Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)

Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, Marcos Zampieri (Editors)

Anthology ID:
Dubrovnik, Croatia
Association for Computational Linguistics
Bib Export formats:

pdf bib
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)
Yves Scherrer | Tommi Jauhiainen | Nikola Ljubešić | Preslav Nakov | Jörg Tiedemann | Marcos Zampieri

pdf bib
Analyzing Zero-Shot transfer Scenarios across Spanish variants for Hate Speech Detection
Galo Castillo-lópez | Arij Riabi | Djamé Seddah

Hate speech detection in online platforms has been widely studied inthe past. Most of these works were conducted in English and afew rich-resource languages. Recent approaches tailored forlow-resource languages have explored the interests of zero-shot cross-lingual transfer learning models in resource-scarce scenarios. However, languages variations between geolects such as AmericanEnglish and British English, Latin-American Spanish, and EuropeanSpanish is still a problem for NLP models that often relies on(latent) lexical information for their classification tasks. Moreimportantly, the cultural aspect, crucial for hate speech detection,is often overlooked. In this work, we present the results of a thorough analysis of hatespeech detection models performance on different variants of Spanish,including a new hate speech toward immigrants Twitter data set we built to cover these variants. Using mBERT and Beto, a monolingual Spanish Bert-based language model, as the basis of our transfer learning architecture, our results indicate that hate speech detection models for a given Spanish variant are affected when different variations of such language are not considered. Hate speech expressions could vary from region to region where the same language is spoken. Our new dataset, models and guidelines are freely available.

pdf bib
Optimizing the Size of Subword Vocabularies in Dialect Classification
Vani Kanjirangat | Tanja Samardžić | Ljiljana Dolamic | Fabio Rinaldi

Pre-trained models usually come with a pre-defined tokenization and little flexibility as to what subword tokens can be used in downstream tasks. This problem concerns especially multilingual NLP and low-resource languages, which are typically processed using cross-lingual transfer. In this paper, we aim to find out if the right granularity of tokenization is helpful for a text classification task, namely dialect classification. Aiming at generalizations beyond the studied cases, we look for the optimal granularity in four dialect datasets, two with relatively consistent writing (one Arabic and one Indo-Aryan set) and two with considerably inconsistent writing (one Arabic and one Swiss German set). To gain more control over subword tokenization and ensure direct comparability in the experimental settings, we train a CNN classifier from scratch comparing two subword tokenization methods (Unigram model and BPE). For reference, we compare the results obtained in our analysis to the state of the art achieved by fine-tuning pre-trained models. We show that models trained from scratch with an optimal tokenization level perform better than fine-tuned classifiers in the case of highly inconsistent writing. In the case of relatively consistent writing, fine-tuned models remain better regardless of the tokenization level.

pdf bib
Murreviikko - A Dialectologically Annotated and Normalized Dataset of Finnish Tweets
Olli Kuparinen

This paper presents Murreviikko, a dataset of dialectal Finnish tweets which have been dialectologically annotated and manually normalized to a standard form. The dataset can be used as a test set for dialect identification and dialect-to-standard normalization, for instance. We evaluate the dataset on the normalization task, comparing an existing normalization model built on a spoken dialect corpus and three newly trained models with different architectures. We find that there are significant differences in normalization difficulty between the dialects, and that a character-level statistical machine translation model performs best on the Murreviikko tweet dataset.

pdf bib
Does Manipulating Tokenization Aid Cross-Lingual Transfer? A Study on POS Tagging for Non-Standardized Languages
Verena Blaschke | Hinrich Schütze | Barbara Plank

One of the challenges with finetuning pretrained language models (PLMs) is that their tokenizer is optimized for the language(s) it was pretrained on, but brittle when it comes to previously unseen variations in the data. This can for instance be observed when finetuning PLMs on one language and evaluating them on data in a closely related language variety with no standardized orthography. Despite the high linguistic similarity, tokenization no longer corresponds to meaningful representations of the target data, leading to low performance in, e.g., part-of-speech tagging. In this work, we finetune PLMs on seven languages from three different families and analyze their zero-shot performance on closely related, non-standardized varieties. We consider different measures for the divergence in the tokenization of the source and target data, and the way they can be adjusted by manipulating the tokenization during the finetuning step. Overall, we find that the similarity between the percentage of words that get split into subwords in the source and target data (the split word ratio difference) is the strongest predictor for model performance on target data.

pdf bib
Temporal Domain Adaptation for Historical Irish
Oksana Dereza | Theodorus Fransen | John P. Mccrae

The digitisation of historical texts has provided new horizons for NLP research, but such data also presents a set of challenges, including scarcity and inconsistency. The lack of editorial standard during digitisation exacerbates these difficulties. This study explores the potential for temporal domain adaptation in Early Modern Irish and pre-reform Modern Irish data. We describe two experiments carried out on the book subcorpus of the Historical Irish Corpus, which includes Early Modern Irish and pre-reform Modern Irish texts from 1581 to 1926. We also propose a simple orthographic normalisation method for historical Irish that reduces the type-token ratio by 21.43% on average in our data. The results demonstrate that the use of out-of-domain data significantly improves a language model’s performance. Providing a model with additional input from another historical stage of the language improves its quality by 12.49% on average on non-normalised texts and by 27.02% on average on normalised (demutated) texts. Most notably, using only out-of-domain data for both pre-training and training stages allowed for up to 86.81% of the baseline model quality on non-normalised texts and up to 95.68% on normalised texts without any target domain data. Additionally, we investigate the effect of temporal distance between the training and test data. The hypothesis that there is a positive correlation between performance and temporal proximity of training and test data has been validated, which manifests best in normalised data. Expanding this approach even further back, to Middle and Old Irish, and testing it on other languages is a further research direction.

pdf bib
Variation and Instability in Dialect-Based Embedding Spaces
Jonathan Dunn

This paper measures variation in embedding spaces which have been trained on different regional varieties of English while controlling for instability in the embeddings. While previous work has shown that it is possible to distinguish between similar varieties of a language, this paper experiments with two follow-up questions: First, does the variety represented in the training data systematically influence the resulting embedding space after training? This paper shows that differences in embeddings across varieties are significantly higher than baseline instability. Second, is such dialect-based variation spread equally throughout the lexicon? This paper shows that specific parts of the lexicon are particularly subject to variation. Taken together, these experiments confirm that embedding spaces are significantly influenced by the dialect represented in the training data. This finding implies that there is semantic variation across dialects, in addition to previously-studied lexical and syntactic variation.

pdf bib
PALI: A Language Identification Benchmark for Perso-Arabic Scripts
Sina Ahmadi | Milind Agarwal | Antonios Anastasopoulos

The Perso-Arabic scripts are a family of scripts that are widely adopted and used by various linguistic communities around the globe. Identifying various languages using such scripts is crucial to language technologies and challenging in low-resource setups. As such, this paper sheds light on the challenges of detecting languages using Perso-Arabic scripts, especially in bilingual communities where “unconventional” writing is practiced. To address this, we use a set of supervised techniques to classify sentences into their languages. Building on these, we also propose a hierarchical model that targets clusters of languages that are more often confused by the classifiers. Our experiment results indicate the effectiveness of our solutions.

pdf bib
Get to Know Your Parallel Data: Performing English Variety and Genre Classification over MaCoCu Corpora
Taja Kuzman | Peter Rupnik | Nikola Ljubešić

Collecting texts from the web enables a rapid creation of monolingual and parallel corpora of unprecedented size. However, unlike manually-collected corpora, authors and end users do not know which texts make up the web collections. In this work, we analyse the content of seven European parallel web corpora, collected from national top-level domains, by analysing the English variety and genre distribution in them. We develop and provide a lexicon-based British-American variety classifier, which we use to identify the English variety. In addition, we apply a Transformer-based genre classifier to corpora to analyse genre distribution and the interplay between genres and English varieties. The results reveal significant differences among the seven corpora in terms of different genre distribution and different preference for English varieties.

pdf bib
Reconstructing Language History by Using a Phonological Ontology. An Analysis of German Surnames
Hanna Fischer | Robert Engsterhold

This paper applies the ontology-baseddialectometric technique of Engsterhold(2020) to surnames. The method wasoriginally developed for phonetic analyses. However, as will be shown, it is also suitedfor the study of graphemic representations. Based on data from the German SurnameAtlas (DFA), the method is optimized forgraphemic analysis and illustrated with anexample case.

pdf bib
BENCHić-lang: A Benchmark for Discriminating between Bosnian, Croatian, Montenegrin and Serbian
Peter Rupnik | Taja Kuzman | Nikola Ljubešić

Automatic discrimination between Bosnian, Croatian, Montenegrin and Serbian is a hard task due to the mutual intelligibility of these South-Slavic languages. In this paper, we introduce the BENCHić-lang benchmark for discriminating between these four languages. The benchmark consists of two datasets from different domains - a Twitter and a news dataset - selected with the aim of fostering cross-dataset evaluation of different modelling approaches. We experiment with the baseline SVM models, based on character n-grams, which perform nicely in-dataset, but do not generalize well in cross-dataset experiments. Thus, we introduce another approach, exploiting only web-crawled data and the weak supervision signal coming from the respective country/language top-level domains. The resulting simple Naive Bayes model, based on less than a thousand word features extracted from web data, outperforms the baseline models in the cross-dataset scenario and achieves good levels of generalization across datasets.

pdf bib
Comparing and Predicting Eye-tracking Data of Mandarin and Cantonese
Junlin Li | Bo Peng | Yu-yin Hsu | Emmanuele Chersoni

Eye-tracking data in Chinese languages present unique challenges due to the non-alphabetic and unspaced nature of the Chinese writing systems. This paper introduces the first deeply-annotated joint Mandarin-Cantonese eye-tracking dataset, from which we achieve a unified eye-tracking prediction system for both language varieties. In addition to the commonly studied first fixation duration and the total fixation duration, this dataset also includes the second fixation duration, expressing fixation patterns that are more relevant to higher-level, structural processing. A basic comparison of the features and measurements in our dataset revealed variation between Mandarin and Cantonese on fixation patterns related to word class and word position. The test of feature usefulness suggested that traditional features are less powerful in predicting the second-pass fixation, to which the linear distance to root makes a leading contribution in Mandarin. In contrast, Cantonese eye-movement behavior relies more on word position and part of speech.

pdf bib
A Measure for Linguistic Coherence in Spatial Language Variation
Alfred Lameli | Andreas Schönberg

Based on historical dialect data we introduce a local measure of linguistic coherence in spatial language variation aiming at the identification of regions which are particularly sensitive to language variation and change. Besides, we use a measure of global coherence for the automated detection of linguistic items (e.g., sounds or morphemes) with higher or lesser language variation. The paper describes both the data and the method and provides analyses examples.

pdf bib
Dialect and Variant Identification as a Multi-Label Classification Task: A Proposal Based on Near-Duplicate Analysis
Gabriel Bernier-colborne | Cyril Goutte | Serge Leger

We argue that dialect identification should be treated as a multi-label classification problem rather than the single-class setting prevalent in existing collections and evaluations. In order to avoid extensive human re-labelling of the data, we propose an analysis of ambiguous near-duplicates in an existing collection covering four variants of French.We show how this analysis helps us provide multiple labels for a significant subset of the original data, therefore enriching the annotation with minimal human intervention. The resulting data can then be used to train dialect identifiers in a multi-label setting. Experimental results show that on the enriched dataset, the multi-label classifier produces similar accuracy to the single-label classifier on test cases that are unambiguous (single label), but it increases the macro-averaged F1-score by 0.225 absolute (71% relative gain) on ambiguous texts with multiple labels. On the original data, gains on the ambiguous test cases are smaller but still considerable (+0.077 absolute, 20% relative gain), and accuracy on non-ambiguous test cases is again similar in this case. This supports our thesis that modelling dialect identification as a multi-label problem potentially has a positive impact.

pdf bib
Fine-Tuning BERT with Character-Level Noise for Zero-Shot Transfer to Dialects and Closely-Related Languages
Aarohi Srivastava | David Chiang

In this work, we induce character-level noise in various forms when fine-tuning BERT to enable zero-shot cross-lingual transfer to unseen dialects and languages. We fine-tune BERT on three sentence-level classification tasks and evaluate our approach on an assortment of unseen dialects and languages. We find that character-level noise can be an extremely effective agent of cross-lingual transfer under certain conditions, while it is not as helpful in others. Specifically, we explore these differences in terms of the nature of the task and the relationships between source and target languages, finding that introduction of character-level noise during fine-tuning is particularly helpful when a task draws on surface level cues and the source-target cross-lingual pair has a relatively high lexical overlap with shorter (i.e., less meaningful) unseen tokens on average.

pdf bib
Lemmatization Experiments on Two Low-Resourced Languages: Low Saxon and Occitan
Aleksandra Miletić | Janine Siewert

We present lemmatization experiments on the unstandardized low-resourced languages Low Saxon and Occitan using two machine-learning-based approaches represented by MaChAmp and Stanza. We show different ways to increase training data by leveraging historical corpora, small amounts of gold data and dictionary information, and discuss the usefulness of this additional data. In the results, we find some differences in the performance of the models depending on the language. This variation is likely to be partly due to differences in the corpora we used, such as the amount of internal variation. However, we also observe common tendencies, for instance that sequential models trained only on gold-annotated data often yield the best overall performance and generalize better to unknown tokens.

pdf bib
The Use of Khislavichi Lect Morphological Tagging to Determine its Position in the East Slavic Group
Ilia Afanasev

The study of low-resourced East Slavic lects is becoming increasingly relevant as they face the prospect of extinction under the pressure of standard Russian while being treated by academia as an inferior part of this lect. The Khislavichi lect, spoken in a settlement on the border of Russia and Belarus, is a perfect example of such an attitude. We take an alternative approach and study East Slavic lects (such as Khislavichi) as separate systems. The proposed method includes the development of a tagged corpus through morphological tagging with the models trained on the bigger lects. Morphological tagging results may be used to place these lects among the bigger ones, such as standard Belarusian or standard Russian. The implemented morphological taggers of standard Russian and standard Belarusian demonstrate an accuracy higher than the accuracy of multilingual models by 3 to 15%. The study suggests possible ways to adapt these taggers to the Khislavichi dataset, such as tagset unification and transcription closer to the actual sound rather than the standard lect pronunciation. Automatic classification supports the hypothesis that Khislavichi is a border East Slavic lect that historically was Belarusian but got russified: the algorithm places it either slightly closer to Russian or to Belarusian.

pdf bib
DiatopIt: A Corpus of Social Media Posts for the Study of Diatopic Language Variation in Italy
Alan Ramponi | Camilla Casula

We introduce DiatopIt, the first corpus specifically focused on diatopic language variation in Italy for language varieties other than Standard Italian. DiatopIt comprises over 15K geolocated social media posts from Twitter over a period of two years, including regional Italian usage and content fully written in local language varieties or exhibiting code-switching with Standard Italian. We detail how we tackled key challenges in creating such a resource, including the absence of orthography standards for most local language varieties and the lack of reliable language identification tools. We assess the representativeness of DiatopIt across time and space, and show that the density of non-Standard Italian content across areas correlates with actual language use. We finally conduct computational experiments and find that modeling diatopic variation on highly multilingual areas such as Italy is a complex task even for recent language models.

pdf bib
Dialect Representation Learning with Neural Dialect-to-Standard Normalization
Olli Kuparinen | Yves Scherrer

Language label tokens are often used in multilingual neural language modeling and sequence-to-sequence learning to enhance the performance of such models. An additional product of the technique is that the models learn representations of the language tokens, which in turn reflect the relationships between the languages. In this paper, we study the learned representations of dialects produced by neural dialect-to-standard normalization models. We use two large datasets of typologically different languages, namely Finnish and Norwegian, and evaluate the learned representations against traditional dialect divisions of both languages. We find that the inferred dialect embeddings correlate well with the traditional dialects. The methodology could be further used in noisier settings to find new insights into language variation.

pdf bib
VarDial in the Wild: Industrial Applications of LID Systems for Closely-Related Language Varieties
Fritz Hohl | Soh-eun Shim

This report describes first an industrial use case for identifying closely related languages, e.g.dialects, namely the detection of languages of movie subtitle documents. We then presenta 2-stage architecture that is able to detect macrolanguages in the first stage and languagevariants in the second. Using our architecture, we participated in the DSL-TL Shared Task of the VarDial 2023 workshop. We describe the results of our experiments. In the first experiment we report an accuracy of 97.8% on a set of 460 subtitle files. In our second experimentwe used DSL-TL data and achieve a macroaverage F1 of 76% for the binary task, and 54% for the three-way task in the dev set. In the open track, we augment the data with named entities retrieved from Wikidata and achieve minor increases of about 1% for both tracks.

pdf bib
Two-stage Pipeline for Multilingual Dialect Detection
Ankit Vaidya | Aditya Kane

Dialect Identification is a crucial task for localizing various Large Language Models. This paper outlines our approach to the VarDial 2023 shared task. Here we have to identify three or two dialects from three languages each which results in a 9-way classification for Track-1 and 6-way classification for Track-2 respectively. Our proposed approach consists of a two-stage system and outperforms other participants’ systems and previous works in this domain. We achieve a score of 58.54% for Track-1 and 85.61% for Track-2. Our codebase is available publicly (https://github.com/ankit-vaidya19/EACL_VarDial2023).

pdf bib
Using Ensemble Learning in Language Variety Identification
Mihaela Gaman

The present work describes the solutions pro- posed by the UnibucNLP team to address the closed format of the DSL-TL task featured in the tenth VarDial Evaluation Campaign. The DSL-TL organizers provided approximately 11 thousand sentences written in three different languages and manually tagged with one of 9 classes. Out of these, 3 tags are considered common label and the remaining 6 tags are variety-specific. The DSL-TL task features 2 subtasks: Track 1 - a three-way and Track 2 - a two-way classification per language. In Track 2 only the variety-specific labels are used for scoring, whereas in Track 1 the common label is considered as well. Our team participated in both tracks, with three ensemble-based sub- missions for each. The meta-learner used for Track 1 is XGBoost and for Track 2, Logis- tic Regression. With each submission, we are gradually increasing the complexity of the en- semble, starting with two shallow, string-kernel based methods. To the first ensemble, we add a convolutional neural network for our second submission. The third ensemble submitted adds a fine-tuned BERT model to the second one. In Track 1, ensemble three is our highest ranked, with an F1 − score of 53.18%; 5.36% less than the leader. Surprisingly, in Track 2 the en- semble of shallow methods surpasses the other two, more complex ensembles, achieving an F 1 − score of 69.35%.

pdf bib
SIDLR: Slot and Intent Detection Models for Low-Resource Language Varieties
Sang Yun Kwon | Gagan Bhatia | Elmoatez Billah Nagoudi | Alcides Alcoba Inciarte | Muhammad Abdul-mageed

Intent detection and slot filling are two critical tasks in spoken and natural language understandingfor task-oriented dialog systems. In this work, we describe our participation in slot and intent detection for low-resource language varieties (SID4LR) (Aepli et al., 2023). We investigate the slot and intent detection (SID) tasks using a wide range of models and settings. Given the recent success of multitask promptedfinetuning of the large language models, we also test the generalization capability of the recent encoder-decoder model mT0 (Muennighoff et al., 2022) on new tasks (i.e., SID) in languages they have never intentionally seen. We show that our best model outperforms the baseline by a large margin (up to +30 F1 points) in both SID tasks.

pdf bib
Findings of the VarDial Evaluation Campaign 2023
Noëmi Aepli | Çağrı Çöltekin | Rob Van Der Goot | Tommi Jauhiainen | Mourhaf Kazzaz | Nikola Ljubešić | Kai North | Barbara Plank | Yves Scherrer | Marcos Zampieri

This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2023. The campaign is part of the tenth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2023. Three separate shared tasks were included this year: Slot and intent detection for low-resource language varieties (SID4LR), Discriminating Between Similar Languages – True Labels (DSL-TL), and Discriminating Between Similar Languages – Speech (DSL-S). All three tasks were organized for the first time this year.