality ratings, b) a resource of ratings for 259 phrases – NonCompSST – along with an analysis of that resource, and c) an evaluation of computational models for sentiment analysis using this new resource.

pdf bib
MPrompt: Exploring Multi-level Prompt Tuning for Machine Reading Comprehension
Guoxin Chen | Yiming Qian | Bowen Wang | Liangzhi Li

The large language models have achieved superior performance on various natural language tasks. One major drawback of such approaches is they are resource-intensive in fine-tuning new datasets. Soft-prompt tuning presents a resource-efficient solution to fine-tune the pre-trained language models (PLMs) while keeping their weight frozen. Existing soft prompt methods mainly focus on designing the input-independent prompts that steer the model to fit the domain of the new dataset. Those methods often ignore the fine-grained information about the task and context of the text. In this paper, we propose a multi-level prompt tuning (MPrompt) method for machine reading comprehension. It utilizes prompts at task-specific, domain-specific, and context-specific levels to enhance the comprehension of input semantics at different granularities. We also propose an independence constraint to steer each domain-specific prompt to focus on information within its domain to avoid redundancy. Moreover, we present a prompt generator that incorporates context-related knowledge in the prompt generation to enhance contextual relevancy. We conducted extensive experiments on 12 benchmarks of various QA formats and achieved an average improvement of 1.94% over the state-of-the-art methods.

pdf bib
DocTrack: A Visually-Rich Document Dataset Really Aligned with Human Eye Movement for Machine Reading
Hao Wang | Qingxuan Wang | Yue Li | Changqing Wang | Chenhui Chu | Rui Wang

The use of visually-rich documents in various fields has created a demand for Document AI models that can read and comprehend documents like humans, which requires the overcoming of technical, linguistic, and cognitive barriers. Unfortunately, the lack of appropriate datasets has significantly hindered advancements in the field. To address this issue, we introduce DocTrack, a visually-rich document dataset really aligned with human eye-movement information using eye-tracking technology. This dataset can be used to investigate the challenges mentioned above. Additionally, we explore the impact of human reading order on document understanding tasks and examine what would happen if a machine reads in the same order as a human. Our results suggest that although Document AI models have made significant progresses, they still have a long way to go before they can read visually richer documents as accurately, continuously, and flexibly as humans do. These findings have potential implications for future research and development of document intelligence.

pdf bib
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
Jiefeng Chen | Jinsung Yoon | Sayna Ebrahimi | Sercan Arik | Tomas Pfister | Somesh Jha

Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. *Selective prediction* is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%.

pdf bib
Bi-Drop: Enhancing Fine-tuning Generalization via Synchronous sub-net Estimation and Optimization
Shoujie Tong | Heming Xia | Damai Dai | Runxin Xu | Tianyu Liu | Binghuai Lin | Yunbo Cao | Zhifang Sui

Pretrained language models have achieved remarkable success in natural language understanding. However, fine-tuning pretrained models on limited training data tends to overfit and thus diminish performance. This paper presents Bi-Drop, a fine-tuning strategy that selectively updates model parameters using gradients from various sub-nets dynamically generated by dropout. The sub-net estimation of Bi-Drop is performed in an in-batch manner, so it overcomes the problem of hysteresis in sub-net updating, which is possessed by previous methods that perform asynchronous sub-net estimation. Also, Bi-Drop needs only one mini-batch to estimate the sub-net so it achieves higher utility of training data. Experiments on the GLUE benchmark demonstrate that Bi-Drop consistently outperforms previous fine-tuning methods. Furthermore, empirical results also show that Bi-Drop exhibits excellent generalization ability and robustness for domain transfer, data imbalance, and low-resource scenarios.

pdf bib
ClozEx: A Task toward Generation of English Cloze Explanation
Zizheng Zhang | Masato Mita | Mamoru Komachi

Providing explanations for cloze questions in language assessment (LA) has been recognized as a valuable approach to enhancing the language proficiency of learners. However, there is a noticeable absence of dedicated tasks and datasets specifically designed for generating language learner explanations. In response to this gap, this paper introduces a novel task ClozEx of generating explanations for cloze questions in LA, with a particular focus on English as a Second Language (ESL) learners. To support this task, we present a meticulously curated dataset comprising cloze questions paired with corresponding explanations. This dataset aims to assess language proficiency and facilitates language learning by offering informative and accurate explanations. To tackle the task, we fine-tuned various baseline models with our training data, including encoder-decoder and decoder-only architectures. We also explored whether large language models (LLMs) are able to generate good explanations without fine-tuning, just using pre-defined prompts. The evaluation results demonstrate that encoder-decoder models have the potential to deliver fluent and valid explanations when trained on our dataset.

pdf bib
Is Probing All You Need? Indicator Tasks as an Alternative to Probing Embedding Spaces
Tal Levy | Omer Goldman | Reut Tsarfaty

The ability to identify and control different kinds of linguistic information encoded in vector representations of words has many use cases, especially for explainability and bias removal. This is usually done via a set of simple classification tasks, termed probes, to evaluate the information encoded in the embedding space. However, the involvement of a trainable classifier leads to entanglement between the probe’s results and the classifier’s nature. As a result, contemporary works on probing include tasks that do not involve training of auxiliary models. In this work we introduce the term indicator tasks for non-trainable tasks which are used to query embedding spaces for the existence of certain properties, and claim that this kind of tasks may point to a direction opposite to probes, and that this contradiction complicates the decision on whether a property exists in an embedding space. We demonstrate our claims with two test cases, one dealing with gender debiasing and another with the erasure of morphological information from embedding spaces. We show that the application of a suitable indicator provides a more accurate picture of the information captured and removed compared to probes. We thus conclude that indicator tasks should be implemented and taken into consideration when eliciting information from embedded representations.

pdf bib
The Cost of Compression: Investigating the Impact of Compression on Parametric Knowledge in Language Models
Satya Sai Srinath Namburi | Makesh Sreedhar | Srinath Srinivasan | Frederic Sala

Compressing large language models (LLMs), often consisting of billions of parameters, provides faster inference, smaller memory footprints, and enables local deployment. The standard compression techniques are pruning and quantization, with the former eliminating redundant connections in model layers and the latter representing model parameters with as little as 4 bits. The key tradeoff is between the degree of compression and the impact on the quality of the compressed model. Existing research on LLM compression primarily focuses on performance in terms of general metrics like perplexity or downstream task accuracy. More fine-grained metrics, such as those measuring parametric knowledge, remain significantly underexplored. To help bridge this gap, we present a comprehensive analysis across multiple model families using the LAMA and LM-Harness benchmarks in order to systematically quantify the effect of commonly employed compression techniques on model performance. A particular focus is on tradeoffs involving parametric knowledge, with the goal of providing practitioners with practical insights to make informed decisions on compression.

pdf bib
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Vipul Raheja | Dhruv Kumar | Ryan Koo | Dongyeop Kang

We introduce CoEdIT, a state-of-the-art text editing system for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as “Make the sentence simpler” or “Write it in a more neutral style,” and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being ~60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits abilities to generalize to composite instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT relative to other state-of-the-art text editing models. Our code, data, and models are publicly available at https://github.com/vipulraheja/coedit.

pdf bib
Exploring Large Language Models for Multi-Modal Out-of-Distribution Detection
Yi Dai | Hao Lang | Kaisheng Zeng | Fei Huang | Yongbin Li

Out-of-distribution (OOD) detection is essential for reliable and trustworthy machine learning. Recent multi-modal OOD detection leverages textual information from in-distribution (ID) class names for visual OOD detection, yet it currently neglects the rich contextual information of ID classes. Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class. Indiscriminately using such knowledge causes catastrophic damage to OOD detection due to LLMs’ hallucinations, as is observed by our analysis. In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs. Specifically, we introduce a consistency-based uncertainty calibration method to estimate the confidence score of each generation. We further extract visual objects from each image to fully capitalize on the aforementioned world knowledge. Extensive experiments demonstrate that our method consistently outperforms the state-of-the-art.

pdf bib
Better Together: Enhancing Generative Knowledge Graph Completion with Language Models and Neighborhood Information
Alla Chepurova | Aydar Bulatov | Yuri Kuratov | Mikhail Burtsev

Real-world Knowledge Graphs (KGs) often suffer from incompleteness, which limits their potential performance. Knowledge Graph Completion (KGC) techniques aim to address this issue. However, traditional KGC methods are computationally intensive and impractical for large-scale KGs, necessitating the learning of dense node embeddings and computing pairwise distances. Generative transformer-based language models (e.g., T5 and recent KGT5) offer a promising solution as they can predict the tail nodes directly. In this study, we propose to include node neighborhoods as additional information to improve KGC methods based on language models. We examine the effects of this imputation and show that, on both inductive and transductive Wikidata subsets, our method outperforms KGT5 and conventional KGC approaches. We also provide an extensive analysis of the impact of neighborhood on model prediction and show its importance. Furthermore, we point the way to significantly improve KGC through more effective neighborhood selection.

pdf bib
DeltaScore: Fine-Grained Story Evaluation with Perturbations
Zhuohan Xie | Miao Li | Trevor Cohn | Jey Lau

Numerous evaluation metrics have been developed for natural language generation tasks, but their effectiveness in evaluating stories is limited as they are not specifically tailored to assess intricate aspects of storytelling, such as fluency and interestingness. In this paper, we introduce DeltaScore, a novel methodology that uses perturbation techniques for the evaluation of nuanced story aspects. We posit that the extent to which a story excels in a specific aspect (e.g., fluency) correlates with the magnitude of its susceptibility to particular perturbations (e.g., the introduction of typos). Given this, we measure the quality of an aspect by calculating the likelihood difference between pre- and post-perturbation states using pre-trained language models. We compare DeltaScore with existing metrics on storytelling datasets from two domains in five fine-grained story aspects: fluency, coherence, relatedness, logicality, and interestingness. DeltaScore demonstrates strong performance, revealing a surprising finding that one specific perturbation proves highly effective in capturing multiple aspects. Source code is available on our GitHub repository.

pdf bib
MuG: A Multimodal Classification Benchmark on Game Data with Tabular, Textual, and Visual Fields
Jiaying Lu | Yongchen Qian | Shifan Zhao | Yuanzhe Xi | Carl Yang

Previous research has demonstrated the advantages of integrating data from multiple sources over traditional unimodal data, leading to the emergence of numerous novel multimodal applications. We propose a multimodal classification benchmark MuG with eight datasets that allows researchers to evaluate and improve their models. These datasets are collected from four various genres of games that cover tabular, textual, and visual modalities. We conduct multi-aspect data analysis to provide insights into the benchmark, including label balance ratios, percentages of missing features, distributions of data within each modality, and the correlations between labels and input modalities. We further present experimental results obtained by several state-of-the-art unimodal classifiers and multimodal classifiers, which demonstrate the challenging and multimodal-dependent properties of the benchmark. MuG is released at https://github.com/lujiaying/MUG-Bench with the data, tutorials, and implemented baselines.

pdf bib
Don’t waste a single annotation: improving single-label classifiers through soft labels
Ben Wu | Yue Li | Yida Mu | Carolina Scarton | Kalina Bontcheva | Xingyi Song

In this paper, we address the limitations of the common data annotation and training methods for objective single-label classification tasks. Typically, when annotating such tasks annotators are only asked to provide a single label for each sample and annotator disagreement is discarded when a final hard label is decided through majority voting. We challenge this traditional approach, acknowledging that determining the appropriate label can be difficult due to the ambiguity and lack of context in the data samples. Rather than discarding the information from such ambiguous annotations, our soft label method makes use of them for training. Our findings indicate that additional annotator information, such as confidence, secondary label and disagreement, can be used to effectively generate soft labels. Training classifiers with these soft labels then leads to improved performance and calibration on the hard label test set.

pdf bib
Black-Box Tuning of Vision-Language Models with Effective Gradient Approximation
Zixian Guo | Yuxiang Wei | Ming Liu | Zhilong Ji | Jinfeng Bai | Yiwen Guo | Wangmeng Zuo

Parameter-efficient fine-tuning (PEFT) methods have provided an effective way for adapting large vision-language models to specific tasks or scenarios. Typically, they learn a very small scale of parameters for pre-trained models in a white-box formulation, which assumes model architectures to be known and parameters to be accessible. However, large models are often not open-source due to considerations of preventing abuse or commercial factors, hence posing a barrier to the deployment of white-box PEFT methods. To alleviate the dependence on model accessibility, we introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models. Specifically, considering that the backpropagation gradients are blocked, we approximate the gradients of textual prompts by analyzing the predictions with perturbed prompts. Secondly, a lightweight adapter is deployed over the output feature of the inaccessible model, further facilitating the model adaptation process. Empowered with these designs, our CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods. Our code will be made publicly available.

pdf bib
How to Determine the Most Powerful Pre-trained Language Model without Brute Force Fine-tuning? An Empirical Survey
Jun Bai | Xiaofeng Zhang | Chen Li | Hanhua Hong | Xi Xu | Chenghua Lin | Wenge Rong

Transferability estimation has been attached to great attention in the computer vision fields. Researchers try to estimate with low computational cost the performance of a model when transferred from a source task to a given target task. Considering the effectiveness of such estimations, the communities of natural language processing also began to study similar problems for the selection of pre-trained language models. However, there is a lack of a comprehensive comparison between these estimation methods yet. Also, the differences between vision and language scenarios make it doubtful whether previous conclusions can be established across fields. In this paper, we first conduct a thorough survey of existing transferability estimation methods being able to find the most suitable model, then we conduct a detailed empirical study for the surveyed methods based on the GLUE benchmark. From qualitative and quantitative analyses, we demonstrate the strengths and weaknesses of existing methods and show that H-Score generally performs well with superiorities in effectiveness and efficiency. We also outline the difficulties of consideration of training details, applicability to text generation, and consistency to certain metrics which shed light on future directions.

pdf bib
Licon: A Diverse, Controllable and Challenging Linguistic Concept Learning Benchmark
Shenglong Yu | Ying Zhang | Wenya Guo | Zhengkun Zhang | Ru Zhou | Xiaojie Yuan

Concept Learning requires learning the definition of a general category from given training examples. Most of the existing methods focus on learning concepts from images. However, the visual information cannot present abstract concepts exactly, which struggles the introduction of novel concepts related to known concepts (e.g., ‘Plant’‘Asteroids’). In this paper, inspired by the fact that humans learn most concepts through linguistic description, we introduce Linguistic Concept Learning benchmark (Licon), where concepts in diverse forms (e.g., plain attributes, images, and text) are defined by linguistic descriptions. The difficulty to learn novel concepts can be controlled by the number of attributes or the hierarchical relationships between concepts. The diverse and controllable concepts are used to support challenging evaluation tasks, including concept classification, attribute prediction, and concept relationship recognition. In addition, we design an entailment-based concept learning method (EnC) to model the relationship among concepts. Extensive experiments demonstrate the effectiveness of EnC. The benchmark will be released to the public soon.

pdf bib
InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations
Nils Feldhus | Qianli Wang | Tatiana Anikina | Sahil Chopra | Cennet Oguz | Sebastian Möller

While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model’s predicted label when it’s not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.

pdf bib
INVITE: a Testbed of Automatically Generated Invalid Questions to Evaluate Large Language Models for Hallucinations
Anil Ramakrishna | Rahul Gupta | Jens Lehmann | Morteza Ziyadi

Recent advancements in Large language models (LLMs) have enabled them to hold free form conversations over multiple turns, but they exhibit a tendency to make unfounded and incorrect statements, commonly known as hallucinations. In particular, LLMs hallucinate frequently when given invalid questions, i.e. ones with incorrect assumptions. The most common approach to evaluate LLMs on hallucinations is to test them on Question Answering (QA) test sets such as TruthfulQA. However, LLMs are increasingly pretrained on massive text corpora scraped from the Internet, which may inevitably expose these test sets to the model during training, leading eventually to an overestimation of model performances on these test sets. In this work, we present an alternative framework to address this risk and to foster further research towards making LLMs robust against invalid questions. We name our framework INVITE: a testbed of automatically generated INValId questions to evaluaTE large language models for hallucinations. In each instantiation, our framework is set up to create a fresh batch of invalid questions by distorting valid facts in which subjects or objects are replaced by similar entities. We evaluate several state of the art LLMs against a testset generated by our framework and highlight its capacity to trigger hallucinations in these models.

pdf bib
Multimodal Automated Fact-Checking: A Survey
Mubashara Akhtar | Michael Schlichtkrull | Zhijiang Guo | Oana Cocarascu | Elena Simperl | Andreas Vlachos

Misinformation is often conveyed in multiple modalities, e.g. a miscaptioned image. Multimodal misinformation is perceived as more credible by humans, and spreads faster than its text-only counterparts. While an increasing body of research investigates automated fact-checking (AFC), previous surveys mostly focus on text. In this survey, we conceptualise a framework for AFC including subtasks unique to multimodal misinformation. Furthermore, we discuss related terms used in different communities and map them to our framework. We focus on four modalities prevalent in real-world fact-checking: text, image, audio, and video. We survey benchmarks and models, and discuss limitations and promising directions for future research

pdf bib
PROTEGE: Prompt-based Diverse Question Generation from Web Articles
Vinayak Puranik | Anirban Majumder | Vineet Chaoji

Rich and diverse knowledge bases (KB) are foundational building blocks for online knowledge sharing communities such as StackOverflow and Quora, and applications such as conversational assistants (aka chatbots). A popular format for knowledge bases is question-answer pairs (or FAQs), where questions are designed to accurately match a multitude of queries. In this paper, we address the problem of automatic creation of such Q&A-based knowledge bases from domain-specific, long-form textual content (e.g., web articles). Specifically, we consider the problem of question generation, which is the task of generating questions given a paragraph of text as input, with a goal to achieve both diversity and fidelity of the generated questions. Towards this goal we propose PROTEGE, a diverse question generation framework which consists of (1) a novel encoder-decoder based Large Language Model (LLM) architecture which can take a variety of prompts and generate a diverse set of candidate questions, and (2) a hill-climbing algorithm that maximizes a sub-modular objective function to balance diversity with fidelity. Through our experiments on three popular public Q&A datasets, we demonstrate that PROTEGE improves diversity by +16% and fidelity by +8% over diverse beam search and prompt-based baselines.

pdf bib
GPT-4 as an Effective Zero-Shot Evaluator for Scientific Figure Captions
Ting-Yao Hsu | Chieh-Yang Huang | Ryan Rossi | Sungchul Kim | C. Giles | Ting-Hao Huang

There is growing interest in systems that generate captions for scientific figures. However, assessing these systems’ output poses a significant challenge. Human evaluation requires academic expertise and is costly, while automatic evaluation depends on often low-quality author-written captions. This paper investigates using large language models (LLMs) as a cost-effective, reference-free method for evaluating figure captions. We first constructed SCICAP-EVAL, a human evaluation dataset that contains human judgments for 3,600 scientific figure captions, both original and machine-made, for 600 arXiv figures. We then prompted LLMs like GPT-4 and GPT-3 to score (1-6) each caption based on its potential to aid reader understanding, given relevant context such as figure-mentioning paragraphs. Results show that GPT-4, used as a zero-shot evaluator, outperformed all other models and even surpassed assessments made by computer science undergraduates, achieving a Kendall correlation score of 0.401 with Ph.D. students’ rankings.

pdf bib
Mulan: A Multi-Level Alignment Model for Video Question Answering
Yu Fu | Cong Cao | Yuling Yang | Yuhai Lu | Fangfang Yuan | Dakui Wang | Yanbing Liu

Video Question Answering (VideoQA) aims to answer questions about the visual content of a video. Current methods mainly focus on improving joint representations of video and text. However, these methods pay little attention to the fine-grained semantic interaction between video and text. In this paper, we propose Mulan: a Multi-Level Alignment Model for Video Question Answering, which establishes alignment between visual and textual modalities at the object-level, frame-level, and video-level. Specifically, for object-level alignment, we propose a mask-guided visual feature encoding method and a visual-guided text description method to learn fine-grained spatial information. For frame-level alignment, we introduce the use of visual features from individual frames, combined with a caption generator, to learn overall spatial information within the scene. For video-level alignment, we propose an expandable ordinal prompt for textual descriptions, combined with visual features, to learn temporal information. Experimental results show that our method outperforms the state-of-the-art methods, even when utilizing the smallest amount of extra visual-language pre-training data and a reduced number of trainable parameters.

pdf bib
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
Yongjin Yang | Joonkee Kim | Yujin Kim | Namgyu Ho | James Thorne | Se-Young Yun

With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, **HARE**, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.

pdf bib
ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction
Yaorui Shi | An Zhang | Enzhi Zhang | Zhiyuan Liu | Xiang Wang

Predicting chemical reactions, a fundamental challenge in chemistry, involves forecasting the resulting products from a given reaction process. Conventional techniques, notably those employing Graph Neural Networks (GNNs), are often limited by insufficient training data and their inability to utilize textual information, undermining their applicability in real-world applications. In this work, we propose **ReLM**, a novel framework that leverages the chemical knowledge encoded in language models (LMs) to assist GNNs, thereby enhancing the accuracy of real-world chemical reaction predictions. To further enhance the model’s robustness and interpretability, we incorporate the confidence score strategy, enabling the LMs to self-assess the reliability of their predictions. Our experimental results demonstrate that ReLM improves the performance of state-of-the-art GNN-based methods across various chemical reaction datasets, especially in out-of-distribution settings. Codes are available at https://github.com/syr-cn/ReLM.

pdf bib
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
Kevin Lin | Kyle Lo | Joseph Gonzalez | Dan Klein

When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs—complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). Standard retrieval models that rely on lexical or semantic overlap between query and document text are challenged in such retrieval settings, known as tip-of-the-tongue (TOT) retrieval. We introduce a simple but effective framework for handling such complex queries by decomposing the query with an LLM into individual clues routing those as subqueries to specialized retrievers, and ensembling the results. Our approach takes advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorporating query decomposition into retrievers can improve gold book recall up to 6% absolute gain for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.

pdf bib
Values, Ethics, Morals? On the Use of Moral Concepts in NLP Research
Karina Vida | Judith Simon | Anne Lauscher

With language technology increasingly affecting individuals’ lives, many recent works have investigated the ethical aspects of NLP. Among other topics, researchers focused on the notion of morality, investigating, for example, which moral judgements language models make. However, there has been little to no discussion of the terminology and the theories underpinning those efforts and their implications. This lack is highly problematic, as it hides the works’ underlying assumptions and hinders a thorough and targeted scientific debate of morality in NLP. In this work, we address this research gap by (a) providing an overview of some important ethical concepts stemming from philosophy and (b) systematically surveying the existing literature on moral NLP w.r.t. their philosophical foundation, terminology, and data basis. For instance, we analyse what ethical theory an approach is based on, how this decision is justified, and what implications it entails. Our findings surveying 92 papers show that, for instance, most papers neither provide a clear definition of the terms they use nor adhere to definitions from philosophy. Finally, (c) we give three recommendations for future research in the field. We hope our work will lead to a more informed, careful, and sound discussion of morality in language technology.

pdf bib
Self-Supervised Behavior Cloned Transformers are Path Crawlers for Text Games
Ruoyao Wang | Peter Jansen

In this work, we introduce a self-supervised behavior cloning transformer for text games, which are challenging benchmarks for multi-step reasoning in virtual environments. Traditionally, Behavior Cloning Transformers excel in such tasks but rely on supervised training data. Our approach auto-generates training data by exploring trajectories (defined by common macro-action sequences) that lead to reward within the games, while determining the generality and utility of these trajectories by rapidly training small models then evalauating their performance on unseen development games. Through empirical analysis, we show our method consistently uncovers generalizable training data, achieving about 90% performance of supervised systems across three benchmark text games.

pdf bib
Adapting Pretrained Text-to-Text Models for Long Text Sequences
Wenhan Xiong | Anchit Gupta | Shubham Toshniwal | Yashar Mehdad | Scott Yih

We present an empirical study of adapting an existing pretrained text-to-text model for long-sequence inputs. Through a comprehensive study along three axes of the pretraining pipeline – model architecture, optimization objective, and pretraining corpus, we propose an effective recipe to build long-context models from existing short-context models. Specifically, we replace the full attention in transformers with pooling-augmented blockwise attention, and pretrain the model with a masked-span prediction task with spans of varying lengths. In terms of the pretraining corpus, we find that using randomly concatenated short-documents from a large open-domain corpus results in better performance than using existing long document corpora, which are typically limited in their domain coverage. With these findings, we build a long-context model that achieves competitive performance on long-text QA tasks and establishes the new state of the art on five long-text summarization datasets, often outperforming previous methods with larger model sizes.

pdf bib
xDial-Eval: A Multilingual Open-Domain Dialogue Evaluation Benchmark
Chen Zhang | Luis D’Haro | Chengguang Tang | Ke Shi | Guohua Tang | Haizhou Li

Recent advancements in reference-free learned metrics for open-domain dialogue evaluation have been driven by the progress in pre-trained language models and the availability of dialogue data with high-quality human annotations. However, current studies predominantly concentrate on English dialogues, and the generalization of these metrics to other languages has not been fully examined. This is largely due to the absence of a multilingual dialogue evaluation benchmark. To address the issue, we introduce xDial-Eval, built on top of open-source English dialogue evaluation datasets. xDial-Eval includes 12 turn-level and 6 dialogue-level English datasets, comprising 14930 annotated turns and 8691 annotated dialogues respectively. The English dialogue data are extended to nine other languages with commercial machine translation systems. On xDial-Eval, we conduct comprehensive analyses of previous BERT-based metrics and the recently-emerged large language models. Lastly, we establish strong self-supervised and multilingual baselines. In terms of average Pearson correlations over all datasets and languages, the best baseline outperforms OpenAI’s ChatGPT by absolute improvements of 6.5% and 4.6% at the turn and dialogue levels respectively, albeit with much fewer parameters. The data and code are publicly available at https://github.com/e0397123/xDial-Eval.

pdf bib
MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties Grounded in Math Reasoning Problems
Jakub Macina | Nico Daheim | Sankalan Chowdhury | Tanmay Sinha | Manu Kapur | Iryna Gurevych | Mrinmaya Sachan

While automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. Collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this, we propose a framework to generate such dialogues by pairing human teachers with a Large Language Model (LLM) prompted to represent common student errors. We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues grounded in multi-step math reasoning problems. While models like GPT-3 are good problem solvers, they fail at tutoring because they generate factually incorrect feedback or are prone to revealing solutions to students too early. To overcome this, we let teachers provide learning opportunities to students by guiding them using various scaffolding questions according to a taxonomy of teacher moves. We demonstrate MathDial and its extensive annotations can be used to finetune models to be more effective tutors (and not just solvers). We confirm this by automatic and human evaluation, notably in an interactive setting that measures the trade-off between student solving success and telling solutions. The dataset is released publicly.

pdf bib
Towards Making the Most of ChatGPT for Machine Translation
Keqin Peng | Liang Ding | Qihuang Zhong | Li Shen | Xuebo Liu | Min Zhang | Yuanxin Ouyang | Dacheng Tao

ChatGPT shows remarkable capabilities for machine translation (MT). Several prior studies have shown that it achieves comparable results to commercial systems for high-resource languages, but lags behind in complex tasks, e.g, low-resource and distant-language-pairs translation. However, they usually adopt simple prompts which can not fully elicit the capability of ChatGPT. In this report, we aim to further mine ChatGPT’s translation ability by revisiting several aspects: temperature, task information, and domain information, and correspondingly propose two (simple but effective) prompts: Task-Specific Prompts (TSP) and Domain-Specific Prompts (DSP). We show that: 1) The performance of ChatGPT depends largely on temperature, and a lower temperature usually can achieve better performance; 2) Emphasizing the task information further improves ChatGPT’s performance, particularly in complex MT tasks; 3) Introducing domain information can elicit ChatGPT’s generalization ability and improve its performance in the specific domain; 4) ChatGPT tends to generate hallucinations for non-English-centric MT tasks, which can be partially addressed by our proposed prompts but still need to be highlighted for the MT/NLP community. We also explore the effects of advanced in-context learning strategies and find a (negative but interesting) observation: the powerful chain-of-thought prompt leads to word-by-word translation behavior, thus bringing significant translation degradation.

pdf bib
Enhancing Reasoning Capabilities by Instruction Learning and Chain-of-Thoughts for Implicit Discourse Relation Recognition
Yuxiang Lu | Yu Hong | Zhipang Wang | Guodong Zhou

The aim of implicit discourse relation recognition is to comprehend the sense of connection between two arguments. In this work, we present a classification method that is solely based on generative models. Our proposed approach employs a combination of instruction templates and in-context learning to refine the generative model for effectively addressing the implicit discourse relation recognition task. Furthermore, we utilize Chain-of-Thoughts to partition the inference process into a sequence of three successive stages. This strategy enables us to fully utilize the autoregressive generative model’s potential for knowledge acquisition and inference, ultimately leading to enhanced performance on this natural language understanding task. The results of our experiments, evaluated on benchmark datasets PDTB 2.0, PDTB 3.0, and the CoNLL16 shared task, demonstrate superior performance compared to previous state-of-the-art models.

pdf bib
Large-Scale and Multi-Perspective Opinion Summarization with Diverse Review Subsets
Han Jiang | Rui Wang | Zhihua Wei | Yu Li | Xinpeng Wang

Opinion summarization is expected to digest larger review sets and provide summaries from different perspectives. However, most existing solutions are deficient in epitomizing extensive reviews and offering opinion summaries from various angles due to the lack of designs for information selection. To this end, we propose SubSumm, a supervised summarization framework for large-scale multi-perspective opinion summarization. SubSumm consists of a review sampling strategy set and a two-stage training scheme. The sampling strategies take sentiment orientation and contrastive information value into consideration, with which the review subsets from different perspectives and quality levels can be selected. Subsequently, the summarizer is encouraged to learn from the sub-optimal and optimal subsets successively in order to capitalize on the massive input. Experimental results on AmaSum and Rotten Tomatoes datasets demonstrate that SubSumm is adept at generating pros, cons, and verdict summaries from hundreds of input reviews. Furthermore, our in-depth analysis verifies that the advanced selection of review subsets and the two-stage training scheme are vital to boosting the summarization performance.

pdf bib
Topic-Informed Dialogue Summarization using Topic Distribution and Prompt-based Modeling
Jaeah You | Youngjoong Ko

Dealing with multiple topics should be considered an important issue in dialogue summarization, because dialogues, unlike documents, are prone to topic drift. Thus, we propose a new dialogue summarization model that reflects dialogue topic distribution to consider all topics present in the dialogue. First, the distribution of dialogue topics is estimated by an effective topic discovery model. Then topic-informed prompt transfers estimated topic distribution information to the output of encoder and decoder vectors. Finally, the topic extractor estimates the summary topic distribution from the output context vector of decoder to distinguish its difference from the dialogue topic distribution. To consider the proportion of each topic distribution appeared in the dialogue, the extractor is trained to reduce the difference between the distributions of the dialogue and the summary. The experimental results on SAMSum and DialogSum show that our model outperforms state-of-the-art methods on ROUGE scores. The human evaluation results also show that our framework well generates comprehensive summaries.

pdf bib
Disentangling Structure and Style: Political Bias Detection in News by Inducing Document Hierarchy
Jiwoo Hong | Yejin Cho | Jiyoung Han | Jaemin Jung | James Thorne

We address an important gap in detecting political bias in news articles. Previous works that perform document classification can be influenced by the writing style of each news outlet, leading to overfitting and limited generalizability. Our approach overcomes this limitation by considering both the sentence-level semantics and the document-level rhetorical structure, resulting in a more robust and style-agnostic approach to detecting political bias in news articles. We introduce a novel multi-head hierarchical attention model that effectively encodes the structure of long documents through a diverse ensemble of attention heads. While journalism follows a formalized rhetorical structure, the writing style may vary by news outlet. We demonstrate that our method overcomes this domain dependency and outperforms previous approaches for robustness and accuracy. Further analysis and human evaluation demonstrate the ability of our model to capture common discourse structures in journalism.

pdf bib
Measuring and Narrowing the Compositionality Gap in Language Models
Ofir Press | Muru Zhang | Sewon Min | Ludwig Schmidt | Noah Smith | Mike Lewis

We investigate the ability of language models to perform compositional reasoning tasks where the overall solution depends on correctly composing the answers to sub-problems. We measure how often models can correctly answer all sub-problems but not generate the overall solution, a ratio we call the compositionality gap. We evaluate this ratio by asking multi-hop questions with answers that require composing multiple facts unlikely to have been observed together during pretraining. In the GPT-3 family of models, as model size increases we show that the single-hop question answering performance improves faster than the multi-hop performance does, therefore the compositionality gap does not decrease. This surprising result suggests that while more powerful models memorize and recall more factual knowledge, they show no corresponding improvement in their ability to perform this kind of compositional reasoning. We then demonstrate how elicitive prompting (such as chain of thought) narrows the compositionality gap by reasoning explicitly instead of implicitly. We present a new method, self-ask, that further improves on chain of thought. In our method, the model explicitly asks itself (and then answers) follow-up questions before answering the initial question. We finally show that self-ask’s structured prompting lets us easily plug in a search engine to answer the follow-up questions, which additionally improves accuracy.

pdf bib
Unsupervised Candidate Answer Extraction through Differentiable Masker-Reconstructor Model
Zhuoer Wang | Yicheng Wang | Ziwei Zhu | James Caverlee

Question generation is a widely used data augmentation approach with extensive applications, and extracting qualified candidate answers from context passages is a critical step for most question generation systems. However, existing methods for candidate answer extraction are reliant on linguistic rules or annotated data that face the partial annotation issue and challenges in generalization. To overcome these limitations, we propose a novel unsupervised candidate answer extraction approach that leverages the inherent structure of context passages through a Differentiable Masker-Reconstructor (DMR) Model with the enforcement of self-consistency for picking up salient information tokens. We curated two datasets with exhaustively-annotated answers and benchmark a comprehensive set of supervised and unsupervised candidate answer extraction methods. We demonstrate the effectiveness of the DMR model by showing its performance is superior among unsupervised methods and comparable to supervised methods.

pdf bib
HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science
Yu Song | Santiago Miret | Huan Zhang | Bang Liu

We propose an instruction-based process for trustworthy data curation in materials science (MatSci-Instruct), which we then apply to finetune a LLaMa-based language model targeted for materials science (HoneyBee). MatSci-Instruct helps alleviate the scarcity of relevant, high-quality materials science textual data available in the open literature, and HoneyBee is the first billion-parameter language model specialized to materials science. In MatSci-Instruct we improve the trustworthiness of generated data by prompting multiple commercially available large language models for generation with an Instructor module (e.g. Chat-GPT) and verification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct, we construct a dataset of multiple tasks and measure the quality of our dataset along multiple dimensions, including accuracy against known facts, relevance to materials science, as well as completeness and reasonableness of the data. Moreover, we iteratively generate more targeted instructions and instruction-data in a finetuning-evaluation-feedback loop leading to progressively better performance for our finetuned HoneyBee models. Our evaluation on the MatSci-NLP benchmark shows HoneyBee’s outperformance of existing language models on materials science tasks and iterative improvement in successive stages of instruction-data refinement. We study the quality of HoneyBee’s language modeling through automatic evaluation and analyze case studies to further understand the model’s capabilities and limitations. Our code and relevant datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-HoneyBee.

pdf bib
Prompt-Based Editing for Text Style Transfer
Guoqing Luo | Yu Han | Lili Mou | Mauajama Firdaus

Prompting approaches have been recently explored in text style transfer, where a textual prompt is used to query a pretrained language model (PLM) to generate style-transferred texts word by word in an autoregressive manner. However, such a generation process is less controllable and early prediction errors may affect future word predictions. In this paper, we propose a prompt-based editing approach to text style transfer. Specifically, we prompt a PLM for style classification and use the classification probability to compute a style score. Then, we perform discrete search with word-level editing to maximize a comprehensive scoring function for the style-transfer task. In this way, we transform a prompt-based generation problem into a classification one, which does not suffer from the error accumulation problem and is more controllable than the autoregressive generation of sentences. In our experiments, we performed both automatic and human evaluation on three style-transfer benchmark datasets, and show that our approach largely outperforms the existing systems that have 20 times more parameters. Additional empirical analyses further demonstrate the effectiveness of our approach.

pdf bib
Representativeness as a Forgotten Lesson for Multilingual and Code-switched Data Collection and Preparation
A. Seza Doğruöz | Sunayana Sitaram | Zheng Xin Yong

Multilingualism is widespread around the world and code-switching (CSW) is a common practice among different language pairs/tuples across locations and regions. However, there is still not much progress in building successful CSW systems, despite the recent advances in Massive Multilingual Language Models (MMLMs). We investigate the reasons behind this setback through a critical study about the existing CSW data sets (68) across language pairs in terms of the collection and preparation (e.g. transcription and annotation) stages. This in-depth analysis reveals that a) most CSW data involves English ignoring other language pairs/tuples b) there are flaws in terms of representativeness in data collection and preparation stages due to ignoring the location based, socio-demographic and register variation in CSW. In addition, lack of clarity on the data selection and filtering stages shadow the representativeness of CSW data sets. We conclude by providing a short check-list to improve the representativeness for forthcoming studies involving CSW data collection and preparation.

pdf bib
NERvous About My Health: Constructing a Bengali Medical Named Entity Recognition Dataset
Alvi Khan | Fida Kamal | Nuzhat Nower | Tasnim Ahmed | Sabbir Ahmed | Tareque Chowdhury

The ability to identify important entities in a text, known as Named Entity Recognition (NER), is useful in a large variety of downstream tasks in the biomedical domain. This is a considerably difficult task when working with Consumer Health Questions (CHQs), which consist of informal language used in day-to-day life by patients. These difficulties are amplified in the case of Bengali, which allows for a huge amount of flexibility in sentence structures and has significant variances in regional dialects. Unfortunately, the complexity of the language is not accurately reflected in the limited amount of available data, which makes it difficult to build a reliable decision-making system. To address the scarcity of data, this paper presents ‘Bangla-HealthNER’, a comprehensive dataset designed to identify named entities in health-related texts in the Bengali language. It consists of 31,783 samples sourced from a popular online public health platform, which allows it to capture the diverse range of linguistic styles and dialects used by native speakers from various regions in their day-to-day lives. The insight into this diversity in language will prove useful to any medical decision-making systems that are developed for use in real-world applications. To highlight the difficulty of the dataset, it has been benchmarked on state-of-the-art token classification models, where BanglishBERT achieved the highest performance with an F1-score of 56.13 ± 0.75%. The dataset and all relevant code used in this work have been made publicly available.

pdf bib
Sparse Black-Box Multimodal Attack for Vision-Language Adversary Generation
Zhen Yu | Zhou Qin | Zhenhua Chen | Meihui Lian | Haojun Fu | Weigao Wen | Hui Xue | Kun He

Deep neural networks have been widely applied in real-world scenarios, such as product restrictions on e-commerce and hate speech monitoring on social media, to ensure secure governance of various platforms. However, illegal merchants often deceive the detection models by adding large-scale perturbations to prohibited products, so as to earn illegal profits. Current adversarial attacks using imperceptible perturbations encounter challenges in simulating such adversarial behavior and evaluating the vulnerabilities of detection models to such perturbations. To address this issue, we propose a novel black-box multimodal attack, termed Sparse Multimodal Attack (SparseMA), which leverages sparse perturbations to simulate the adversarial behavior exhibited by illegal merchants in the black-box scenario. Moreover, SparseMA bridges the gap between images and texts by treating the separated image patches and text words uniformly in the discrete space. Extensive experiments demonstrate that SparseMA can identify the vulnerability of the model to different modalities, outperforming existing multimodal attacks and unimodal attacks. SparseMA, which is the first proposed method for black-box multimodal attacks to our knowledge, would be used as an effective tool for evaluating the robustness of multimodal models to different modalities.

pdf bib
Towards a Unified Framework for Reference Retrieval and Related Work Generation
Zhengliang Shi | Shen Gao | Zhen Zhang | Xiuying Chen | Zhumin Chen | Pengjie Ren | Zhaochun Ren

The task of related work generation aims to generate a comprehensive survey of related research topics automatically, saving time and effort for authors. Existing methods simplify this task by using human-annotated references in a large-scale scientific corpus as information sources, which is time- and cost-intensive. To this end, we propose a Unified Reference Retrieval and Related Work Generation Model (UR3WG), which combines reference retrieval and related work generation processes in a unified framework based on the large language model (LLM). Specifically, UR3WG first leverages the world knowledge of LLM to extend the abstract and generate the query for the subsequent retrieval stage. Then a lexicon-enhanced dense retrieval is proposed to search relevant references, where an importance-aware representation of the lexicon is introduced. We also propose multi-granularity contrastive learning to optimize our retriever. Since this task is not simply summarizing the main points in references, it should analyze the complex relationships and present them logically. We propose an instruction-tuning method to leverage LLM to generate related work. Extensive experiments on two wide-applied datasets demonstrate that our model outperforms the state-of-the-art baselines in both generation and retrieval metrics.

pdf bib
Visual Storytelling with Question-Answer Plans
Danyang Liu | Mirella Lapata | Frank Keller

Visual storytelling aims to generate compelling narratives from image sequences. Existing models often focus on enhancing the representation of the image sequence, e.g., with external knowledge sources or advanced graph structures. Despite recent progress, the stories are often repetitive, illogical, and lacking in detail. To mitigate these issues, we present a novel framework which integrates visual representations with pretrained language models and planning. Our model translates the image sequence into a visual prefix, a sequence of continuous embeddings which language models can interpret. It also leverages a sequence of question-answer pairs as a blueprint plan for selecting salient visual concepts and determining how they should be assembled into a narrative. Automatic and human evaluation on the VIST benchmark demonstrates that blueprint-based models generate stories that are more coherent, interesting, and natural compared to competitive baselines and state-of-the-art systems.

pdf bib
Investigating Online Community Engagement through Stancetaking
Jai Aggarwal | Brian Diep | Julia Watson | Suzanne Stevenson

Much work has explored lexical and semantic variation in online communities, and drawn connections to community identity and user engagement patterns. Communities also express identity through the sociolinguistic concept of stancetaking. Large-scale computational work on stancetaking has explored community similarities in their preferences for stance markers – words that serve to indicate aspects of a speaker’s stance – without considering the stance-relevant properties of the contexts in which stance markers are used. We propose representations of stance contexts for 1798 Reddit communities and show how they capture community identity patterns distinct from textual or marker similarity measures. We also relate our stance context representations to broader inter- and intra-community engagement patterns, including cross-community posting patterns and social network properties of communities. Our findings highlight the strengths of using rich properties of stance as a way of revealing community identity and engagement patterns in online multi-community spaces.

pdf bib
ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models
Alex Mei | Sharon Levy | William Wang

As large language models are integrated into society, robustness toward a suite of prompts is increasingly important to maintain reliability in a high-variance environment.Robustness evaluations must comprehensively encapsulate the various settings in which a user may invoke an intelligent system. This paper proposes ASSERT, Automated Safety Scenario Red Teaming, consisting of three methods – semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection. For robust safety evaluation, we apply these methods in the critical domain of AI safety to algorithmically generate a test suite of prompts covering diverse robustness settings – semantic equivalence, related scenarios, and adversarial. We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance. Despite dedicated safeguards in existing state-of-the-art models, we find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings, raising concerns for users’ physical safety.

pdf bib
Learning to Correct Noisy Labels for Fine-Grained Entity Typing via Co-Prediction Prompt Tuning
Minghao Tang | Yongquan He | Yongxiu Xu | Hongbo Xu | Wenyuan Zhang | Yang Lin

Fine-grained entity typing (FET) is an essential task in natural language processing that aims to assign semantic types to entities in text. However, FET poses a major challenge known as the noise labeling problem, whereby current methods rely on estimating noise distribution to identify noisy labels but are confused by diverse noise distribution deviation. To address this limitation, we introduce Co-Prediction Prompt Tuning for noise correction in FET, which leverages multiple prediction results to identify and correct noisy labels. Specifically, we integrate prediction results to recall labeled labels and utilize a differentiated margin to identify inaccurate labels. Moreover, we design an optimization objective concerning divergent co-predictions during fine-tuning, ensuring that the model captures sufficient information and maintains robustness in noise identification. Experimental results on three widely-used FET datasets demonstrate that our noise correction approach significantly enhances the quality of various types of training samples, including those annotated using distant supervision, ChatGPT, and crowdsourcing.

pdf bib
Co2PT: Mitigating Bias in Pre-trained Language Models through Counterfactual Contrastive Prompt Tuning
Xiangjue Dong | Ziwei Zhu | Zhuoer Wang | Maria Teleki | James Caverlee

Pre-trained Language Models are widely used in many important real-world applications. However, recent studies show that these models can encode social biases from large pre-training corpora and even amplify biases in downstream applications. To address this challenge, we propose Co2PT, an efficient and effective *debias-while-prompt tuning* method for mitigating biases via counterfactual contrastive prompt tuning on downstream tasks. Our experiments conducted on three extrinsic bias benchmarks demonstrate the effectiveness of Co2PT on bias mitigation during the prompt tuning process and its adaptability to existing upstream debiased language models. These findings indicate the strength of Co2PT and provide promising avenues for further enhancement in bias mitigation on downstream tasks.

pdf bib
A Hierarchical Encoding-Decoding Scheme for Abstractive Multi-document Summarization
Chenhui Shen | Liying Cheng | Xuan-Phi Nguyen | Yang You | Lidong Bing

Pre-trained language models (PLMs) have achieved outstanding achievements in abstractive single-document summarization (SDS). However, such benefits may not fully extend to multi-document summarization (MDS), where the handling of cross-document information is more complex. Previous works either design new MDS architectures or apply PLMs bluntly with concatenated source documents as a reformulated SDS task. While the former does not utilize previous pre-training efforts and may not generalize well across different domains, the latter may not sufficiently attend to the intricate cross-document relationships unique to MDS tasks. Instead, we enforce hierarchy on both the encoder and decoder to better utilize a PLM to facilitate multi-document interactions for the MDS task. Across 10 MDS benchmarks from various domains, our method outperforms or is competitive with the previous best models, including those with additional MDS pre-training or with more parameters. It outperforms its corresponding PLM backbone by up to 3 Rouge-L and is favored by humans.

pdf bib
Universal Domain Adaptation for Robust Handling of Distributional Shifts in NLP
Hyuhng Kim | Hyunsoo Cho | Sang-Woo Lee | Junyeob Kim | Choonghyun Park | Sang-goo Lee | Kang Yoo | Taeuk Kim

When deploying machine learning systems to the wild, it is highly desirable for them to effectively leverage prior knowledge to the unfamiliar domain while also firing alarms to anomalous inputs. In order to address these requirements, Universal Domain Adaptation (UniDA) has emerged as a novel research area in computer vision, focusing on achieving both adaptation ability and robustness (i.e., the ability to detect out-of-distribution samples). While UniDA has led significant progress in computer vision, its application on language input still needs to be explored despite its feasibility. In this paper, we propose a comprehensive benchmark for natural language that offers thorough viewpoints of the model’s generalizability and robustness. Our benchmark encompasses multiple datasets with varying difficulty levels and characteristics, including temporal shifts and diverse domains. On top of our testbed, we validate existing UniDA methods from computer vision and state-of-the-art domain adaptation techniques from NLP literature, yielding valuable findings: We observe that UniDA methods originally designed for image input can be effectively transferred to the natural language domain while also underscoring the effect of adaptation difficulty in determining the model’s performance.

pdf bib
Aligning Language Models to User Opinions
EunJeong Hwang | Bodhisattwa Majumder | Niket Tandon

An important aspect of developing LLMs that interact with humans is to align models’ behavior to their users. It is possible to prompt an LLM into behaving as a certain persona, especially a user group or ideological persona the model captured during its pertaining stage. But, how to best align an LLM with a specific user and not a demographic or ideological group remains an open question. Mining public opinion surveys (by PEW research), we find that the opinions of a user and their demographics and ideologies are not mutual predictors. We use this insight to align LLMs by modeling relevant past user opinions in addition to user demographics and ideology, achieving up to 7 points accuracy gains in predicting public opinions from survey questions across a broad set of topics. Our work opens up the research avenues to bring user opinions as an important ingredient in aligning language models.

pdf bib
CCSRD: Content-Centric Speech Representation Disentanglement Learning for End-to-End Speech Translation
Xiaohu Zhao | Haoran Sun | Yikun Lei | Shaolin Zhu | Deyi Xiong

Deep neural networks have demonstrated their capacity in extracting features from speech inputs. However, these features may include non-linguistic speech factors such as timbre and speaker identity, which are not directly related to translation. In this paper, we propose a content-centric speech representation disentanglement learning framework for speech translation, CCSRD, which decomposes speech representations into content representations and non-linguistic representations via representation disentanglement learning. CCSRD consists of a content encoder that encodes linguistic content information from the speech input, a non-content encoder that models non-linguistic speech features, and a disentanglement module that learns disentangled representations with a cyclic reconstructor, feature reconstructor and speaker classifier trained in a multi-task learning way. Experiments on the MuST-C benchmark dataset demonstrate that CCSRD achieves an average improvement of +0.9 BLEU in two settings across five translation directions over the baseline, outperforming state-of-the-art end-to-end speech translation models and cascaded models.

pdf bib
Miracle: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control
Zhenyi Lu | Wei Wei | Xiaoye Qu | Xian-Ling Mao | Dangyang Chen | Jixiong Chen

Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (e.g., language style, inner character nuances), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose Miracle, a novel personalized dialogue generation method through MultIple PeRsonal Attributes Control within Latent-Space Energy-based Models. ttributes Control within Latent-Space Energy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that Miracle outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at https://github.com/LZY-the-boys/MIRACLE

pdf bib
Towards Multilingual Interlinear Morphological Glossing
Shu Okabe | François Yvon

Interlinear Morphological Glosses are annotations produced in the context of language documentation. Their goal is to identify morphs occurring in an L1 sentence and to explicit their function and meaning, with the further support of an associated translation in L2. We study here the task of automatic glossing, aiming to provide linguists with adequate tools to facilitate this process. Our formalisation of glossing uses a latent variable Conditional Random Field (CRF), which labels the L1 morphs while simultaneously aligning them to L2 words. In experiments with several under-resourced languages, we show that this approach is both effective and data-efficient and mitigates the problem of annotating unknown morphs. We also discuss various design choices regarding the alignment process and the selection of features. We finally demonstrate that it can benefit from multilingual (pre-)training, achieving results which outperform very strong baselines.

pdf bib
Transformer Working Memory Enables Regular Language Reasoning And Natural Language Length Extrapolation
Ta-Chung Chi | Ting-Han Fan | Alexander Rudnicky | Peter Ramadge

Unlike recurrent models, conventional wisdom has it that Transformers cannot perfectly model regular languages. Inspired by the notion of working memory, we propose a new Transformer variant named RegularGPT. With its novel combination of Weight-Sharing, Adaptive-Depth, and Sliding-Dilated-Attention, RegularGPT constructs working memory along the depth dimension, thereby enabling efficient and successful modeling of regular languages such as PARITY. We further test RegularGPT on the task of natural language length extrapolation and surprisingly find that it rediscovers the local windowed attention effect deemed necessary in prior work for length extrapolation.

pdf bib
Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting
Fanghua Ye | Meng Fang | Shenghui Li | Emine Yilmaz

Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a “rewrite-then-edit” process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.

pdf bib
Distilling ChatGPT for Explainable Automated Student Answer Assessment
Jiazheng Li | Lin Gui | Yuxiang Zhou | David West | Cesare Aloisi | Yulan He

Providing explainable and faithful feedback is crucial for automated student answer assessment. In this paper, we introduce a novel framework that explores using ChatGPT, a cutting-edge large language model, for the concurrent tasks of student answer scoring and rationale generation. We identify the appropriate instructions by prompting ChatGPT with different templates to collect the rationales, where inconsistent rationales are refined to align with marking standards. The refined ChatGPT outputs enable us to fine-tune a smaller language model that simultaneously assesses student answers and provides rationales. Extensive experiments on the benchmark dataset show that the proposed method improves the overall QWK score by 11% compared to ChatGPT. Furthermore, our thorough analysis and human evaluation demonstrate that the rationales generated by our proposed method are comparable to those of ChatGPT. Our approach provides a viable solution to achieve explainable automated assessment in education

pdf bib
Grammatical Error Correction via Mixed-Grained Weighted Training
Jiahao Li | Quan Wang | Chiwei Zhu | Zhendong Mao | Yongdong Zhang

The task of Grammatical Error Correction (GEC) aims to automatically correct grammatical errors in natural texts. Almost all previous works treat annotated training data equally, but inherent discrepancies in data are neglected. In this paper, the inherent discrepancies are manifested in two aspects, namely, accuracy of data annotation and diversity of potential annotations. To this end, we propose MainGEC, which designs token-level and sentence-level training weights based on inherent discrepancies therein, and then conducts mixed-grained weighted training to improve the training effect for GEC. Empirical evaluation shows that whether in the Seq2Seq or Seq2Edit manner, MainGEC achieves consistent and significant performance improvements on two benchmark datasets, demonstrating the effectiveness and superiority of the mixed-grained weighted training. Further ablation experiments verify the effectiveness of designed weights for both granularities in MainGEC.

pdf bib
A Unified Framework for Synaesthesia Analysis
Kun Sheng | Zhongqing Wang | Qingqing Zhao | Xiaotong Jiang | Guodong Zhou

Synaesthesia refers to the description of perceptions in one sensory modality through concepts from other modalities. It involves not only a linguistic phenomenon, but also a cognitive phenomenon structuring human thought and action, which makes understanding it challenging. As a means of cognition, synaesthesia is rendered by more than sensory modalities, cue and stimulus can also play an important role in expressing and understanding it. In addition, understanding synaesthesia involves many cognitive efforts, such as identifying the semantic relationship between sensory words and modalities. Therefore, we propose a unified framework focusing on annotating all kinds of synaesthetic elements and fully exploring the relationship among them. In particular, we introduce a new annotation scheme, including sensory modalities as well as their cues and stimuli, which facilitate understanding synaesthetic information collectively. We further design a structure generation model to capture the relations among synaesthetic elements and generate them jointly. Through extensive experiments, the importance of proposed dataset can be verified by the statistics and progressive performances. In addition, our proposed model yields state-of-the-art results, demonstrating its effectiveness.

pdf bib
Domain Private Transformers for Multi-Domain Dialog Systems
Anmol Kabra | Ethan Elenberg

Large, general purpose language models have demonstrated impressive performance across many different conversational domains. While multi-domain language models achieve low overall perplexity, their outputs are not guaranteed to stay within the domain of a given input prompt. This paper proposes domain privacy as a novel way to quantify how likely a conditional language model will leak across domains. We also develop policy functions based on token-level domain classification, and propose an efficient fine-tuning method to improve the trained model’s domain privacy. Experiments on membership inference attacks show that our proposed method has comparable resiliency to methods adapted from recent literature on differentially private language models.

pdf bib
Visual Elements Mining as Prompts for Instruction Learning for Target-Oriented Multimodal Sentiment Classification
Bin Yang | Jinlong Li

Target-oriented Multimodal Sentiment Classification (TMSC) aims to incorporate visual modality with text modality to identify the sentiment polarity towards a specific target within a sentence. To address this task, we propose a Visual Elements Mining as Prompts (VEMP) method, which describes the semantic information of visual elements with Text Symbols Embedded in the Image (TSEI), Target-aware Adjective-Noun Pairs (TANPs) and image scene caption, and then transform them into prompts for instruction learning of the model Tk-Instruct. In our VEMP, the text symbols embedded in the image may contain the textual descriptions of fine-grained visual elements, and are extracted as input TSEI; we extract adjective-noun pairs from the image and align them with the target to obtain TANPs, in which the adjectives provide emotional embellishments for the relevant target; finally, to effectively fuse these visual elements with text modality for sentiment prediction, we integrate them to construct instruction prompts for instruction-tuning Tk-Instruct which possesses powerful learning capabilities under instructions. Extensive experimental results show that our method achieves state-of-the-art performance on two benchmark datasets. And further analysis demonstrates the effectiveness of each component of our method.

pdf bib
NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models
Jongwoo Ko | Seungjoon Park | Yujin Kim | Sumyeong Ahn | Du-Seong Chang | Euijai Ahn | Se-Young Yun

Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.

pdf bib
GBT: Generative Boosting Training Approach for Paraphrase Identification
Rui Peng | Zhiling Jin | Yu Hong

Paraphrase Identification (PI), a task of determining whether a pair of sentences express the same meaning, is widely applied in Information Retrieval and Question Answering. Data Augmentation (DA) is proven effective in tackling the PI task. However, the majority of DA methods still suffer from two limitations: inefficiency and poor quality. In this study, we propose the Generative Boosting Training (GBT) approach for PI. GBT designs a boosting learning method for a single model based on the human learning process, utilizing seq2seq model to perform DA on misclassified instances periodically. We conduct experiments on the benchmark corpora QQP and LCQMC, towards both English and Chinese PI tasks. Experimental results show that our method yields significant improvements on a variety of Pre-trained Language Model (PLM) based baselines with good efficiency and effectiveness. It is noteworthy that a single BERT model (with a linear classifier) can outperform the state-of-the-art PI models with the boosting of GBT.

pdf bib
DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet Classification via Memory Bank
Henry Zou | Yue Zhou | Weizhi Zhang | Cornelia Caragea

During crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support. Emergency relief organizations leverage such information to acquire timely crisis circumstances and expedite rescue operations. While existing works utilize such information to build models for crisis event analysis, fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time. On the other hand, semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others, resulting in substantially negative effects on disaster monitoring and rescue. In this paper, we first study two recent debiasing methods on semi-supervised crisis tweet classification. Then we propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training iteration. Extensive experiments are conducted to compare different debiasing methods’ performance and generalization ability in both in-distribution and out-of-distribution settings. The results demonstrate the superior performance of our proposed method. Our code is available at https://github.com/HenryPengZou/DeCrisisMB.

pdf bib
Probing LLMs for hate speech detection: strengths and vulnerabilities
Sarthak Roy | Ashish Harshvardhan | Animesh Mukherjee | Punyajoy Saha

Recently efforts have been made by social media platforms as well as researchers to detect hateful or toxic language using large language models. However, none of these works aim to use explanation, additional context and victim community information in the detection process. We utilise different prompt variation, input information and evaluate large language models in zero shot setting (without adding any in-context examples). We select two large language models (GPT-3.5 and text-davinci) and three datasets - HateXplain, implicit hate and ToxicSpans. We find that on average including the target information in the pipeline improves the model performance substantially (∼20-30%) over the baseline across the datasets. There is also a considerable effect of adding the rationales/explanations into the pipeline (∼10-20%) over the baseline across the datasets. In addition, we further provide a typology of the error cases where these large language models fail to (i) classify and (ii) explain the reason for the decisions they take. Such vulnerable points automatically constitute ‘jailbreak’ prompts for these models and industry scale safeguard techniques need to be developed to make the models robust against such prompts.

pdf bib
From Simple to Complex: A Progressive Framework for Document-level Informative Argument Extraction
Quzhe Huang | Yanxi Zhang | Dongyan Zhao

Document-level Event Argument Extraction (EAE) requires the model to extract arguments of multiple events from a single document. Considering the underlying dependencies between these events, recent efforts leverage the idea of “memory”, where the results of already predicted events are cached and can be retrieved to help the prediction of upcoming events. These methods extract events according to their appearance order in the document, however, the event that appears in the first sentence does not mean that it is the easiest to extract. Existing methods might introduce noise to the extraction of upcoming events if they rely on an incorrect prediction of previous events. In order to provide more reliable memory, we propose a simple-to-complex progressive framework for document-level EAE. Specifically, we first calculate the difficulty of each event and then, we conduct the extraction following a simple-to-complex order. In this way, the memory will store the most certain results, and the model could use these reliable sources to help the prediction of more difficult events. Experiments on WikiEvents show that our model outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex framework is useful in the EAE task.

pdf bib
MultiCMET: A Novel Chinese Benchmark for Understanding Multimodal Metaphor
Dongyu Zhang | Jingwei Yu | Senyuan Jin | Liang Yang | Hongfei Lin

Metaphor is a pervasive aspect of human communication, and its presence in multimodal forms has become more prominent with the progress of mass media. However, there is limited research on multimodal metaphor resources beyond the English language. Furthermore, the existing work in natural language processing does not address the exploration of categorizing the source and target domains in metaphors. This omission is significant considering the extensive research conducted in the fields of cognitive linguistics, which emphasizes that a profound understanding of metaphor relies on recognizing the differences and similarities between domain categories. We, therefore, introduce MultiCMET, a multimodal Chinese metaphor dataset, consisting of 13,820 text-image pairs of advertisements with manual annotations of the occurrence of metaphors, domain categories, and sentiments metaphors convey. We also constructed a domain lexicon that encompasses categorizations of metaphorical source domains and target domains and propose a Cascading Domain Knowledge Integration (CDKI) benchmark to detect metaphors by introducing domain-specific lexical features. Experimental results demonstrate the effectiveness of CDKI. The dataset and code are publicly available.

pdf bib
GlotLID: Language Identification for Low-Resource Languages
Amir Kargaran | Ayyoob Imani | François Yvon | Hinrich Schuetze

Several recent papers have published good solutions for language identification (LID) for about 300 high-resource and medium-resource languages. However, there is no LID available that (i) covers a wide range of low-resource languages, (ii) is rigorously evaluated and reliable and (iii) efficient and easy to use. Here, we publish GlotLID-M, an LID model that satisfies the desiderata of wide coverage, reliability and efficiency. It identifies 1665 languages, a large increase in coverage compared to prior work. In our experiments, GlotLID-M outperforms four baselines (CLD3, FT176, OpenLID and NLLB) when balancing F1 and false positive rate (FPR). We analyze the unique challenges that low-resource LID poses: incorrect corpus metadata, leakage from high-resource languages, difficulty separating closely related languages, handling of macrolanguage vs varieties and in general noisy data. We hope that integrating GlotLID-M into dataset creation pipelines will improve quality and enhance accessibility of NLP technology for low-resource languages and cultures. GlotLID-M model, code, and list of data sources are available: https://github.com/cisnlp/GlotLID.

pdf bib
Finding Support Examples for In-Context Learning
Xiaonan Li | Xipeng Qiu

In-context learning is a new learning paradigm where a language model observes a few examples and directly outputs the test input’s prediction. Previous works have shown that it is sensitive to the provided examples and randomly sampled examples probably cause inferior performance. In this paper, we propose finding “support examples” for in-context learning: Given a training dataset, it aims to select one permutation of a few examples, which can well characterize the task for in-context learning and thus lead to superior performance. Although for traditional gradient-based training, there are extensive methods to find a coreset from the entire dataset, they struggle to find important in-context examples, because in-context learning occurs in the language model’s forward process without gradients or parameter updates and thus has a significant gap with traditional training. Additionally, the strong dependence among in-context examples makes it an NP-hard combinatorial optimization problem and enumerating all permutations is infeasible. Hence we propose **LENS**, a fi**L**ter-th**EN**-**S**earch method to tackle this challenge in two stages: irst we filter the dataset to obtain individually informative in-context examples. Specifically, we propose a novel metric, InfoScore, to evaluate the example’s in-context informativeness based on the language model’s feedback, and further propose a progressive filtering process to filter out uninformative examples. Then we propose diversity-guided example search which iteratively refines and evaluates the selected example permutations, to find examples that fully depict the task. The experimental results show that LENS significantly outperforms a wide range of baselines and further analyses show that each component contribute critically to the improvements and shed light on the principles of supporting examples and in-context learning.

pdf bib
Uncovering the Root of Hate Speech: A Dataset for Identifying Hate Instigating Speech
Hyoungjun Park | Ho Shim | Kyuhan Lee

While many prior studies have applied computational approaches, such as machine learning, to detect and moderate hate speech, only scant attention has been paid to the task of identifying the underlying cause of hate speech. In this study, we introduce the concept of hate instigating speech, which refers to a specific type of textual posts on online platforms that stimulate or provoke others to engage in hate speech. The identification of hate instigating speech carries substantial practical implications for effective hate speech moderation. Rather than targeting individual instances of hate speech, by focusing on their roots, i.e., hate instigating speech, it becomes possible to significantly reduce the volume of content that requires review for moderation. Additionally, targeting hate instigating speech enables early prevention of the spread and propagation of hate speech, further enhancing the effectiveness of moderation efforts. However, several challenges hinder researchers from addressing the identification of hate instigating speech. First, there is a lack of comprehensive datasets specifically annotated for hate instigation, making it difficult to train and evaluate computational models effectively. Second, the subtle and nuanced nature of hate instigating speech (e.g., seemingly non-offensive texts serve as catalysts for triggering hate speech) makes it difficult to apply off-the-shelf machine learning models to the problem. To address these challenges, in this study, we have developed and released a multilingual dataset specifically designed for the task of identifying hate instigating speech. Specifically, it encompasses both English and Korean, allowing for a comprehensive examination of hate instigating speech across different linguistic contexts. We have applied existing machine learning models to our dataset and the results demonstrate that the extant models alone are insufficient for effectively detecting hate instigating speech. This finding highlights the need for further attention from the academic community to address this specific challenge. We expect our study and dataset to inspire researchers to explore innovative methods that can enhance the accuracy of hate instigating speech detection, ultimately contributing to more effective moderation and prevention of hate speech propagation online.

pdf bib
Responsible AI Considerations in Text Summarization Research: A Review of Current Practices
Yu Lu Liu | Meng Cao | Su Lin Blodgett | Jackie Chi Kit Cheung | Alexandra Olteanu | Adam Trischler

AI and NLP publication venues have increasingly encouraged researchers to reflect on possible ethical considerations, adverse impacts, and other responsible AI issues their work might engender. However, for specific NLP tasks our understanding of how prevalent such issues are, or when and why these issues are likely to arise, remains limited. Focusing on text summarization—a common NLP task largely overlooked by the responsible AI community—we examine research and reporting practices in the current literature. We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020–2022. We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals. We also discuss current evaluation practices and consider how authors discuss the limitations of both prior work and their own work. Overall, we find that relatively few papers engage with possible stakeholders or contexts of use, which limits their consideration of potential downstream adverse impacts or other responsible AI issues. Based on our findings, we make recommendations on concrete practices and research directions.

pdf bib
Improving Speech Translation by Fusing Speech and Text
Wenbiao Yin | Zhicheng Liu | Chengqi Zhao | Tao Wang | Jian Tong | Rong Ye

In speech translation, leveraging multimodal data to improve model performance and address limitations of individual modalities has shown significant effectiveness. In this paper, we harness the complementary strengths of speech and text to improve speech translation. However, speech and text are disparate modalities, we observe three aspects of modality gap that impede their integration in a speech translation model. To tackle these gaps, we propose **Fuse**-**S**peech-**T**ext (**FuseST**), a cross-modal model which supports three distinct input modalities for translation: speech, text and fused speech-text. We leverage multiple techniques for cross-modal alignment and conduct a comprehensive analysis to assess its impact on speech translation, machine translation and fused speech-text translation. We evaluate FuseST on MuST-C, GigaST and newstest benchmark. Experiments show that the proposed FuseST achieves an average 34.0 BLEU on MuST-C EnDe/Es/Fr (vs SOTA +1.1 BLEU). Further experiments demonstrate that FuseST does not degrade on MT task, as observed in previous works. Instead, it yields an average improvement of 3.2 BLEU over the pre-trained MT model. Code is available at https://github.com/WenbiaoYin/FuseST.

pdf bib
Narrative Order Aware Story Generation via Bidirectional Pretraining Model with Optimal Transport Reward
Zhicong Lu | Li Jin | Guangluan Xu | Linmei Hu | Nayu Liu | Xiaoyu Li | Xian Sun | Zequn Zhang | Kaiwen Wei

To create a captivating story, a writer often plans a sequence of logically coherent events and ingeniously manipulates the narrative order to generate flashback in place. However, existing storytelling systems suffer from both insufficient understanding of event correlations and inadequate awareness of event temporal order (e.g., go to hospital <after> get ill), making it challenging to generate high-quality events that balance the logic and narrative order of story. In this paper, we propose a narrative order aware framework BPOT (Bidirectional Pretraining Model with Optimal Transport Reward) for story generation, which presents a bidirectional pretrained model to encode event correlations and pairwise event order. We also design a reinforcement learning algorithm with novel optimal transport reward to further improve the quality of generated events in the fine-tuning stage. Specifically, a narrative order aware event sequence model is pretrained with the joint learning objectives of event blank infilling and pairwise order prediction. Then, reinforcement learning with novel optimal transport reward is designed to further improve the generated event quality in the fine-tuning stage. The novel optimal transport reward captures the mappings between the generated events and the sentences in the story, effectively measuring the quality of generated events. Both automatic and manual evaluation results demonstrate the superiority of our framework in generating logically coherent stories with flashbacks.

pdf bib
Explainable Claim Verification via Knowledge-Grounded Reasoning with Large Language Models
Haoran Wang | Kai Shu

Claim verification plays a crucial role in combating misinformation. While existing works on claim verification have shown promising results, a crucial piece of the puzzle that remains unsolved is to understand how to verify claims without relying on human-annotated data, which is expensive to create at a large scale. Additionally, it is important for models to provide comprehensive explanations that can justify their decisions and assist human fact-checkers. This paper presents First-Order-Logic-Guided Knowledge-Grounded (FOLK) Reasoning that can verify complex claims and generate explanations without the need for annotated evidence using Large Language Models (LLMs). FOLK leverages the in-context learning ability of LLMs to translate the claim into a First-Order-Logic (FOL) clause consisting of predicates, each corresponding to a sub-claim that needs to be verified. Then, FOLK performs FOL-Guided reasoning over a set of knowledge-grounded question-and-answer pairs to make veracity predictions and generate explanations to justify its decision-making process. This process makes our model highly explanatory, providing clear explanations of its reasoning process in human-readable form. Our experiment results indicate that FOLK outperforms strong baselines on three datasets encompassing various claim verification challenges. Our code and data are available.

pdf bib
Strong and Efficient Baselines for Open Domain Conversational Question Answering
Andrei Coman | Gianni Barlacchi | Adrià de Gispert

Unlike the Open Domain Question Answering (ODQA) setting, the conversational (ODConvQA) domain has received limited attention when it comes to reevaluating baselines for both efficiency and effectiveness. In this paper, we study the State-of-the-Art (SotA) Dense Passage Retrieval (DPR) retriever and Fusion-in-Decoder (FiD) reader pipeline, and show that it significantly underperforms when applied to ODConvQA tasks due to various limitations. We then propose and evaluate strong yet simple and efficient baselines, by introducing a fast reranking component between the retriever and the reader, and by performing targeted finetuning steps. Experiments on two ODConvQA tasks, namely TopiOCQA and OR-QuAC, show that our method improves the SotA results, while reducing reader’s latency by 60%. Finally, we provide new and valuable insights into the development of challenging baselines that serve as a reference for future, more intricate approaches, including those that leverage Large Language Models (LLMs).

pdf bib
Efficient Continue Training of Temporal Language Model with Structural Information
Zhaochen Su | Juntao Li | Zikang Zhang | Zihan Zhou | Min Zhang

Current language models are mainly trained on snap-shots of data gathered at a particular time, which decreases their capability to generalize over time and model language change. To model the time variable, existing works have explored temporal language models (e.g., TempoBERT) by directly incorporating the timestamp into the training process. While effective to some extent, these methods are limited by the superficial temporal information brought by timestamps, which fails to learn the inherent changes of linguistic components. In this paper, we empirically confirm that the performance of pre-trained language models (PLMs) is closely affiliated with syntactically changed tokens. Based on this observation, we propose a simple yet effective method named Syntax-Guided Temporal Language Model (SG-TLM), which could learn the inherent language changes by capturing an intrinsic relationship between the time prefix and the tokens with salient syntactic change. Experiments on two datasets and three tasks demonstrate that our model outperforms existing temporal language models in both memorization and generalization capabilities. Extensive results further confirm the effectiveness of our approach across different model frameworks, including both encoder-only and decoder-only models (e.g., LLaMA). Our code is available at https://github.com/zhaochen0110/TempoLM.

pdf bib
Retrieval-Augmented Parsing for Complex Graphs by Exploiting Structure and Uncertainty
Zi Lin | Quan Yuan | Panupong Pasupat | Jeremiah Liu | Jingbo Shang

Retrieval augmentation enhances generative language models by retrieving informative exemplars relevant for output prediction. However, in realistic graph parsing problems where the output space is large and complex, classic retrieval methods based on input-sentence similarity can fail to identify the most informative exemplars that target graph elements the model is most struggling about, leading to suboptimal retrieval and compromised prediction under limited retrieval budget. In this work, we improve retrieval-augmented parsing for complex graph problems by exploiting two unique sources of information (1) structural similarity and (2) model uncertainty. We propose Structure-aware and Uncertainty-Guided Adaptive Retrieval (SUGAR) that first quantify the model uncertainty in graph prediction and identify its most uncertain subgraphs, and then retrieve exemplars based on their structural similarity with the identified uncertain subgraphs. On a suite of real-world parsing benchmarks with non-trivial graph structure (SMCalflow and E-commerce), SUGAR exhibits a strong advantage over its classic counterparts that do not leverage structure or model uncertainty.

pdf bib
When it Rains, it Pours: Modeling Media Storms and the News Ecosystem
Benjamin Litterer | David Jurgens | Dallas Card

Most events in the world receive at most brief coverage by the news media. Occasionally, however, an event will trigger a media storm, with voluminous and widespread coverage lasting for weeks instead of days. In this work, we develop and apply a pairwise article similarity model, allowing us to identify story clusters in corpora covering local and national online news, and thereby create a comprehensive corpus of media storms over a nearly two year period. Using this corpus, we investigate media storms at a new level of granularity, allowing us to validate claims about storm evolution and topical distribution, and provide empirical support for previously hypothesized patterns of influence of storms on media coverage and intermedia agenda setting.

pdf bib
Intra-Event and Inter-Event Dependency-Aware Graph Network for Event Argument Extraction
Hao Li | Yanan Cao | Yubing Ren | Fang Fang | Lanxue Zhang | Yingjie Li | Shi Wang

Event argument extraction is critical to various natural language processing tasks for providing structured information. Existing works usually extract the event arguments one by one, and mostly neglect to build dependency information among event argument roles, especially from the perspective of event structure. Such an approach hinders the model from learning the interactions between different roles. In this paper, we raise our research question: How to adequately model dependencies between different roles for better performance? To this end, we propose an intra-event and inter-event dependency-aware graph network, which uses the event structure as the fundamental unit to construct dependencies between roles. Specifically, we first utilize the dense intra-event graph to construct role dependencies within events, and then construct dependencies between events by retrieving similar events of the current event through the retrieval module. To further optimize dependency information and event representation, we propose a dependency interaction module and two auxiliary tasks to improve the extraction ability of the model in different scenarios. Experimental results on the ACE05, RAMS, and WikiEvents datasets show the great advantages of our proposed approach.

pdf bib
From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification
Hengran Zhang | Ruqing Zhang | Jiafeng Guo | Maarten de Rijke | Yixing Fan | Xueqi Cheng

Retrieval-enhanced methods have become a primary approach in fact verification (FV); it requires reasoning over multiple retrieved pieces of evidence to verify the integrity of a claim. To retrieve evidence, existing work often employs off-the-shelf retrieval models whose design is based on the probability ranking principle. We argue that, rather than relevance, for FV we need to focus on the utility that a claim verifier derives from the retrieved evidence. We introduce the feedback-based evidence retriever (FER) that optimizes the evidence retrieval process by incorporating feedback from the claim verifier. As a feedback signal we use the divergence in utility between how effectively the verifier utilizes the retrieved evidence and the ground-truth evidence to produce the final claim label. Empirical studies demonstrate the superiority of FER over prevailing baselines.

pdf bib
How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval
Sheng-Chieh Lin | Akari Asai | Minghan Li | Barlas Oguz | Jimmy Lin | Yashar Mehdad | Wen-tau Yih | Xilun Chen

Various techniques have been developed in recent years to improve dense retrieval (DR), such as unsupervised contrastive learning and pseudo-query generation. Existing DRs, however, often suffer from effectiveness tradeoffs between supervised and zero-shot retrieval, which some argue was due to the limited model capacity. We contradict this hypothesis and show that a generalizable DR can be trained to achieve high accuracy in both supervised and zero-shot retrieval without increasing model size. In particular, we systematically examine the contrastive learning of DRs, under the framework of Data Augmentation (DA). Our study shows that common DA practices such as query augmentation with generative models and pseudo-relevance label creation using a cross-encoder, are often inefficient and sub-optimal. We hence propose a new DA approach with diverse queries and sources of supervision to progressively train a generalizable DR. As a result, DRAGON, our Dense Retriever trained with diverse AuGmentatiON, is the first BERT-base-sized DR to achieve state-of-the-art effectiveness in both supervised and zero-shot evaluations and even competes with models using more complex late interaction.

pdf bib
Discovering Highly Influential Shortcut Reasoning: An Automated Template-Free Approach
Daichi Haraguchi | Kiyoaki Shirai | Naoya Inoue | Natthawut Kertkeidkachorn

Shortcut reasoning is an irrational process of inference, which degrades the robustness of an NLP model. While a number of previous work has tackled the identification of shortcut reasoning, there are still two major limitations: (i) a method for quantifying the severity of the discovered shortcut reasoning is not provided; (ii) certain types of shortcut reasoning may be missed. To address these issues, we propose a novel method for identifying shortcut reasoning. The proposed method quantifies the severity of the shortcut reasoning by leveraging out-of-distribution data and does not make any assumptions about the type of tokens triggering the shortcut reasoning. Our experiments on Natural Language Inference and Sentiment Analysis demonstrate that our framework successfully discovers known and unknown shortcut reasoning in the previous work.

pdf bib
Schema-adaptable Knowledge Graph Construction
Hongbin Ye | Honghao Gui | Xin Xu | Xi Chen | Huajun Chen | Ningyu Zhang

Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to dynamic scenarios or domains, whereas a new type of knowledge emerges. This necessitates a system that can handle evolving schema automatically to extract information for KGC. To address this need, we propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training. We first split and convert existing datasets based on three principles to build a benchmark, i.e., horizontal schema expansion, vertical schema expansion, and hybrid schema expansion; then investigate the schema-adaptable performance of several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We further propose a simple yet effective baseline dubbed AdaKGC, which contains schema-enriched prefix instructor and schema-conditioned dynamic decoding to better handle evolving schema. Comprehensive experimental results illustrate that AdaKGC can outperform baselines but still have room for improvement. We hope the proposed work can deliver benefits to the community.

pdf bib
Evaluating the Knowledge Base Completion Potential of GPT
Blerta Veseli | Simon Razniewski | Jan-Christoph Kalo | Gerhard Weikum

Structured knowledge bases (KBs) are an asset for search engines and other applications but are inevitably incomplete. Language models (LMs) have been proposed for unsupervised knowledge base completion (KBC), yet, their ability to do this at scale and with high accuracy remains an open question. Prior experimental studies mostly fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we perform a careful evaluation of GPT’s potential to complete the largest public KB: Wikidata. We find that, despite their size and capabilities, models like GPT-3, ChatGPT and GPT-4 do not achieve fully convincing results on this task. Nonetheless, it provides solid improvements over earlier approaches with smaller LMs. In particular, we show that it is feasible to extend Wikidata by 27M facts at 90% precision.

pdf bib
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset
Haoyi Wu | Wenyang Hui | Yezeng Chen | Weiqi Wu | Kewei Tu | Yi Zhou

Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI’s behaviour with reference to different problems within a specific topic in detail. In this work, we propose Conic10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.

pdf bib
DepWiGNN: A Depth-wise Graph Neural Network for Multi-hop Spatial Reasoning in Text
Shuaiyi Li | Yang Deng | Wai Lam

Spatial reasoning in text plays a crucial role in various real-world applications. Existing approaches for spatial reasoning typically infer spatial relations from pure text, which overlook the gap between natural language and symbolic structures. Graph neural networks (GNNs) have showcased exceptional proficiency in inducing and aggregating symbolic structures. However, classical GNNs face challenges in handling multi-hop spatial reasoning due to the over-smoothing issue, i.e., the performance decreases substantially as the number of graph layers increases. To cope with these challenges, we propose a novel Depth-Wise Graph Neural Network (DepWiGNN). Specifically, we design a novel node memory scheme and aggregate the information over the depth dimension instead of the breadth dimension of the graph, which empowers the ability to collect long dependencies without stacking multiple layers. Experimental results on two challenging multi-hop spatial reasoning datasets show that DepWiGNN outperforms existing spatial reasoning methods. The comparisons with the other three GNNs further demonstrate its superiority in capturing l