pdf
bib
Findings of the Association for Computational Linguistics ACL 2024
Lun-Wei Ku
|
Andre Martins
|
Vivek Srikumar
pdf
bib
abs
Controllable Data Augmentation for Few-Shot Text Mining with Chain-of-Thought Attribute Manipulation
Letian Peng
|
Yuwei Zhang
|
Jingbo Shang
Prompting large language models (LLMs) for data augmentation has recently become a common practice in few-shot NLP tasks. In this paper, we propose Chain-of-Thought Attribute Manipulation (CoTAM), a novel approach that generates new data from existing examples by only tweaking in the user-provided, task-specific attribute, e.g., sentiment polarity or topic in movie reviews. Instead of conventional latent representation controlling, we leverage the chain-of-thought prompting to directly edit the text in three steps, (1) attribute decomposition, (2) manipulation proposal, and (3) sentence reconstruction. Extensive results on various tasks, such as text (pair) classification and aspect-based sentiment analysis, verify the superiority of CoTAM over other LLM-based augmentation methods with the same number of training examples for both fine-tuning and in-context learning. Remarkably, the 2D visualization of the augmented dataset using principle component analysis revealed a human-recognizable decision boundary that is likely hinted by the attribute manipulation, demonstrating the potential of our proposed approach.
pdf
bib
abs
Match More, Extract Better! Hybrid Matching Model for Open Domain Web Keyphrase Extraction
Mingyang Song
|
Liping Jing
|
Yi Feng
Keyphrase extraction aims to automatically extract salient phrases representing the critical information in the source document. Identifying salient phrases is challenging because there is a lot of noisy information in the document, leading to wrong extraction. To address this issue, in this paper, we propose a hybrid matching model for keyphrase extraction, which combines representation-focused and interaction-based matching modules into a unified framework for improving the performance of the keyphrase extraction task. Specifically, HybridMatch comprises (1) a PLM-based Siamese encoder component that represents both candidate phrases and documents, (2) an interaction-focused matching (IM) component that estimates word matches between candidate phrases and the corresponding document at the word level, and (3) a representation-focused matching (RM) component captures context-aware semantic relatedness of each candidate keyphrase at the phrase level. Extensive experimental results on the OpenKP dataset demonstrate that the performance of the proposed model HybridMatch outperforms the recent state-of-the-art keyphrase extraction baselines. Furthermore, we discuss the performance of large language models in keyphrase extraction based on recent studies and our experiments.
pdf
bib
abs
AFPQ: Asymmetric Floating Point Quantization for LLMs
Yijia Zhang
|
Sicheng Zhang
|
Shijie Cao
|
DaYou Du
|
Jianyu Wei
|
Ting Cao
|
Ningyi Xu
Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth.Low-bit weight quantization can save memory and accelerate inference.Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits.We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors.In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values.Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance.Besides, no additional storage is needed compared with asymmetric integer (INT) quantization.The code is available at https://github.com/zhangsichengsjtu/AFPQ.
pdf
bib
abs
End-to-End Emotion Semantic Parsing
Xiaotong Jiang
|
Zhongqing Wang
|
Guodong Zhou
Emotion detection is the task of automatically associating one or more emotions with a text. The emotions are experienced, targeted, and caused by different semantic constituents. Therefore, it is necessary to incorporate these semantic constituents into the process of emotion detection. In this study, we propose a new task called emotion semantic parsing which aims to parse the emotion and semantic constituents into an abstract semantic tree structure. In particular, we design an end-to-end generation model to capture the relations between emotion and all the semantic constituents, and to generate them jointly. Furthermore, we employ a task decomposition strategy to capture the semantic relation among these constituents in a more cognitive and structural way. Experimental results demonstrate the importance of the proposed task, and indicate the proposed model gives superior performance compared to other models.
pdf
bib
abs
Overcoming Catastrophic Forgetting by Exemplar Selection in Task-oriented Dialogue System
Chen Chen
|
Ruizhe Li
|
Yuchen Hu
|
Yuanyuan Chen
|
Chengwei Qin
|
Qiang Zhang
Intelligent task-oriented dialogue systems (ToDs) are expected to continuously acquire new knowledge, also known as Continual Learning (CL), which is crucial to fit ever-changing user needs. However, catastrophic forgetting dramatically degrades the model performance in face of a long streamed curriculum. In this paper, we aim to overcome the forgetting problem in ToDs and propose a method (HESIT) with hyper-gradient-based exemplar strategy, which samples influential exemplars for periodic retraining. Instead of unilaterally observing data or models, HESIT adopts a profound exemplar selection strategy that considers the general performance of the trained model when selecting exemplars for each task domain. Specifically, HESIT analyzes the training data influence by tracing their hyper-gradient in the optimization process. Furthermore, HESIT avoids estimating Hessian to make it compatible for ToDs with a large pre-trained model. Experimental results show that HESIT effectively alleviates catastrophic forgetting by exemplar selection, and achieves state-of-the-art performance on the largest CL benchmark of ToDs in terms of all metrics.
pdf
bib
abs
Unveiling Imitation Learning: Exploring the impact of Data Falsity to Large Language Model
Hyunsoo Cho
Many recent studies endeavor to improve open-sourced language models through imitation learning, re-training on the synthetic instruction data from state-of-the-art proprietary models like ChatGPT and GPT-4.However, the innate nature of synthetic data inherently contains noisy data, giving rise to a substantial presence of low-quality data replete with misleading queries, erroneous responses, and flawed reasoning.Although we intuitively grasp the potential harm of noisy data, we lack a quantitative understanding of its impact.To this end, this paper explores correlation between the degree of noise and its impact on language models through instruction tuning.We first introduce the Falsity-Controllable () dataset, which comprises pairs of true answers and corresponding reasoning, as well as false pairs to manually control the factuality ratio of the dataset.Through our extensive experiments, we found multiple intriguing findings of the correlation between factuality and instruction tuning. Specifically, factuality can significantly impact various benchmark characteristics especially when benchmarks are related to knowledge domain, and initial data quality plays a critical role, whereas the number of learning steps has a lesser impact.Additionally, we noted that once the language model is trained with a dataset contaminated by noise, restoring its original performance becomes exceptionally challenging, verging on irreversible.
pdf
bib
abs
The Counterfeit Conundrum: Can Code Language Models Grasp the Nuances of Their Incorrect Generations?
Alex Gu
|
Wen-Ding Li
|
Naman Jain
|
Theo Olausson
|
Celine Lee
|
Koushik Sen
|
Armando Solar-Lezama
While language models are increasingly more proficient at code generation, they still frequently generate incorrect programs. Many of these programs are obviously wrong, but others are more subtle and pass weaker correctness checks such as being able to compile. In this work, we focus on these counterfeit samples: programs sampled from a language model that 1) have a high enough log-probability to be generated at a moderate temperature and 2) pass weak correctness checks. Overall, we discover that most models have a very shallow understanding of counterfeits through three clear failure modes. First, models mistakenly classify them as correct. Second, models are worse at reasoning about the execution behaviour of counterfeits and often predict their execution results as if they were correct. Third, when asking models to fix counterfeits, the likelihood of a model successfully repairing a counterfeit is often even lower than that of sampling a correct program from scratch. Counterfeits also have very unexpected properties: first, counterfeit programs for problems that are easier for a model to solve are not necessarily easier to detect and only slightly easier to execute and repair. Second, counterfeits from a given model are just as confusing to the model itself as they are to other models. Finally, both strong and weak models are able to generate counterfeit samples that equally challenge all models. In light of our findings, we recommend that care and caution be taken when relying on models to understand their own samples, especially when no external feedback is incorporated.
pdf
bib
abs
CHIME: LLM-Assisted Hierarchical Organization of Scientific Studies for Literature Review Support
Chao-Chun Hsu
|
Erin Bransom
|
Jenna Sparks
|
Bailey Kuehl
|
Chenhao Tan
|
David Wadden
|
Lucy Wang
|
Aakanksha Naik
Literature review requires researchers to synthesize a large amount of information and is increasingly challenging as the scientific literature expands. In this work, we investigate the potential of LLMs for producing hierarchical organizations of scientific studies to assist researchers with literature review. We define hierarchical organizations as tree structures where nodes refer to topical categories and every node is linked to the studies assigned to that category. Our naive LLM-based pipeline for hierarchy generation from a set of studies produces promising yet imperfect hierarchies, motivating us to collect CHIME, an expert-curated dataset for this task focused on biomedicine. Given the challenging and time-consuming nature of building hierarchies from scratch, we use a human-in-the-loop process in which experts correct errors (both links between categories and study assignment) in LLM-generated hierarchies. CHIME contains 2,174 LLM-generated hierarchies covering 472 topics, and expert-corrected hierarchies for a subset of 100 topics. Expert corrections allow us to quantify LLM performance, and we find that while they are quite good at generating and organizing categories, their assignment of studies to categories could be improved. We attempt to train a corrector model with human feedback which improves study assignment by 12.6 F1 points. We release our dataset and models to encourage research on developing better assistive tools for literature review.
pdf
bib
abs
Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation
Hao Li
|
Yuping Wu
|
Viktor Schlegel
|
Riza Batista-Navarro
|
Tharindu Madusanka
|
Iqra Zahid
|
Jiayan Zeng
|
Xiaochi Wang
|
Xinran He
|
Yizhi Li
|
Goran Nenadic
With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset.
pdf
bib
abs
A Grounded Preference Model for LLM Alignment
Tahira Naseem
|
Guangxuan Xu
|
Sarathkrishna Swaminathan
|
Asaf Yehudai
|
Subhajit Chaudhury
|
Radu Florian
|
Ramón Astudillo
|
Asim Munawar
Despite LLMs’ recent advancements, they still suffer from factual inconsistency and hallucination. An often-opted remedy is retrieval-augmented generation – however, there is no guarantee that the model will strictly adhere to retrieved grounding. Fundamentally, LLMs need to be aligned to be more faithful to grounding, which will require high-quality preference annotations. This paper investigates whether we can create high-quality grounded preference data for model alignment without using annotations from humans or large proprietary models. We experimented with existing entailment data and proposed approaches to generate synthetic grounded preference data, with which we train a Grounded Preference Model(GPM). We demonstrate through Proximal Policy Optimization(PPO) training of Mistral-7B-Instruct that our GPM model can successfully align powerful LLMs to generate much better grounded responses as judged by GPT4. Moreover, we show that our GPM is also a great faithfulness classifier, achieving SoTA in dialogue sub-tasks of the TRUE faithfulness Benchmark. We will release our GPM under the Apache 2.0 license.
pdf
bib
abs
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Bowen Jin
|
Chulin Xie
|
Jiawei Zhang
|
Kashob Kumar Roy
|
Yu Zhang
|
Zheng Li
|
Ruirui Li
|
Xianfeng Tang
|
Suhang Wang
|
Yu Meng
|
Jiawei Han
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT/.
pdf
bib
abs
Text2DB: Integration-Aware Information Extraction with Large Language Model Agents
Yizhu Jiao
|
Sha Li
|
Sizhe Zhou
|
Heng Ji
|
Jiawei Han
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE, Text2DB, that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-Plan-Analyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation.
pdf
bib
abs
How Important is a Language Model for Low-resource ASR?
Zoey Liu
|
Nitin Venkateswaran
|
Eric Le Ferrand
|
Emily Prud’hommeaux
N-gram language models (LMs) are the innovation that first made large-vocabulary continuous automatic speech recognition (ASR) viable. With neural end-to-end ASR architectures, however, LMs have become an afterthought. While the effect on accuracy may be negligible for English and Mandarin, jettisoning the LM might not make sense for the world’s remaining 6000+ languages. In this paper, we investigate the role of the LM in low-resource ASR. First we ask: does using an n-gram LM in decoding in neural architectures help ASR performance? While it may seem obvious that it should, its absence in most implementations suggests otherwise. Second, we ask: when an n-gram LM is used in ASR, is there a relationship between the size of the LM and ASR accuracy? We have discovered that gut feelings on this question vary considerably, but there is little empirical work to support any particular claim. We explore these questions “in the wild” using a deliberately diverse set of 9 very small ASR corpora. The results show that: (1) decoding with an n-gram LM, regardless of its size, leads to lower word error rates; and (2) increasing the size of the LM appears to yield improvements only when the audio corpus itself is already relatively large. This suggests that collecting additional LM training text may benefit widely-spoken languages which typically have larger audio corpora. In contrast, for endangered languages where data of any kind will always be limited, efforts may be better spent collecting additional transcribed audio.
pdf
bib
abs
MediSwift: Efficient Sparse Pre-trained Biomedical Language Models
Vithursan Thangarasa
|
Mahmoud Salem
|
Shreyas Saxena
|
Chen-Yu Leong
|
Joel Hestness
|
Sean Lie
Large language models (LLMs) are typically trained on general source data forvarious domains, but a recent surge in domain-specific LLMs has shown theirpotential to outperform general-purpose models in domain-specific tasks (e.g.,biomedicine). Although domain-specific pre-training enhances efficiency andleads to smaller models, the computational costs of training these LLMs remainhigh, posing budgeting challenges. We introduce MediSwift, a suite of biomedicalLMs that leverage sparse pre-training on domain-specific biomedical text data.By inducing up to 75% weight sparsity during the pre-training phase, MediSwiftachieves a 2-2.5x reduction in training FLOPs. Notably, all sparse pre-trainingwas performed on the Cerebras CS-2 system, which is specifically designed torealize the acceleration benefits from unstructured weight sparsity, therebysignificantly enhancing the efficiency of the MediSwift models. Throughsubsequent dense fine-tuning and strategic soft prompting, MediSwift modelsoutperform existing LLMs up to 7B parameters on biomedical tasks, setting newbenchmarks w.r.t efficiency-accuracy on tasks such as PubMedQA. Our results showthat sparse pre-training, along with dense fine-tuning and soft prompting,offers an effective method for creating high-performing, computationallyefficient models in specialized domains.
pdf
bib
abs
Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling
Chengxu Zhuang
|
Evelina Fedorenko
|
Jacob Andreas
Today’s most accurate language models are trained on orders of magnitude more language data than human language learners receive— but with no supervision from other sensory modalities that play a crucial role in human learning. Can we make LMs’ representations and predictions more accurate (and more human-like) with more ecologically plausible supervision? This paper describes LexiContrastive Grounding (LCG), a grounded language learning procedure that leverages visual supervision to improve textual representations. LexiContrastive Grounding combines a next-token prediction strategy with a contrastive visual grounding objective, focusing on early-layerrepresentations that encode lexical information. Across multiple word-learning and sentence-understanding benchmarks, LexiContrastiveGrounding not only outperforms standard language-only models in terms of learning efficiency in small and developmentally plausible data regimes, but also improves upon vision-and-language learning procedures including CLIP, GIT, Flamingo, and Vokenization.Moreover, LexiContrastive Grounding improves perplexity by around 5% on multiple language modeling tasks compared to other models trained on the same amount of text data. This work underscores the potential of incorporating visual grounding into language models, aligning more closely with the multimodal nature of human language acquisition.
pdf
bib
abs
P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models
Shuo Yang
|
Chenchen Yuan
|
Yao Rong
|
Felix Steinbauer
|
Gjergji Kasneci
A multitude of industries depend on accurate and reasonable tabular data augmentation for their business processes. Contemporary methodologies in generating tabular data revolve around utilizing Generative Adversarial Networks (GAN) or fine-tuning Large Language Models (LLM). However, GAN-based approaches are documented to produce samples with common-sense errors attributed to the absence of external knowledge. On the other hand, LLM-based methods exhibit a limited capacity to capture the disparities between synthesized and actual data distribution due to the absence of feedback from a discriminator during training. Furthermore, the decoding of LLM-based generation introduces gradient breakpoints, impeding the backpropagation of loss from a discriminator, thereby complicating the integration of these two approaches. To solve this challenge, we propose using proximal policy optimization (PPO) to apply GANs, guiding LLMs to enhance the probability distribution of tabular features. This approach enables the utilization of LLMs as generators for GANs in synthesizing tabular data. Our experiments demonstrate that PPO leads to an approximately 4% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art across three real-world datasets.
pdf
bib
abs
Teaching-Assistant-in-the-Loop: Improving Knowledge Distillation from Imperfect Teacher Models in Low-Budget Scenarios
Yuhang Zhou
|
Wei Ai
There is increasing interest in distilling task-specific knowledge from large language models (LLM) to smaller student models.Nonetheless, LLM distillation presents a dual challenge: 1) there is a high cost associated with querying the teacher LLM, such as GPT-4, for gathering an ample number of demonstrations; 2) the teacher LLM might provide imperfect outputs with a negative impact on the student’s learning process. To enhance sample efficiency within resource-constrained, imperfect teacher scenarios, we propose a three-component framework leveraging three signal types. The first signal is the student’s self-consistency (consistency of student multiple outputs), which is a proxy of the student’s confidence. Specifically, we introduce a ”teaching assistant” (TA) model to assess the uncertainty of both the student’s and the teacher’s outputs via confidence scoring, which serves as another two signals for student training. Furthermore, we propose a two-stage training schema to first warm up the student with a small proportion of data to better utilize student’s signal. Experiments have shown the superiority of our proposed framework for four complex reasoning tasks. On average, our proposed two-stage framework brings a relative improvement of up to 20.79% compared to fine-tuning without any signals across datasets.
pdf
bib
abs
Small Models are Valuable Plug-ins for Large Language Models
Canwen Xu
|
Yichong Xu
|
Shuohang Wang
|
Yang Liu
|
Chenguang Zhu
|
Julian McAuley
Large language models (LLMs) such as GPT-3 and GPT-4 are powerful but their weights are often publicly unavailable and their immense sizes make the models difficult to be tuned with common hardware. As a result, effectively tuning these models with large-scale supervised data can be challenging. As an alternative, In-Context Learning (ICL) can only use a small number of supervised examples due to context length limits. In this paper, we propose Super In-Context Learning (SuperICL) which allows black-box LLMs to work with locally fine-tuned smaller models, resulting in superior performance on supervised tasks. Our experiments demonstrate that SuperICL can improve performance beyond state-of-the-art fine-tuned models while addressing the instability problem of in-context learning.
pdf
bib
abs
Are self-explanations from Large Language Models faithful?
Andreas Madsen
|
Sarath Chandar
|
Siva Reddy
Instruction-tuned Large Language Models (LLMs) excel at many tasks and will even explain their reasoning, so-called self-explanations. However, convincing and wrong self-explanations can lead to unsupported confidence in LLMs, thus increasing risk. Therefore, it’s important to measure if self-explanations truly reflect the model’s behavior. Such a measure is called interpretability-faithfulness and is challenging to perform since the ground truth is inaccessible, and many LLMs only have an inference API. To address this, we propose employing self-consistency checks to measure faithfulness. For example, if an LLM says a set of words is important for making a prediction, then it should not be able to make its prediction without these words. While self-consistency checks are a common approach to faithfulness, they have not previously been successfully applied to LLM self-explanations for counterfactual, feature attribution, and redaction explanations. Our results demonstrate that faithfulness is explanation, model, and task-dependent, showing self-explanations should not be trusted in general. For example, with sentiment classification, counterfactuals are more faithful for Llama2, feature attribution for Mistral, and redaction for Falcon 40B.
pdf
bib
abs
ImplicitAVE: An Open-Source Dataset and Multimodal LLMs Benchmark for Implicit Attribute Value Extraction
Henry Zou
|
Vinay Samuel
|
Yue Zhou
|
Weizhi Zhang
|
Liancheng Fang
|
Zihe Song
|
Philip Yu
|
Cornelia Caragea
Existing datasets for attribute value extraction (AVE) predominantly focus on explicit attribute values while neglecting the implicit ones, lack product images, are often not publicly available, and lack an in-depth human inspection across diverse domains. To address these limitations, we present ImplicitAVE, the first, publicly available multimodal dataset for implicit attribute value extraction. ImplicitAVE, sourced from the MAVE dataset, is carefully curated and expanded to include implicit AVE and multimodality, resulting in a refined dataset of 68k training and 1.6k testing data across five domains. We also explore the application of multimodal large language models (MLLMs) to implicit AVE, establishing a comprehensive benchmark for MLLMs on the ImplicitAVE dataset. Six recent MLLMs with eleven variants are evaluated across diverse settings, revealing that implicit value extraction remains a challenging task for MLLMs. The contributions of this work include the development and release of ImplicitAVE, and the exploration and benchmarking of various MLLMs for implicit AVE, providing valuable insights and potential future research directions. Dataset and code are available at https://github.com/HenryPengZou/ImplicitAVE.
pdf
bib
abs
Prompt Engineering a Prompt Engineer
Qinyuan Ye
|
Mohamed Ahmed
|
Reid Pryzant
|
Fereshte Khani
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models on customized tasks. It requires complex reasoning to examine the model’s errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that large language models can be meta-prompted to perform automatic prompt engineering, we argue that their potential is limited due to insufficient guidance for complex reasoning in the meta-prompt. We fill this gap by infusing into the meta-prompt three key components: detailed descriptions, context specification, and a step-by-step reasoning template. The resulting method, named PE2, showcases remarkable versatility across diverse language tasks. It finds prompts that outperform “let’s think step by step” by 6.3% on MultiArith and 3.1% on GSM8K, and outperforms competitive baselines on counterfactual tasks by 6.9%. Further, we show that PE2 can make targeted prompt edits, rectify erroneous prompts, and induce multi-step plans for complex tasks.
pdf
bib
abs
ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations
Sreyan Ghosh
|
Chandra Kiran Evuru
|
Sonal Kumar
|
Utkarsh Tyagi
|
S Sakshi
|
Sanjoy Chowdhury
|
Dinesh Manocha
Neural image classifiers can often learn to make predictions by overly relying on non-predictive features that are spuriously correlated with the class labels in the training data. This leads to poor performance in real-world atypical scenarios where such features are absent. This paper presents ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval), a simple yet effective solution for supplementing the training dataset with images without spurious features, for robust learning against spurious correlations via better generalization. ASPIRE, guided by language at various steps, can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set. Precisely, we employ LLMs to first extract foreground and background features from textual descriptions of an image, followed by advanced language-guided image editing to discover the features that are spuriously correlated with the class label. Finally, we personalize a text-to-image generation model using the edited images to generate diverse in-domain images without spurious features. ASPIRE is complementary to all prior robust training methods in literature, and we demonstrate its effectiveness across 4 datasets and 9 baselines and show that ASPIRE improves the worst-group classification accuracy of prior methods by 1% - 38%. We also contribute a novel test set for the challenging Hard ImageNet dataset.
pdf
bib
abs
Tables as Texts or Images: Evaluating the Table Reasoning Ability of LLMs and MLLMs
Naihao Deng
|
Zhenjie Sun
|
Ruiqi He
|
Aman Sikka
|
Yulong Chen
|
Lin Ma
|
Yue Zhang
|
Rada Mihalcea
Tables contrast with unstructured text data by its structure to organize the information.In this paper, we investigate the efficiency of various LLMs in interpreting tabular data through different prompting strategies and data formats. Our analysis extends across six benchmarks for table-related tasks such as question-answering and fact-checking. We pioneer in the assessment of LLMs’ performance on image-based table representation. Specifically, we compare five text-based and three image-based table representations, revealing the influence of representation and prompting on LLM performance. We hope our study provides researchers insights into optimizing LLMs’ application in table-related tasks.
pdf
bib
abs
Biasly: An Expert-Annotated Dataset for Subtle Misogyny Detection and Mitigation
Brooklyn Sheppard
|
Anna Richter
|
Allison Cohen
|
Elizabeth Smith
|
Tamara Kneese
|
Carolyne Pelletier
|
Ioana Baldini
|
Yue Dong
Using novel approaches to dataset development, the Biasly dataset captures the nuance and subtlety of misogyny in ways that are unique within the literature. Built in collaboration with multi-disciplinary experts and annotators themselves, the dataset contains annotations of movie subtitles, capturing colloquial expressions of misogyny in North American film. The open-source dataset can be used for a range of NLP tasks, including binary and multi-label classification, severity score regression, and text generation for rewrites. In this paper, we discuss the methodology used, analyze the annotations obtained, provide baselines for each task using common NLP algorithms, and furnish error analyses to give insight into model behaviour when fine-tuned on the Biasly dataset.
pdf
bib
abs
BlendSQL: A Scalable Dialect for Unifying Hybrid Question Answering in Relational Algebra
Parker Glenn
|
Parag Dakle
|
Liang Wang
|
Preethi Raghavan
Many existing end-to-end systems for hybrid question answering tasks can often be boiled down to a “prompt-and-pray” paradigm, where the user has limited control and insight into the intermediate reasoning steps used to achieve the final result. Additionally, due to the context size limitation of many transformer-based LLMs, it is often not reasonable to expect that the full structured and unstructured context will fit into a given prompt in a zero-shot setting, let alone a few-shot setting. We introduce BlendSQL, a superset of SQLite to act as a unified dialect for orchestrating reasoning across both unstructured and structured data. For hybrid question answering tasks involving multi-hop reasoning, we encode the full decomposed reasoning roadmap into a single interpretable BlendSQL query. Notably, we show that BlendSQL can scale to massive datasets and improve the performance of end-to-end systems while using 35% fewer tokens. Our code is available and installable as a package at https://github.com/parkervg/blendsql.
pdf
bib
abs
LLM-QAT: Data-Free Quantization Aware Training for Large Language Models
Zechun Liu
|
Barlas Oguz
|
Changsheng Zhao
|
Ernie Chang
|
Pierre Stock
|
Yashar Mehdad
|
Yangyang Shi
|
Raghuraman Krishnamoorthi
|
Vikas Chandra
Several post-training quantization methods have been applied to large language models (LLMs), and have been shown to perform well down to 8-bits. We find that these methods break down at lower bit precision, and investigate quantization-aware training for LLMs (LLM-QAT) to push quantization levels even further. We propose a data-free distillation method that leverages generations produced by the pre-trained model, which better preserves the original output distribution and allows quantizing any generative model independent of its training data, similar to post-training quantization methods. In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput and supporting long sequence dependencies at current model sizes. We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits. We observe large improvements over training-free methods, especially in the low-bit settings.
pdf
bib
abs
InfiMM: Advancing Multimodal Understanding with an Open-Sourced Visual Language Model
Haogeng Liu
|
Quanzeng You
|
Yiqi Wang
|
Xiaotian Han
|
Bohan Zhai
|
Yongfei Liu
|
Wentao Chen
|
Yiren Jian
|
Yunzhe Tao
|
Jianbo Yuan
|
Ran He
|
Hongxia Yang
In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.
pdf
bib
abs
Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution
Xinze Li
|
Yixin Cao
|
Liangming Pan
|
Yubo Ma
|
Aixin Sun
Although achieving great success, Large Language Models (LLMs) usually suffer from unreliable hallucinations. Although language attribution can be a potential solution, there are no suitable benchmarks and evaluation metrics to attribute LLMs to structured knowledge. In this paper, we define a new task of Knowledge-aware Language Model Attribution (KaLMA) that improves upon three core concerns with conventional attributed LMs. First, we extend attribution source from unstructured texts to Knowledge Graph (KG), whose rich structures benefit both the attribution performance and working scenarios. Second, we propose a new “Conscious Incompetence” setting considering the incomplete knowledge repository, where the model identifies the need for supporting knowledge beyond the provided KG. Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment. To implement the above innovations, we build a dataset in biography domain BioKaLMA via evolutionary question generation strategy, to control the question complexity and necessary knowledge to the answer. For evaluation, we develop a baseline solution and demonstrate the room for improvement in LLMs’ citation generation, emphasizing the importance of incorporating the “Conscious Incompetence” setting, and the critical role of retrieval accuracy.
pdf
bib
abs
Benchmarking Cognitive Biases in Large Language Models as Evaluators
Ryan Koo
|
Minhwa Lee
|
Vipul Raheja
|
Jong Inn Park
|
Zae Myung Kim
|
Dongyeop Kang
Large Language Models (LLMs) have recently been shown to be effective as automatic evaluators with simple prompting and in-context learning. In this work, we assemble 16 LLMs encompassing four different size ranges and evaluate their output responses by preference ranking from the other LLMs as evaluators, such as System Star is better than System Square. We then evaluate the quality of ranking outputs introducing the Cognitive Bias Benchmark for LLMs as Evaluators (CoBBLer), a benchmark to measure six different cognitive biases in LLM evaluation outputs, such as the Egocentric bias where a model prefers to rank its own outputs highly in evaluation. We find that LLMs are biased text quality evaluators, exhibiting strong indications on our bias benchmark (40% of comparisons made by all models) within each of their evaluations that question their robustness as evaluators. Furthermore, we examine the correlation between human and machine preferences and calculate the average Rank-Biased Overlap (RBO) score to be 44%, indicating that machine preferences are misaligned with humans. According to our findings, LLMs may still be unable to be utilized for automatic annotation aligned with human preferences.
pdf
bib
abs
X-Instruction: Aligning Language Model in Low-resource Languages with Self-curated Cross-lingual Instructions
Chong Li
|
Wen Yang
|
Jiajun Zhang
|
Jinliang Lu
|
Shaonan Wang
|
Chengqing Zong
Large language models respond well in high-resource languages like English but struggle in low-resource languages. It may arise from the lack of high-quality instruction following data in these languages. Directly translating English samples into these languages can be a solution but unreliable, leading to responses with translation errors and lacking language-specific or cultural knowledge. To address this issue, we propose a novel method to construct cross-lingual instruction following samples with instruction in English and response in low-resource languages. Specifically, the language model first learns to generate appropriate English instructions according to the natural web texts in other languages as responses. The candidate cross-lingual instruction tuning samples are further refined and diversified. We have employed this method to build a large-scale cross-lingual instruction tuning dataset on 10 languages, namely X-Instruction. The instruction data built using our method incorporate more language-specific knowledge compared with the naive translation method. Experimental results have shown that the response quality of the model tuned on X-Instruction greatly exceeds the model distilled from a powerful teacher model, reaching or even surpassing the ones of ChatGPT. In addition, we find that models tuned on cross-lingual instruction following samples can follow the instruction in the output language without further tuning.
pdf
bib
abs
Muffin: Mitigating Unhelpfulness in Emotional Support Conversations with Multifaceted AI Feedback
Jiashuo Wang
|
Chunpu Xu
|
Chak Tou Leong
|
Wenjie Li
|
Jing Li
Emotional support conversation systems are designed to alleviate users’ emotional distress and assist them in overcoming their challenges. While previous studies have made progress, their models occasionally generate unhelpful responses, which are intended to be supportive but instead have counterproductive effects. Since unhelpful responses can hinder the effectiveness of emotional support, it is crucial to mitigate them within conversations. Our solution is motivated by two principal considerations: (1) multiple facets of emotional support are expected to be considered when developing emotional support conversation models, and (2) directly reducing the probability of generating unhelpful responses can effectively mitigate their occurrence. Accordingly, we introduce a novel model-agnostic framework named ̲Mitigating ̲unhelpfulness with multifaceted AI ̲feedback for emot ̲io ̲nal support (Muffin). It first employs a multifaceted AI feedback module designed to assess the helpfulness model responses across various facets of emotional support. Leveraging contrastive learning, Muffin then reduces the unhelpful responses’ likelihoods. To validate the effectiveness of our proposed framework, we apply Muffin to various previous emotional support generation models, including the state-of-the-art. Experimental results demonstrate that Muffin can significantly mitigate unhelpful response generation while enhancing response fluency and relevance.
pdf
bib
abs
Resonance RoPE: Improving Context Length Generalization of Large Language Models
Suyuchen Wang
|
Ivan Kobyzev
|
Peng Lu
|
Mehdi Rezagholizadeh
|
Bang Liu
This paper addresses the challenge of train-short-test-long (TSTL) scenarios in Large Language Models (LLMs) equipped with Rotary Position Embedding (RoPE), where models pre-trained on shorter sequences face difficulty with out-of-distribution (OOD) token positions in longer sequences. We introduce Resonance RoPE, a novel approach designed to narrow the generalization gap in TSTL scenarios by refining the interpolation of RoPE features for OOD positions, significantly improving the model performance without additional online computational costs. Furthermore, we present PosGen, a new synthetic benchmark specifically designed for fine-grained behavior analysis in TSTL scenarios, aiming to isolate the constantly increasing difficulty of token generation on long contexts from the challenges of recognizing new token positions. Our experiments on synthetic tasks show that after applying Resonance RoPE, Transformers recognize OOD position better and more robustly. Our extensive LLM experiments also show superior performance after applying Resonance RoPE to the current state-of-the-art RoPE scaling method, YaRN, on both upstream language modeling tasks and a variety of downstream long-text applications.
pdf
bib
abs
MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning
Xiangru Tang
|
Anni Zou
|
Zhuosheng Zhang
|
Ziming Li
|
Yilun Zhao
|
Xingyao Zhang
|
Arman Cohan
|
Mark Gerstein
Large language models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and reasoning over specialized knowledge. To address these issues, we propose MedAgents, a novel multi-disciplinary collaboration framework for the medical domain. MedAgents leverages LLM-based agents in a role-playing setting that participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work focuses on the zero-shot setting, which is applicable in real-world scenarios. Experimental results on nine datasets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MedAgents framework excels at mining and harnessing the medical expertise within LLMs, as well as extending its reasoning abilities. Our code can be found at https://github.com/gersteinlab/MedAgents.
pdf
bib
abs
Meta-Reasoning: Semantics-Symbol Deconstruction for Large Language Models
Yiming Wang
|
Zhuosheng Zhang
|
Pei Zhang
|
Baosong Yang
|
Rui Wang
Neural-symbolic methods have demonstrated efficiency in enhancing the reasoning abilities of large language models (LLMs). However, existing methods mainly rely on syntactically mapping natural languages to complete formal languages like Python and SQL. Those methods require that reasoning tasks be convertible into programs, which cater to the computer execution mindset and deviate from human reasoning habits. To broaden symbolic methods’ applicability and adaptability in the real world, we propose Meta-Reasoning from a linguistic perspective. This method empowers LLMs to deconstruct reasoning-independent semantic information into generic symbolic representations, thereby efficiently capturing more generalized reasoning knowledge. We conduct extensive experiments on more than ten datasets encompassing conventional reasoning tasks like arithmetic, symbolic, and logical reasoning, and the more complex interactive reasoning tasks like theory-of-mind reasoning. Experimental results demonstrate that Meta-Reasoning significantly enhances in-context reasoning accuracy, learning efficiency, out-of-domain generalization, and output stability compared to the Chain-of-Thought technique.
pdf
bib
abs
DPDLLM: A Black-box Framework for Detecting Pre-training Data from Large Language Models
Baohang Zhou
|
Zezhong Wang
|
Lingzhi Wang
|
Hongru Wang
|
Ying Zhang
|
Kehui Song
|
Xuhui Sui
|
Kam-Fai Wong
The success of large language models (LLM) benefits from large-scale model parameters and large amounts of pre-training data. However, the textual data for training LLM can not be confirmed to be legal because they are crawled from different web sites. For example, there are copyrighted articles, personal reviews and information in the pre-training data for LLM which are illegal. To address the above issue and develop legal LLM, we propose to detect the pre-training data from LLM in a pure black-box way because the existing LLM services only return the generated text. The previous most related works are the membership inference attack (MIA) on machine learning models to detect the training data from them. But the existing methods are based on analyzing the output probabilities of models which are unrealistic to LLM services. To tackle the problem, we firstly construct the benchmark datasets by collecting textual data from different domains as the seen and unseen pre-training data for LLMs. Then, we investigate a black-box framework named DPDLLM, with the only access to the generated texts from LLM for detecting textual data whether was used to train it. In the proposed framework, we exploit GPT-2 as the reference model to fit the textual data and feed the generated text from LLM into it to acquire sequence probabilities as the significant feature for detection. The experimental results on the benchmark datasets demonstrate that DPDLLM is effective on different popular LLMs and outperforms the existing methods.
pdf
bib
abs
PACIT: Unlocking the Power of Examples for Better In-Context Instruction Tuning
Tianci Xue
|
Ziqi Wang
|
Yixia Li
|
Yun Chen
|
Guanhua Chen
Instruction tuning enhances the instruction following ability of large language models by finetuning with supervised instruction data. Previous work proposes in-context instruction tuning (ICIT) where specific positive or negative examples are incorporated into the prompt for better performance. In this work, we propose PACIT, a simple and effective in-context instruction tuning method, inspired by the pedagogical concept of desirable difficulty. The PACIT method unlocks the power of examples by encouraging the model to actively learn to grasp the distinctions between the positive and negative examples instead of merely reading. The model is expected to first verify the correctness of the provided example according to the task description, which is then set as the condition for generating a better response to the task instance. Our extensive experiments prove the effectiveness of PACIT, outperforming ICIT baseline on both in-domain and out-domain tasks up to 9.16 and 3.14 average ROUGE-L scores, respectively. Moreover, PACIT can notably enhance the performance of instruction tuning even when all positive and negative examples are generated with a self-instruct method.
pdf
bib
abs
Listen Again and Choose the Right Answer: A New Paradigm for Automatic Speech Recognition with Large Language Models
Yuchen Hu
|
Chen Chen
|
Chengwei Qin
|
Qiushi Zhu
|
EngSiong Chng
|
Ruizhe Li
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which aims to predict the ground-truth transcription from the decoded N-best hypotheses. Thanks to the strong language generation ability of LLMs and rich information in the N-best list, GER shows great effectiveness in enhancing ASR results. However, it still suffers from two limitations: 1) LLMs are unaware of the source speech during GER, which may lead to results that are grammatically correct but violate the source speech content, 2) N-best hypotheses usually only vary in a few tokens, making it redundant to send all of them for GER, which could confuse LLM about which tokens to focus on and thus lead to increased miscorrection. In this paper, we propose ClozeGER, a new paradigm for ASR generative error correction. First, we introduce a multimodal LLM (i.e., SpeechGPT) to receive source speech as extra input to improve the fidelity of correction output. Then, we reformat GER as a cloze test with logits calibration to remove the input information redundancy and simplify GER with clear instructions. Experiments show that ClozeGER achieves a new breakthrough over vanilla GER on 9 popular ASR datasets.
pdf
bib
abs
Towards Better Graph-based Cross-document Relation Extraction via Non-bridge Entity Enhancement and Prediction Debiasing
Hao Yue
|
Shaopeng Lai
|
Chengyi Yang
|
Liang Zhang
|
Junfeng Yao
|
Jinsong Su
Cross-document Relation Extraction aims to predict the relation between target entities located in different documents. In this regard, the dominant models commonly retain useful information for relation prediction via bridge entities, which allows the model to elaborately capture the intrinsic interdependence between target entities. However, these studies ignore the non-bridge entities, each of which co-occurs with only one target entity and offers the semantic association between target entities for relation prediction. Besides, the commonly-used dataset–CodRED contains substantial NA instances, leading to the prediction bias during inference. To address these issues, in this paper, we propose a novel graph-based cross-document RE model with non-bridge entity enhancement and prediction debiasing. Specifically, we use a unified entity graph to integrate numerous non-bridge entities with target entities and bridge entities, modeling various associations between them, and then use a graph recurrent network to encode this graph. Finally, we introduce a novel debiasing strategy to calibrate the original prediction distribution. Experimental results on the closed and open settings show that our model significantly outperforms all baselines, including the GPT-3.5-turbo and InstructUIE, achieving state-of-the-art performance. Particularly, our model obtains 66.23% and 55.87% AUC points in the official leaderboard under the two settings, respectively,ranking the first place in all submissions since December 2023. Our code is available at https://github.com/DeepLearnXMU/CoRE-NEPD.
pdf
bib
abs
Large Language Models can Share Images, Too!
Young-Jun Lee
|
Dokyong Lee
|
Joo Won Sung
|
Jonghwan Hyeon
|
Ho-Jin Choi
This paper explores the image-sharing capability of Large Language Models (LLMs), such as GPT-4 and LLaMA 2, in a zero-shot setting. To facilitate a comprehensive evaluation of LLMs, we introduce the photochatplus dataset, which includes enriched annotations (ie intent, triggering sentence, image description, and salient information). Furthermore, we present the gradient-free and extensible Decide, Describe, and Retrieve () framework. With extensive experiments, we unlock the image-sharing capability of equipped with LLMs in zero-shot prompting, with ChatGPT achieving the best performance.Our findings also reveal the emergent image-sharing ability in LLMs under zero-shot conditions, validating the effectiveness of . We use this framework to demonstrate its practicality and effectiveness in two real-world scenarios: (1) human-bot interaction and (2) dataset augmentation. To the best of our knowledge, this is the first study to assess the image-sharing ability of various LLMs in a zero-shot setting. We make our source code and dataset publicly available at https://github.com/passing2961/DribeR.
pdf
bib
abs
CodeM: Less Data Yields More Versatility via Ability Matrix
Daoguang Zan
|
Ailun Yu
|
Wei Liu
|
Bo Shen
|
Shaoxin Lin
|
Yongshun Gong
|
Yafen Yao
|
Yan Liu
|
Bei Guan
|
Weihua Luo
|
Yongji Wang
|
Qianxiang Wang
|
Lizhen Cui
In the era of code large language models (code LLMs), data engineering plays a pivotal role during the instruction fine-tuning phase. To train a versatile model, previous efforts devote tremendous efforts into crafting instruction data covering all the downstream scenarios. Nonetheless, this will incur significant expenses in constructing data and training model. Therefore, this paper introduces CodeM, a novel data construction strategy, which can efficiently train a versatile model using less data via our newly proposed ability matrix. CodeM uses ability matrix to decouple code LLMs’ abilities into two dimensions, constructing a lightweight training corpus that only covers a subset of target scenarios. Extensive experiments on HumanEvalPack and MultiPL-E imply that code LLMs can combine the single-dimensional abilities to master composed abilities, validating the effectiveness of CodeM.
pdf
bib
abs
Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning
Kung-Hsiang Huang
|
Mingyang Zhou
|
Hou Pong Chan
|
Yi Fung
|
Zhenhailong Wang
|
Lingyu Zhang
|
Shih-Fu Chang
|
Heng Ji
Advances in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual contents. These powerful models are known for producing texts that are factually inconsistent with the visual input. While some efforts mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured visuals, such as charts, has not received as much scrutiny. This work introduces a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns in captions generated by various models, ultimately forming the foundation of a dataset, CHOCOLATE. Our analysis reveals that even advanced models like GPT-4V frequently produce captions laced with factual inaccuracies. To combat this, we establish the task of Chart Caption Factual Error Correction and introduce CHARTVE, a visual entailment model that outperforms current LVLMs in evaluating caption factuality. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation metric, and demonstrating an effective approach to ensuring the factuality of generated chart captions. The code and data as well as the continuously updated benchmark can be found at: https://khuangaf.github.io/CHOCOLATE/.
pdf
bib
abs
BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence
Jiajie Jin
|
Yutao Zhu
|
Yujia Zhou
|
Zhicheng Dou
Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy.However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM’s answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM’s information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs’ answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.
pdf
bib
abs
Beyond Literal Descriptions: Understanding and Locating Open-World Objects Aligned with Human Intentions
Wenxuan Wang
|
Yisi Zhang
|
Xingjian He
|
Yichen Yan
|
Zijia Zhao
|
Xinlong Wang
|
Jing Liu
Visual grounding (VG) aims at locating the foreground entities that match the given natural language expression. Previous datasets and methods for classic VG task mainly rely on the prior assumption that the given expression must literally refer to the target object, which greatly impedes the practical deployment of agents in real-world scenarios. Since users usually prefer to provide the intention-based expressions for the desired object instead of covering all the details, it is necessary for the agents to interpret the intention-driven instructions. Thus, in this work, we take a step further to the intention-driven visual-language (V-L) understanding. To promote classic VG towards human intention interpretation, we propose a new intention-driven visual grounding (IVG) task and build a largest-scale IVG dataset named IntentionVG with free-form intention expressions. Considering that practical agents need to move and find specific targets among various scenarios to realize the grounding task, our IVG task and IntentionVG dataset have taken the crucial properties of both multi-scenario perception and egocentric view into consideration. Besides, various types of models are set up as the baselines to realize our IVG task. Extensive experiments on our IntentionVG dataset and baselines demonstrate the necessity and efficacy of our method for the V-L field. To foster future research in this direction, our newly built dataset and baselines will be publicly available at https://github.com/Rubics-Xuan/IVG.
pdf
bib
abs
Incremental Sequence Labeling: A Tale of Two Shifts
Shengjie Qiu
|
Junhao Zheng
|
Zhen Liu
|
Yicheng Luo
|
Qianli Ma
The incremental sequence labeling task involves continuously learning new classes over time while retaining knowledge of the previous ones. Our investigation identifies two significant semantic shifts: E2O (where the model mislabels an old entity as a non-entity) and O2E (where the model labels a non-entity or old entity as a new entity). Previous research has predominantly focused on addressing the E2O problem, neglecting the O2E issue. This negligence results in a model bias towards classifying new data samples as belonging to the new class during the learning process. To address these challenges, we propose a novel framework, Incremental Sequential Labeling without Semantic Shifts (IS3). Motivated by the identified semantic shifts (E2O and O2E), IS3 aims to mitigate catastrophic forgetting in models. As for the E2O problem, we use knowledge distillation to maintain the model’s discriminative ability for old entities. Simultaneously, to tackle the O2E problem, we alleviate the model’s bias towards new entities through debiased loss and optimization levels.Our experimental evaluation, conducted on three datasets with various incremental settings, demonstrates the superior performance of IS3 compared to the previous state-of-the-art method by a significant margin.
pdf
bib
abs
How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering
Jinxin Liu
|
Shulin Cao
|
Jiaxin Shi
|
Tingjian Zhang
|
Lunyiu Nie
|
Linmei Hu
|
Lei Hou
|
Juanzi Li
Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases. A typical approach to KBQA is semantic parsing, which translates a question into an executable logical form in a formal language. Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance. However, although it is validated that LLMs are capable of solving some KBQA problems, there has been little discussion on the differences in LLMs’ proficiency in formal languages used in semantic parsing. In this work, we propose to evaluate the understanding and generation ability of LLMs to deal with differently structured logical forms by examining the inter-conversion of natural and formal language through in-context learning of LLMs. Extensive experiments with models of different sizes show that state-of-the-art LLMs can understand formal languages as well as humans, but generating correct logical forms given a few examples remains a challenge. Most importantly, our results also indicate that LLMs exhibit considerable sensitivity. In general, the formal language with a lower formalization level, i.e., the more similar it is to natural language, is more friendly to LLMs. Code and data can be found at https://github.com/Matthewlliu/structure_probe.
pdf
bib
abs
MELOV: Multimodal Entity Linking with Optimized Visual Features in Latent Space
Xuhui Sui
|
Ying Zhang
|
Yu Zhao
|
Kehui Song
|
Baohang Zhou
|
Xiaojie Yuan
Multimodal entity linking (MEL), which aligns ambiguous mentions within multimodal contexts to referent entities from multimodal knowledge bases, is essential for many natural language processing applications. Previous MEL methods mainly focus on exploring complex multimodal interaction mechanisms to better capture coherence evidence between mentions and entities by mining complementary information. However, in real-world social media scenarios, vision modality often exhibits low quality, low value, or low relevance to the mention. Integrating such information directly will backfire, leading to a weakened consistency between mentions and their corresponding entities. In this paper, we propose a novel latent space vision feature optimization framework MELOV, which combines inter-modality and intra-modality optimizations to address these challenges. For the inter-modality optimization, we exploit the variational autoencoder to mine shared information and generate text-based visual features. For the intra-modality optimization, we consider the relationships between mentions and build graph convolutional network to aggregate the visual features of semantic similar neighbors. Extensive experiments on three benchmark datasets demonstrate the superiority of our proposed framework.
pdf
bib
abs
Unsupervised Distractor Generation via Large Language Model Distilling and Counterfactual Contrastive Decoding
Fanyi Qu
|
Hao Sun
|
Yunfang Wu
Within the context of reading comprehension, the task of Distractor Generation (DG) aims to generate several incorrect options to confuse readers. In recent years, the emergence of Large Language Models (LLMs) provides a potential for unsupervised DG without expensive human-annotated distractor labels. In this paper, we leverage LLMs as a cost-effective annotator to enhance the DG capability of smaller student models. To perform knowledge distilling, we propose a dual task training framework that integrates pseudo distractors from LLMs and answer information as the objective target with a two-stage training process. Moreover, we devise a counterfactual contrastive decoding mechanism for increasing the distracting capability of the DG model. Experiments show that our unsupervised generation method with Bart-base greatly surpasses GPT-3.5-turbo zero-shot performance with only 200× fewer model parameters. Our proposed unsupervised DG method offers a cost-effective framework for practical reading comprehension applications, without the need of laborious distractor annotation and costly large-size models.
pdf
bib
abs
Conversational Question Answering with Language Models Generated Reformulations over Knowledge Graph
Lihui Liu
|
Blaine Hill
|
Boxin Du
|
Fei Wang
|
Hanghang Tong
Conversational question answering (ConvQA) over knowledge graphs (KGs) involves answering multi-turn natural language questions about information contained in a KG. State-of-the-art methods of ConvQA often struggle with inexplicit question-answer pairs. These inputs are easy for human beings to understand given a conversation history, but hard for a machine to interpret, which can degrade ConvQA performance. To address this problem, we propose a reinforcement learning (RL) based model, CoRnNet, which utilizes question reformulations generated by large language models (LLMs) to improve ConvQA performance. CoRnNet adopts a teacher-student architecture where a teacher model learns question representations using human writing reformulations, and a student model to mimic the teacher model’s output via reformulations generated by LLMs. The learned question representation is then used by a RL model to locate the correct answer in a KG. Extensive experimental results show that CoRnNet outperforms state-of-the-art ConvQA models.
pdf
bib
abs
Debug like a Human: A Large Language Model Debugger via Verifying Runtime Execution Step by Step
Li Zhong
|
Zilong Wang
|
Jingbo Shang
Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.
pdf
bib
abs
Effective In-Context Example Selection through Data Compression
ZhongXiang Sun
|
Kepu Zhang
|
Haoyu Wang
|
Xiao Zhang
|
Jun Xu
In-context learning has been extensively validated in large language models. However, the mechanism and selection strategy for in-context example selection, which is a crucial ingredient in this approach, lacks systematic and in-depth research. In this paper, we propose a data compression approach to the selection of in-context examples. We introduce a two-stage method that can effectively choose relevant examples and retain sufficient information about the training dataset within the in-context examples. Our method shows a significant improvement of an average of 5.90% across five different real-world datasets using four language models.
pdf
bib
abs
Are U a Joke Master? Pun Generation via Multi-Stage Curriculum Learning towards a Humor LLM
Yang Chen
|
Chong Yang
|
Tu Hu
|
Xinhao Chen
|
Man Lan
|
Li Cai
|
Xinlin Zhuang
|
Xuan Lin
|
Xin Lu
|
Aimin Zhou
Although large language models (LLMs) acquire extensive world knowledge and some reasoning abilities, their proficiency in generating humorous sentences remains a challenge. Previous research has demonstrated that the humor generation capabilities of ChatGPT are confined to producing merely 25 unique jokes. In this work, we concentrate on endowing LLMs with the ability of generating puns, a particular category of humor by preference learning method. We propose a multi-stage curriculum preference learning framework to optimize both pun structure preferences and humor preferences. Specifically, we improve the Direct Preference Optimization (DPO) algorithm to address the challenge of multi-objective alignment problem. Besides, to facilitate further advancement in this field, we collect a Chinese Pun (ChinesePun) dataset, containing 2.1k puns and corresponding annotations. Experimental results on both Chinese and English benchmark datasets demonstrate that our method significantly outperforms all the baseline models.
pdf
bib
abs
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Yichi Zhang
|
Zhuo Chen
|
Yin Fang
|
Yanxi Lu
|
Li Fangming
|
Wen Zhang
|
Huajun Chen
Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model’s preference to be harmoniously aligned with humans’. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.
pdf
bib
abs
MARIO: MAth Reasoning with code Interpreter Output - A Reproducible Pipeline
Minpeng Liao
|
Chengxi Li
|
Wei Luo
|
Wu Jing
|
Kai Fan
Large language models (LLMs) have significantly improved in understanding natural language but still lack in mathematical reasoning, a hurdle on the path to true artificial general intelligence. The training of large language models, based on next-token prediction, struggles to capture the precise nature of mathematical reasoning, presenting both practical and theoretical challenges. In this paper, we address this challenge by enriching the data landscape and introducing a reasonable data format, enhanced the text analysis of the LLM with a capability to utilize a Python code interpreter. This dataset is derived from GSM8K and MATH and has been further refined through a combination of GPT annotations, human review, and self-training processes. Additionally, we propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs, which has led to a significant improvement in the performance of a 7B-parameter LLM on the GSM8K and MATH datasets. A solution generator and a value estimator are fine-tuned simultaneously in a multi-task fashion, while an outlier-free value model-based inference method is proposed to further boost the performance. We are committed to advancing the field of mathematical reasoning in LLMs and, to that end, we will make the source code and checkpoints publicly available.
pdf
bib
abs
DiffusPoll: Conditional Text Diffusion Model for Poll Generation
Le Cheng
|
Shuangyin Li
Online social media platforms often gather user feedback through polls to enhance user engagement. Automatically generating polls from social media and its context can decrease the labor expenses of media workers and enhance workplace productivity. However, on social media platforms, there are internet water armies that manipulate public opinion through sheer numbers and causing the comments to be biased, drowning out minority views. In such circumstances, polls created based on biased comments often have limited types of options and poor coverage. Therefore, it is crucial to diversify the poll options and try to listen to the voices of the minority. To achieve this, we introduce DiffusPoll, a novel paradigm for poll generation based on a non-autoregressive diffusion model that can generate diversified and high-quality samples. Under the new paradigm, we design a task-specific mask strategy tailored to the inherent logic of polls to optimize controlled generation. Furthermore, we also leverage additional attribute tags from comments to enhance the generation quality. Experimental results indicate that DiffusPoll has achieved state-of-the-art performance in both the quality and diversity of poll generation tasks, and is more likely to hit the voices of minority.
pdf
bib
abs
Exploring Mathematical Extrapolation of Large Language Models with Synthetic Data
Haolong Li
|
Yu Ma
|
Yinqi Zhang
|
Chen Ye
|
Jie Chen
While large language models (LLMs) have shown excellent capabilities in language understanding, text generation and many other tasks, they still struggle in complex multi-step reasoning problems such as mathematical reasoning. In this paper, through a newly proposed arithmetical puzzle problem, we show that the model can perform well on multi-step reasoning tasks via fine tuning on high-quality synthetic data. Experiments with the open-llama-3B model on three different test datasets show that not only the model can reach a zero-shot pass@1 at 0.44 on the in-domain dataset, it also demonstrates certain generalization capabilities on the out-of-domain datasets. Specifically, this paper has designed two out-of-domain datasets in the form of extending the numerical range and the composing components of the arithmetical puzzle problem separately. The fine-tuned model have shown encouraging performance on these two far more difficult tasks with the zero-shot pass@1 at 0.33 and 0.35 correspondingly.
pdf
bib
abs
Implanting LLM’s Knowledge via Reading Comprehension Tree for Toxicity Detection
Hankun Kang
|
Tieyun Qian
Toxicity detection plays a crucial role in maintaining the peace of the society. Existing methods can be roughly categorized as small language model (SLM) based and large language model (LLM) based. However, due to the limitation of SLMs on general knowledge and the potential embedded bias in LLMs despite their large amount of knowledge, it is not a good idea to detect toxicity only with either SLM or LLM based method.In this work, we propose to implant LLM’s knowledge into SLM based methods such that we can stick to both types of models’ strengths. To this end, we develop a reading comprehension (RC) tree to transfer knowledge between two models. Specifically, we first construct the RC tree, from an extensive to intensive reading perspective, to capture the local and global information in the text. We then model samples encoded by SLM and knowledge extracted from LLM as two distributions using the constructed RT tree. We finally transfer knowledge via optimal transportation between two distributions. Extensive experiments prove the effectiveness of our method on real-world and machine-generated datasets.
pdf
bib
abs
LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
Zhuoshi Pan
|
Qianhui Wu
|
Huiqiang Jiang
|
Menglin Xia
|
Xufang Luo
|
Jue Zhang
|
Qingwei Lin
|
Victor Rühle
|
Yuqing Yang
|
Chin-Yew Lin
|
H. Vicky Zhao
|
Lili Qiu
|
Dongmei Zhang
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective.To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.
pdf
bib
abs
EconNLI: Evaluating Large Language Models on Economics Reasoning
Yue Guo
|
Yi Yang
Large Language Models (LLMs) are widely used for writing economic analysis reports or providing financial advice, but their ability to understand economic knowledge and reason about potential results of specific economic events lacks systematic evaluation. To address this gap, we propose a new dataset, natural language inference on economic events (EconNLI), to evaluate LLMs’ knowledge and reasoning abilities in the economic domain. We evaluate LLMs on (1) their ability to correctly classify whether a premise event will cause a hypothesis event and (2) their ability to generate reasonable events resulting from a given premise. Our experiments reveal that LLMs are not sophisticated in economic reasoning and may generate wrong or hallucinated answers. Our study raises awareness of the limitations of using LLMs for critical decision-making involving economic reasoning and analysis. The dataset and codes are available at
https://github.com/Irenehere/EconNLI.
pdf
bib
abs
Better Late Than Never: Model-Agnostic Hallucination Post-Processing Framework Towards Clinical Text Summarization
Songda Li
|
Yunqi Zhang
|
Chunyuan Deng
|
Yake Niu
|
Hui Zhao
Clinical text summarization has proven successful in generating concise and coherent summaries. However, these summaries may include unintended text with hallucinations, which can mislead clinicians and patients. Existing methods for mitigating hallucinations can be categorized into task-specific and task-agnostic approaches. Task-specific methods lack versatility for real-world applicability. Meanwhile, task-agnostic methods are not model-agnostic, so they require retraining for different models, resulting in considerable computational costs. To address these challenges, we propose MEDAL, a model-agnostic framework designed to post-process medical hallucinations. MEDAL can seamlessly integrate with any medical summarization model, requiring no additional computational overhead. MEDAL comprises a medical infilling model and a hallucination correction model. The infilling model generates non-factual summaries with common errors to train the correction model. The correction model is incorporated with a self-examination mechanism to activate its cognitive capability. We conduct comprehensive experiments using 11 widely accepted metrics on 7 baseline models across 3 medical text summarization tasks. MEDAL demonstrates superior performance in correcting hallucinations when applied to summaries generated by pre-trained language models and large language models.
pdf
bib
abs
Finding and Editing Multi-Modal Neurons in Pre-Trained Transformers
Haowen Pan
|
Yixin Cao
|
Xiaozhi Wang
|
Xun Yang
|
Meng Wang
Understanding the internal mechanisms by which multi-modal large language models (LLMs) interpret different modalities and integrate cross-modal representations is becoming increasingly critical for continuous improvements in both academia and industry. In this paper, we propose a novel method to identify key neurons for interpretability — how multi-modal LLMs bridge visual and textual concepts for captioning. Our method improves conventional works upon efficiency and applied range by removing needs of costly gradient computation. Based on those identified neurons, we further design a multi-modal knowledge editing method, beneficial to mitigate sensitive words or hallucination. For rationale of our design, we provide theoretical assumption. For empirical evaluation, we have conducted extensive quantitative and qualitative experiments. The results not only validate the effectiveness of our methods, but also offer insightful findings that highlight three key properties of multi-modal neurons: sensitivity, specificity and causal-effect, to shed light for future research.
pdf
bib
abs
Realistic Evaluation of Toxicity in Large Language Models
Tinh Luong
|
Thanh-Thien Le
|
Linh Ngo
|
Thien Nguyen
Large language models (LLMs) have become integral to our professional workflows and daily lives. Nevertheless, these machine companions of ours have a critical flaw: the huge amount of data which endows them with vast and diverse knowledge, also exposes them to the inevitable toxicity and bias. While most LLMs incorporate defense mechanisms to prevent the generation of harmful content, these safeguards can be easily bypassed with minimal prompt engineering. In this paper, we introduce the new Thoroughly Engineered Toxicity (TET) dataset, comprising manually crafted prompts designed to nullify the protective layers of such models. Through extensive evaluations, we demonstrate the pivotal role of TET in providing a rigorous benchmark for evaluation of toxicity awareness in several popular LLMs: it highlights the toxicity in the LLMs that might remain hidden when using normal prompts, thus revealing subtler issues in their behavior.
pdf
bib
abs
Controllable Text Generation with Residual Memory Transformer
Hanqing Zhang
|
Si Sun
|
Haiming Wu
|
Dawei Song
Large-scale Causal Language Models (CLMs), e.g., GPT3 and ChatGPT, have brought great success in text generation. However, it is still an open challenge to effectively control the generation process of a CLM while balancing the flexibility, control granularity, and generation efficiency. In this paper, we provide a new alternative for controllable text generation (CTG), by designing a non-intrusive, lightweight control plugin, namely Residual Memory Transformer (RMT), to accompany the generation of CLM at arbitrary time steps. With an encoder-decoder setup, RMT can accept any types of control conditions and cooperate with the base CLM through a residual learning paradigm, to achieve a more flexible, general, and efficient CTG. Extensive experiments are carried out on various control tasks, in the form of both automatic and human evaluations. The results demonstrate the superiority of RMT over a wide range of state-of-the-art CTG approaches. The code implementation of our work is available at: https://github.com/Residual_Memory_Transformer.
pdf
bib
abs
Prompt-Based Length Controlled Generation with Multiple Control Types
Renlong Jie
|
Xiaojun Meng
|
Lifeng Shang
|
Xin Jiang
|
Qun Liu
Large language models (LLMs) have attracted great attention given their strong performance on a wide range of NLP tasks. In practice, users often expect generated texts to fall within a specific length range, making length controlled generation an important topic, especially for GPT-style models. Existing length control methods mostly focus on a simple control type of “equal to” a target length. Different from them, we propose a prompt-based method to achieve length controlled generation under different control types with high accuracy. In particular, we adopt reinforcement learning (RL) and sample filtering with the reward signal given by rule-based reward models, which enhances the length control ability of models by rewarding outputs that follow certain control instructions. In addition, we introduce a standard prompt extractor to parse arbitrary users’ input into standard control instructions. Experiments show that our method significantly improves the accuracy of prompt-based length control on popular summarization datasets like CNNDM and NYT under multiple control types. Moreover, both the standard prompt extractor and RL-tuned model show strong generalization to unseen control prompt templates.
pdf
bib
abs
PCA-Bench: Evaluating Multimodal Large Language Models in Perception-Cognition-Action Chain
Liang Chen
|
Yichi Zhang
|
Shuhuai Ren
|
Haozhe Zhao
|
Zefan Cai
|
Yuchi Wang
|
Peiyi Wang
|
Xiangdi Meng
|
Tianyu Liu
|
Baobao Chang
We present PCA-Bench, a multimodal decision-making benchmark for evaluating the integrated capabilities of Multimodal Large Language Models (MLLMs). Departing from previous benchmarks focusing on simplistic tasks and individual model capability, PCA-Bench introduces three complex scenarios: autonomous driving, domestic robotics, and open-world games. Given task instructions and diverse contexts, the model is required to seamlessly integrate multiple capabilities of Perception, Cognition, and Action in a reasoning chain to make accurate decisions. Moreover, PCA-Bench features error localization capabilities, scrutinizing model inaccuracies in areas such as perception, knowledge, or reasoning. This enhances the reliability of deploying MLLMs. To balance accuracy and efficiency in evaluation, we propose PCA-Eval, an automatic evaluation protocol, and assess 10 prevalent MLLMs. The results reveal significant performance disparities between open-source models and powerful proprietary models like GPT-4 Vision. To address this, we introduce Embodied-Instruction-Evolution (EIE), an automatic framework for synthesizing instruction tuning examples in multimodal embodied environments. EIE generates 7,510 training examples in PCA-Bench and enhances the performance of open-source MLLMs, occasionally surpassing GPT-4 Vision (+3% in decision accuracy), thereby validating the effectiveness of EIE. Our findings suggest that robust MLLMs like GPT4-Vision show promise for decision-making in embodied agents, opening new avenues for MLLM research. All benchmark data and evaluation code are made public.
pdf
bib
abs
Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset
Minjin Kim
|
Minju Kim
|
Hana Kim
|
Beong-woo Kwak
|
SeongKu Kang
|
Youngjae Yu
|
Jinyoung Yeo
|
Dongha Lee
Conversational recommender systems are an emerging area that has garnered increasing interest in the community, especially with the advancements in large language models (LLMs) that enable sophisticated handling of conversational input. Despite the progress, the field still has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that PEARL contains more specific user preferences, show expertise in the target domain, and provides recommendations more relevant to the dialogue context than those in prior datasets. Furthermore, we demonstrate the utility of PEARL by showing that our downstream models outperform baselines in both human and automatic evaluations. We release our dataset and code.
pdf
bib
abs
CoLLaVO: Crayon Large Language and Vision mOdel
Byung-Kwan Lee
|
Beomchan Park
|
Chae Won Kim
|
Yong Man Ro
The remarkable success of Large Language Models (LLMs) and instruction tuning drives the evolution of Vision Language Models (VLMs) towards a versatile general-purpose model. Yet, it remains unexplored whether current VLMs genuinely possess quality object-level image understanding capabilities determined from ‘what objects are in the image?’ or ‘which object corresponds to a specified bounding box?’. Our findings reveal that the image understanding capabilities of current VLMs are strongly correlated with their zero-shot performance on vision language (VL) tasks. This suggests that prioritizing basic image understanding is crucial for VLMs to excel at VL tasks. To enhance object-level image understanding, we propose Crayon Large Language and Vision mOdel (CoLLaVO), which incorporates instruction tuning with Crayon Prompt as a new visual prompt tuning scheme based on panoptic color maps. Furthermore, we present a learning strategy of Dual QLoRA to preserve object-level image understanding without forgetting it during visual instruction tuning, thereby achieving a significant leap in numerous VL benchmarks in a zero-shot setting.
pdf
bib
abs
Modelling Variability in Human Annotator Simulation
Wen Wu
|
Wenlin Chen
|
Chao Zhang
|
Phil Woodland
Human annotator simulation (HAS) serves as a cost-effective substitute for human evaluation tasks such as data annotation and system assessment. It is important to incorporate the variability present in human evaluation into HAS, since it helps capture diverse subjective interpretations and mitigate potential biases and over-representation. This work introduces a novel framework for modelling variability in HAS. Conditional softmax flow (S-CNF) is proposed to model the distribution of subjective human annotations, which leverages diverse human annotations via meta-learning. This enables efficient generation of annotations that exhibit human variability for unlabelled input. In addition, a wide range of evaluation metrics are adopted to assess the capability and efficiency of HAS systems in predicting the aggregated behaviours of human annotators, matching the distribution of human annotations, and simulating the inter-annotator disagreements. Results demonstrate that the proposed method achieves state-of-the-art performance on two real-world human evaluation tasks: emotion recognition and toxic speech detection.
pdf
bib
abs
BEnQA: A Question Answering Benchmark for Bengali and English
Sheikh Shafayat
|
H Hasan
|
Minhajur Mahim
|
Rifki Putri
|
James Thorne
|
Alice Oh
In this study, we introduce BEnQA, a dataset comprising parallel Bengali and English exam questions for middle and high school levels in Bangladesh. Our dataset consists of approximately 5K questions covering several subjects in science with different types of questions, including factual, application, and reasoning-based questions. We benchmark several Large Language Models (LLMs) with our parallel dataset and observe a notable performance disparity between the models in Bengali and English. We also investigate some prompting methods, and find that Chain-of-Thought prompting is beneficial mostly on reasoning questions, but not so much on factual ones. We also find that appending English translation helps to answer questions in Bengali. Our findings point to promising future research directions for improving the performance of LLMs in Bengali and more generally in low-resource languages.
pdf
bib
abs
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Wanqing Cui
|
Keping Bi
|
Jiafeng Guo
|
Xueqi Cheng
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models’ commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
pdf
bib
abs
Cutting Off the Head Ends the Conflict: A Mechanism for Interpreting and Mitigating Knowledge Conflicts in Language Models
Zhuoran Jin
|
Pengfei Cao
|
Hongbang Yuan
|
Yubo Chen
|
Jiexin Xu
|
Huaijun Li
|
Xiaojian Jiang
|
Kang Liu
|
Jun Zhao
Recently, retrieval augmentation and tool augmentation have demonstrated a remarkable capability to expand the internal memory boundaries of language models (LMs) by providing external context. However, internal memory and external context inevitably clash, leading to knowledge conflicts within LMs. In this paper, we aim to interpret the mechanism of knowledge conflicts through the lens of information flow, and then mitigate conflicts by precise interventions at the pivotal point. We find there are some attention heads with opposite effects in the later layers, where memory heads can recall knowledge from internal memory, and context heads can retrieve knowledge from external context. Moreover, we reveal that the pivotal point at which knowledge conflicts emerge in LMs is the integration of inconsistent information flows by memory heads and context heads. Inspired by the insights, we propose a novel method called Pruning Head via PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters. PH3 can flexibly control eight LMs to use internal memory (↑ 44.0%) or external context (↑ 38.5%). Moreover, PH3 can also improve the performance of LMs on open-domain QA tasks. We also conduct extensive experiments to demonstrate the cross-model, cross-relation, and cross-format generalization of our method. Our code is publicly available at https://github.com/jinzhuoran/MConflict/.
pdf
bib
abs
BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning
Qizhi Pei
|
Lijun Wu
|
Kaiyuan Gao
|
Xiaozhuan Liang
|
Yin Fang
|
Jinhua Zhu
|
Shufang Xie
|
Tao Qin
|
Rui Yan
Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.
pdf
bib
abs
SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning
Zhihao Wen
|
Jie Zhang
|
Yuan Fang
Fine-tuning all parameters of large language models (LLMs) necessitates substantial computational power and extended time. Latest advancements in parameter-efficient fine-tuning (PEFT) techniques, such as Adapter tuning and LoRA, allow for adjustments to only a minor fraction of the parameters of these LLMs. Concurrently, it has been noted that the issue of over-smoothing diminishes the effectiveness of these Transformer-based LLMs, resulting in suboptimal performances in downstream tasks. In this paper, we present SIBO, which is a SImple BOoster to enhance PEFT, by injecting an initial residual. SIBO is straightforward and readily extensible to a range of state-of-the-art PEFT techniques to alleviate over-smoothing and enhance performance. Extensive experiments on 22 benchmark datasets demonstrate that SIBO significantly enhances the performance of various strong baselines, achieving up to 15.7% and 23.5% improvement over existing PEFT methods on the arithmetic and commonsense reasoning tasks, respectively.
pdf
bib
abs
GeoEval: Benchmark for Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving
Jiaxin Zhang
|
Zhong-Zhi Li
|
Ming-Liang Zhang
|
Fei Yin
|
Cheng-Lin Liu
|
Yashar Moshfeghi
Recent advancements in large language models (LLMs) and multi-modal models (MMs) have demonstrated their remarkable capabilities in problem-solving. Yet, their proficiency in tackling geometry math problems, which necessitates an integrated understanding of both textual and visual information, has not been thoroughly evaluated. To address this gap, we introduce the GeoEval benchmark, a comprehensive collection that includes a main subset of 2,000 problems, a 750 problems subset focusing on backward reasoning, an augmented sub- set of 2,000 problems, and a hard subset of 300 problems. This benchmark facilitates a deeper investigation into the performance of LLMs and MMs in solving geometry math problems. Our evaluation of ten LLMs and MMs across these varied subsets reveals that the WizardMath model excels, achieving a 55.67% accuracy rate on the main subset but only a 6.00% accuracy on the hard subset. This highlights the critical need for testing models against datasets on which they have not been pre-trained. Additionally, our findings indicate that GPT-series models perform more effectively on problems they have rephrased, suggesting a promising method for enhancing model capabilities.
pdf
bib
abs
Boosting Textural NER with Synthetic Image and Instructive Alignment
Jiahao Wang
|
Wenjun Ke
|
Peng Wang
|
Hang Zhang
|
Dong Nie
|
Jiajun Liu
|
Guozheng Li
|
Ziyu Shang
Named entity recognition (NER) is a pivotal task reliant on textual data, often impeding the disambiguation of entities due to the absence of context. To tackle this challenge, conventional methods often incorporate images crawled from the internet as auxiliary information. However, the images often lack sufficient entities or would introduce noise. Even with high-quality images, it is still challenging to efficiently use images as auxiliaries (i.e., fine-grained alignment with texts). We introduce a novel method named InstructNER to address these issues. Leveraging the rich real-world knowledge and image synthesis capabilities of a large pre-trained stable diffusion (SD) model, InstructNER transforms the text-only NER into a multimodal NER (MNER) task. A selection process automatically identifies the best synthetic image by comparing fine-grained similarities with internet-crawled images through a visual bag-of-words strategy. Note, during the image synthesis, a cross-attention matrix between synthetic images and raw text emerges, which inspires a soft attention guidance alignment (AGA) mechanism. AGA optimizes the MNER task and concurrently facilitates instructive alignment in MNER. Empirical experiments on prominent MNER datasets show that our method surpasses all text-only baselines, improving F1-score by 1.4% to 2.3%. Remarkably, even when compared to fully multimodal baselines, our approach maintains competitive. Furthermore, we open-source a comprehensive synthetic image dataset and the code to supplement existing raw dataset. The code and datasets are available in https://github.com/Heyest/InstructNER.
pdf
bib
abs
Neurons in Large Language Models: Dead, N-gram, Positional
Elena Voita
|
Javier Ferrando
|
Christoforos Nalmpantis
We analyze a family of large language models in such a lightweight manner that can be done on a single GPU. Specifically, we focus on the OPT family of models ranging from 125m to 66b parameters and rely only on whether an FFN neuron is activated or not. First, we find that the early part of the network is sparse and represents many discrete features. Here, many neurons (more than in some layers of the 66b model) are “dead”, i.e. they never activate on a large collection of diverse data. At the same time, many of the alive neurons are reserved for discrete features and act as token and n-gram detectors. Interestingly, their corresponding FFN updates not only promote next token candidates as could be expected, but also explicitly focus on removing the information about triggering them tokens, i.e., current input. To the best of our knowledge, this is the first example of mechanisms specialized at removing (rather than adding) information from the residual stream. With scale, models become more sparse in a sense that they have more dead neurons and token detectors. Finally, some neurons are positional: them being activated or not depends largely (or solely) on position and less so (or not at all) on textual data. We find that smaller models have sets of neurons acting as position range indicators while larger models operate in a less explicit manner.
pdf
bib
abs
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity Recognition
Jinyuan Li
|
Han Li
|
Di Sun
|
Jiahao Wang
|
Wenkun Zhang
|
Zan Wang
|
Gang Pan
Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.
pdf
bib
abs
Learning Job Title Representation from Job Description Aggregation Network
Napat Laosaengpha
|
Thanit Tativannarat
|
Chawan Piansaddhayanon
|
Attapol Rutherford
|
Ekapol Chuangsuwanich
Learning job title representation is a vital process for developing automatic human resource tools. To do so, existing methods primarily rely on learning the title representation through skills extracted from the job description, neglecting the rich and diverse content within. Thus, we propose an alternative framework for learning job titles through their respective job description (JD) and utilize a Job Description Aggregator component to handle the lengthy description and bidirectional contrastive loss to account for the bidirectional relationship between the job title and its description. We evaluated the performance of our method on both in-domain and out-of-domain settings, achieving a superior performance over the skill-based approach.
pdf
bib
abs
FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Shubhankar Singh
|
Purvi Chaurasia
|
Yerram Varun
|
Pranshu Pandya
|
Vatsal Gupta
|
Vivek Gupta
|
Dan Roth
Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark’s potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.
pdf
bib
abs
Flexible Weight Tuning and Weight Fusion Strategies for Continual Named Entity Recognition
Yahan Yu
|
Duzhen Zhang
|
Xiuyi Chen
|
Chenhui Chu
Continual Named Entity Recognition (CNER) is dedicated to sequentially learning new entity types while mitigating catastrophic forgetting of old entity types. Traditional CNER approaches commonly employ knowledge distillation to retain old knowledge within the current model. However, because only the representations of old and new models are constrained to be consistent, the reliance solely on distillation in existing methods still suffers from catastrophic forgetting. To further alleviate the forgetting issue of old entity types, this paper introduces flexible Weight Tuning (WT) and Weight Fusion (WF) strategies for CNER. The WT strategy, applied at each training step, employs a learning rate schedule on the parameters of the current model. After learning the current task, the WF strategy dynamically integrates knowledge from both the current and previous models for inference. Notably, these two strategies are model-agnostic and seamlessly integrate with existing State-Of-The-Art (SOTA) models. Extensive experiments demonstrate that the WT and WF strategies consistently enhance the performance of previous SOTA methods across ten CNER settings in three datasets.
pdf
bib
abs
Unveiling the Achilles’ Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models
Yiming Chen
|
Chen Zhang
|
Danqing Luo
|
Luis Fernando D’Haro
|
Robby Tan
|
Haizhou Li
The automatic evaluation of natural language generation (NLG) systems presents a long-lasting challenge. Recent studies have highlighted various neural metrics that align well with human evaluations. Yet, the robustness of these evaluators against adversarial perturbations remains largely under-explored due to the unique challenges in obtaining adversarial data for different NLG evaluation tasks. To address the problem, we introduce AdvEval, a novel black-box adversarial framework against NLG evaluators. AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators. Specifically, inspired by the recent success of large language models (LLMs) in text generation and evaluation, we adopt strong LLMs as both the data generator and gold evaluator. Adversarial data are automatically optimized with feedback from the gold and victim evaluator. We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation. The results show that AdvEval can lead to significant performance degradation of various victim metrics, thereby validating its efficacy.
pdf
bib
abs
Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models
Adian Liusie
|
Yassir Fathullah
|
Mark Gales
Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities and versatility in NLP tasks, however they sometimes fail to maintain crucial invariances for specific tasks. One example is permutation sensitivity, where LLMs’ outputs may significantly vary depending on the order of the input options. While debiasing techniques can mitigate these issues, and yield better performance and reliability, they often come with a high computational cost at inference. This paper addresses this inefficiency at inference time. The aim is to distill the capabilities of a computationally intensive, debiased, teacher model into a more compact student model. We explore two variants of student models: one based on pure distillation, and the other on an error-correction approach for more complex tasks, where the student corrects a single biased decision from the teacher to achieve a debiased output. Our approach is general and can be applied to both black-box and white-box LLMs. Furthermore, we demonstrate that our compact, encoder-only student models can outperform their larger, biased teacher counterparts, achieving better results with significantly fewer parameters.
pdf
bib
abs
Uncovering Limitations of Large Language Models in Information Seeking from Tables
Chaoxu Pang
|
Yixuan Cao
|
Chunhao Yang
|
Ping Luo
Tables are recognized for their high information density and widespread usage, serving as essential sources of information. Seeking information from tables (TIS) is a crucial capability for Large Language Models (LLMs), serving as the foundation of knowledge-based Q&A systems. However, this field presently suffers from an absence of thorough and reliable evaluation. This paper introduces a more reliable benchmark for Table Information Seeking (TabIS). To avoid the unreliable evaluation caused by text similarity-based metrics, TabIS adopts a single-choice question format (with two options per question) instead of a text generation format. We establish an effective pipeline for generating options, ensuring their difficulty and quality. Experiments conducted on 12 LLMs reveal that while the performance of GPT-4-turbo is marginally satisfactory, both other proprietary and open-source models perform inadequately. Further analysis shows that LLMs exhibit a poor understanding of table structures, and struggle to balance between TIS performance and robustness against pseudo-relevant tables (common in retrieval-augmented systems). These findings uncover the limitations and potential challenges of LLMs in seeking information from tables. We release our data and code to facilitate further research in this field.
pdf
bib
abs
An Ensemble-of-Experts Framework for Rehearsal-free Continual Relation Extraction
Shen Zhou
|
Yongqi Li
|
Xin Miao
|
Tieyun Qian
Continual relation extraction (CRE) aims to continuously learn relations in new tasks without forgetting old relations in previous tasks.Current CRE methods are all rehearsal-based which need to store samples and thus may encounter privacy and security issues.This paper targets rehearsal-free continual relation extraction for the first time and decomposes it into task identification and within-task prediction sub-problems. Existing rehearsal-free methods focus on training a model (expert) for within-task prediction yet neglect to enhance models’ capability of task identification.In this paper, we propose an Ensemble-of-Experts (EoE) framework for rehearsal-free continual relation extraction. Specifically, we first discriminatively train each expert by augmenting analogous relations across tasks to enhance the expert’s task identification ability. We then propose a cascade voting mechanism to form an ensemble of experts for effectively aggregating their abilities.Extensive experiments demonstrate that our method outperforms current rehearsal-free methods and is even better than rehearsal-based CRE methods.
pdf
bib
abs
Temporal Validity Change Prediction
Georg Wenzel
|
Adam Jatowt
Temporal validity is an important property of text that has many downstream applications, such as recommender systems, conversational AI, and user status tracking. Existing benchmarking tasks often require models to identify the temporal validity duration of a single statement. However, many data sources contain additional context, such as successive sentences in a story or posts on a social media profile. This context may alter the duration for which the originally collected statement is expected to be valid. We propose Temporal Validity Change Prediction, a natural language processing task benchmarking the capability of machine learning models to detect context statements that induce such change. We create a dataset consisting of temporal target statements sourced from Twitter and crowdsource corresponding context statements. We then benchmark a set of transformer-based language models on our dataset. Finally, we experiment with a multitasking approach to improve the state-of-the-art performance.
pdf
bib
abs
RIFF: Learning to Rephrase Inputs for Few-shot Fine-tuning of Language Models
Saeed Najafi
|
Alona Fyshe
Pre-trained Language Models (PLMs) can be accurately fine-tuned for downstream text processing tasks. Recently, researchers have introduced several parameter-efficient fine-tuning methods that optimize input prompts or adjust a small number of model parameters (e.g LoRA). In this study, we explore the impact of altering the input text of the original task in conjunction with parameter-efficient fine-tuning methods. To most effectively rewrite the input text, we train a few-shot paraphrase model with a Maximum-Marginal Likelihood objective. Using six few-shot text classification datasets, we show that enriching data with paraphrases at train and test time enhances the performance beyond what can be achieved with parameter-efficient fine-tuning alone. The code used for our experiments can be found at https://github.com/SaeedNajafi/RIFF.
pdf
bib
abs
Modelling Commonsense Commonalities with Multi-Facet Concept Embeddings
Hanane Kteich
|
Na Li
|
Usashi Chatterjee
|
Zied Bouraoui
|
Steven Schockaert
Concept embeddings offer a practical and efficient mechanism for injecting commonsense knowledge into downstream tasks. Their core purpose is often not to predict the commonsense properties of concepts themselves, but rather to identify commonalities, i.e. sets of concepts which share some property of interest. Such commonalities are the basis for inductive generalisation, hence high-quality concept embeddings can make learning easier and more robust. Unfortunately, standard embeddings primarily reflect basic taxonomic categories, making them unsuitable for finding commonalities that refer to more specific aspects (e.g. the colour of objects or the materials they are made of). In this paper, we address this limitation by explicitly modelling the different facets of interest when learning concept embeddings. We show that this leads to embeddings which capture a more diverse range of commonsense properties, and consistently improves results in downstream tasks such as ultra-fine entity typing and ontology completion.
pdf
bib
abs
Revisiting Multimodal Transformers for Tabular Data with Text Fields
Thomas Bonnier
Tabular data with text fields can be leveraged in applications such as financial risk assessment or medical diagnosis prediction. When employing multimodal approaches to make predictions based on these modalities, it is crucial to make the most appropriate modeling choices in terms of numerical feature encoding or fusion strategy. In this paper, we focus on multimodal classification tasks based on tabular datasets with text fields. We build on multimodal Transformers to propose the Tabular-Text Transformer (TTT), a tabular/text dual-stream Transformer network. This architecture includes a distance-to-quantile embedding scheme for numerical features and an overall attention module which concurrently considers self-attention and cross-modal attention. Further, we leverage the two well-informed modality streams to estimate whether a prediction is uncertain or not. To explain uncertainty in terms of feature values, we use a sampling-based approximation of Shapley values in a bimodal context, with two options for the value function. To show the efficacy and relevance of this approach, we compare it to six baselines and measure its ability to quantify and explain uncertainty against various methods. Our code is available at https://github.com/thomas-bonnier/TabularTextTransformer.
pdf
bib
abs
An Empirical Study on the Characteristics of Bias upon Context Length Variation for Bangla
Jayanta Sadhu
|
Ayan Khan
|
Abhik Bhattacharjee
|
Rifat Shahriyar
Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research.
pdf
bib
abs
ConTempo: A Unified Temporally Contrastive Framework for Temporal Relation Extraction
Jingcheng Niu
|
Saifei Liao
|
Victoria Ng
|
Simon De Montigny
|
Gerald Penn
The task of temporal relation extraction (TRE) involves identifying and extracting temporal relations between events from narratives. We identify two primary issues with TRE systems. First, by formulating TRE as a simple text classification task where every temporal relation is independent, it is hard to enhance the TRE model’s representation of meaning of temporal relations, and its facility with the underlying temporal calculus. We solve the issue by proposing a novel Temporally Contrastive learning model (ConTempo) that increase the model’s awareness of the meaning of temporal relations by leveraging their symmetric or antisymmetric properties. Second, the reusability of innovations has been limited due to incompatibilities in model architectures. Therefore, we propose a unified framework and show that ConTempo is compatible with all three main branches of TRE research. Our results demonstrate that the performance gains of ConTempo are more pronounced, with the total combination achieving state-of-the-art performance on the widely used MATRES and TBD corpora. We furthermore identified and corrected a large number of annotation errors present in the test set of MATRES, after which the performance increase brought by ConTempo becomes more apparent.
pdf
bib
abs
CHARP: Conversation History AwaReness Probing for Knowledge-grounded Dialogue Systems
Abbas Ghaddar
|
David Alfonso-Hermelo
|
Philippe Langlais
|
Mehdi Rezagholizadeh
|
Boxing Chen
|
Prasanna Parthasarathi
In this work, we dive deep into one of the popular knowledge-grounded dialogue benchmarks that focus on faithfulness, FaithDial. We show that a significant portion of the FaithDial data contains annotation artifacts, which may bias models towards completely ignoring the conversation history. We therefore introduce CHARP, a testbed, designed for evaluating supposedly non-hallucinatory models trained on the FaithDial dataset. Our extensive analysis reveals that models primarily exhibit poor performance on CHARP due to their inability to effectively attend to and reason over the conversation history. Furthermore, the evaluation methods of FaithDial fail to capture these shortcomings, neglecting the conversational history. Our findings indicate that there is substantial room for contribution in both dataset creation and hallucination evaluation for knowledge-grounded dialogue, and that CHARP can serve as a tool for monitoring the progress in this particular research area. Data, models, and source code will be publicly available upon acceptance.
pdf
bib
abs
CriticBench: Benchmarking LLMs for Critique-Correct Reasoning
Zicheng Lin
|
Zhibin Gou
|
Tian Liang
|
Ruilin Luo
|
Haowei Liu
|
Yujiu Yang
The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs’ abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.
pdf
bib
abs
DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models
Taolin Zhang
|
Qizhou Chen
|
Dongyang Li
|
Chengyu Wang
|
Xiaofeng He
|
Longtao Huang
|
Hui Xue’
|
Jun Huang
Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples.Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named DAFSet, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios.
pdf
bib
abs
Controllable Text Summarization: Unraveling Challenges, Approaches, and Prospects - A Survey
Ashok Urlana
|
Pruthwik Mishra
|
Tathagato Roy
|
Rahul Mishra
Generic text summarization approaches often fail to address the specific intent and needs of individual users. Recently, scholarly attention has turned to the development of summarization methods that are more closely tailored and controlled to align with specific objectives and user needs. Despite a growing corpus of controllable summarization research, there is no comprehensive survey available that thoroughly explores the diverse controllable attributes employed in this context, delves into the associated challenges, and investigates the existing solutions. In this survey, we formalize the Controllable Text Summarization (CTS) task, categorize controllable attributes according to their shared characteristics and objectives, and present a thorough examination of existing datasets and methods within each category. Moreover, based on our findings, we uncover limitations and research gaps, while also exploring potential solutions and future directions for CTS. We release our detailed analysis of CTS papers at https://github.com/ashokurlana/controllable_text_summarization_survey.
pdf
bib
abs
Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System
Hengguan Huang
|
Songtao Wang
|
Hongfu Liu
|
Hao Wang
|
Ye Wang
Traditional applications of natural language processing (NLP) in healthcare have predominantly focused on patient-centered services, enhancing patient interactions and care delivery, such as through medical dialogue systems. However, the potential of NLP to benefit inexperienced doctors, particularly in areas such as communicative medical coaching, remains largely unexplored. We introduce “ChatCoach”, a human-AI cooperative framework designed to assist medical learners in practicing their communication skills during patient consultations. ChatCoach differentiates itself from conventional dialogue systems by offering a simulated environment where medical learners can practice dialogues with a patient agent, while a coach agent provides immediate, structured feedback. This is facilitated by our proposed Generalized Chain-of-Thought (GCoT) approach, which fosters the generation of structured feedback and enhances the utilization of external knowledge sources. Additionally, we have developed a dataset specifically for evaluating Large Language Models (LLMs) within the ChatCoach framework on communicative medical coaching tasks. Our empirical results validate the effectiveness of ChatCoach.
pdf
bib
abs
Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation
Ruomeng Ding
|
Chaoyun Zhang
|
Lu Wang
|
Yong Xu
|
Minghua Ma
|
Wei Zhang
|
Si Qin
|
Saravan Rajmohan
|
Qingwei Lin
|
Dongmei Zhang
This paper introduce a novel thought prompting approach called ”Everything of Thoughts” (XoT) for Large Language Models (LLMs) to defy the law of ”Penrose triangle” of existing thought paradigms, to achieve three key perspectives in thought generation simultaneously: performance, efficiency, and flexibility. XoT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge and planning capability into thoughts, thereby enhancing LLMs’ decision-making capabilities. Through the MCTS-LLM collaborative thought revision framework, XoT autonomously produces high-quality comprehensive cognitive mappings with minimal LLM interactions. Additionally, XoT empowers LLMs to utilize flexible cognitive mappings for solving problems with multiple solutions.We evaluate XoT on several challenging problem-solving tasks, including Game of 24, 8-Puzzle, and Pocket Cube. Our results demonstrate that XoT significantly outperforms existing approaches in various dimensions, showcasing its remarkable proficiency in addressing complex problems across diverse domains. The data and code are available at https://github.com/microsoft/Everything-of-Thoughts-XoT.
pdf
bib
abs
SPAGHETTI: Open-Domain Question Answering from Heterogeneous Data Sources with Retrieval and Semantic Parsing
Heidi Zhang
|
Sina Semnani
|
Farhad Ghassemi
|
Jialiang Xu
|
Shicheng Liu
|
Monica Lam
We introduce SPAGHETTI: Semantic Parsing Augmented Generation for Hybrid English information from Text Tables and Infoboxes, a hybrid question-answering (QA) pipeline that utilizes information from heterogeneous knowledge sources, including knowledge base, text, tables, and infoboxes. Our LLM-augmented approach achieves state-of-the-art performance on the Compmix dataset, the most comprehensive heterogeneous open-domain QA dataset, with 56.5% exact match (EM) rate. More importantly, manual analysis on a sample of the dataset suggests that SPAGHETTI is more than 90% accurate, indicating that EM is no longer suitable for assessing the capabilities of QA systems today.
pdf
bib
abs
Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
Bosheng Ding
|
Chengwei Qin
|
Ruochen Zhao
|
Tianze Luo
|
Xinze Li
|
Guizhen Chen
|
Wenhan Xia
|
Junjie Hu
|
Anh Tuan Luu
|
Shafiq Joty
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
pdf
bib
abs
k-SemStamp: A Clustering-Based Semantic Watermark for Detection of Machine-Generated Text
Abe Hou
|
Jingyu Zhang
|
Yichen Wang
|
Daniel Khashabi
|
Tianxing He
Recent watermarked generation algorithms inject detectable signatures during language generation to facilitate post-hoc detection. While token-level watermarks are vulnerable to paraphrase attacks, SemStamp (Hou et al., 2023) applies watermark on the semantic representation of sentences and demonstrates promising robustness. SemStamp employs locality-sensitive hashing (LSH) to partition the semantic space with arbitrary hyperplanes, which results in a suboptimal tradeoff between robustness and speed. We propose k-SemStamp, a simple yet effective enhancement of SemStamp, utilizing k-means clustering as an alternative of LSH to partition the embedding space with awareness of inherent semantic structure. Experimental results indicate that k-SemStamp saliently improves its robustness and sampling efficiency while preserving the generation quality, advancing a more effective tool for machine-generated text detection.
pdf
bib
abs
ColorSwap: A Color and Word Order Dataset for Multimodal Evaluation
Jirayu Burapacheep
|
Ishan Gaur
|
Agam Bhatia
|
Tristan Thrush
This paper introduces the ColorSwap dataset, designed to assess and improve the proficiency of multimodal models in matching objects with their colors. The dataset is comprised of 2,000 unique image-caption pairs, grouped into 1,000 examples. Each example includes a caption-image pair, along with a “color-swapped” pair. We follow the Winoground schema: the two captions in an example have the same words, but the color words have been rearranged to modify different objects. The dataset was created through a novel blend of automated caption and image generation with humans in the loop. We evaluate image-text matching (ITM) and visual language models (VLMs) and find that even the latest ones are still not robust at this task. GPT-4V and LLaVA score 72% and 42% on our main VLM metric, although they may improve with more advanced prompting techniques. On the main ITM metric, contrastive models such as CLIP and SigLIP perform close to chance (at 12% and 30%, respectively), although the non-contrastive BLIP ITM model is stronger (87%). We also find that finetuning on fewer than 2,000 examples yields significant performance gains on this out-of-distribution word-order understanding task.
pdf
bib
abs
Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers
Tuo Zhang
|
Jinyue Yuan
|
Salman Avestimehr
Numerous recent works aim to enhance the efficacy of Large Language Models (LLMs) through strategic prompting. In particular, the Optimization by PROmpting (OPRO) approach provides state-of-the-art performance by leveraging LLMs as optimizers where the optimization task is to find instructions that maximize the task accuracy. In this paper, we revisit OPRO for automated prompting with relatively small-scale LLMs, such as LLaMa-2 family and Mistral 7B. Our investigation reveals that OPRO shows limited effectiveness in small-scale LLMs, with limited inference capabilities constraining optimization ability. We suggest future automatic prompting engineering to consider both model capabilities and computational costs. Additionally, for small-scale LLMs, we recommend direct instructions that clearly outline objectives and methodologies as robust prompt baselines, ensuring efficient and effective prompt engineering in ongoing research.
pdf
bib
abs
CeeBERT: Cross-Domain Inference in Early Exit BERT
Divya Jyoti Bajpai
|
Manjesh Hanawal
Pre-trained Language Models (PLMs), like BERT, with self-supervision objectives exhibit remarkable performance and generalization across various tasks. However, they suffer in inference latency due to their large size. To address this issue, side branches are attached at intermediate layers, enabling early inference of samples without requiring them to pass through all layers. However, the challenge is to decide which layer to infer and exit each sample so that the accuracy and latency are balanced. Moreover, the distribution of the samples to be inferred may differ from that used for training necessitating cross-domain adaptation. We propose an online learning algorithm named Cross-Domain Inference in Early Exit BERT (CeeBERT) that dynamically determines early exits of samples based on the level of confidence at each exit point. CeeBERT learns optimal thresholds from domain-specific confidence observed at intermediate layers on the fly, eliminating the need for labeled data. Experimental results on five distinct datasets with BERT and ALBERT models demonstrate CeeBERT’s ability to improve latency by reducing unnecessary computations with minimal drop in performance. By adapting to the threshold values, CeeBERT can speed up the BERT/ALBERT models by 2× - 3.1× with minimal drop in accuracy. The anonymized source code is available at https://github.com/Div290/CeeBERT.
pdf
bib
abs
UNIWIZ: A Unified Large Language Model Orchestrated Wizard for Safe Knowledge Grounded Conversations
Souvik Das
|
Rohini Srihari
Large Language Models (LLMs) have made significant progress in integrating safety and knowledge alignment. However, adversarial actors can manipulate these models into generating unsafe responses, and excessive safety alignment can lead to unintended hallucinations. To address these challenges, we introduce UniWiz, a novel 2-step data orchestration framework that unifies safety and knowledge data generation. We propose a “safety-priming” method to generate synthetic safety data and overcome safety bottlenecks. We also inject relevant knowledge into conversations by retrieving factual information from curated sources. UniWiz dataset consists of 17,638 quality-controlled conversations and 10,000 augmented preference data. Pretrained models fine-tuned on UniWiz show improvements across various metrics and outperform state-of-the-art instruction-tuned models trained on much larger datasets.
pdf
bib
abs
A Shocking Amount of the Web is Machine Translated: Insights from Multi-Way Parallelism
Brian Thompson
|
Mehak Dhaliwal
|
Peter Frisch
|
Tobias Domhan
|
Marcello Federico
We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web.
pdf
bib
abs
RankMean: Module-Level Importance Score for Merging Fine-tuned LLM Models
Gabriel Perin
|
Xuxi Chen
|
Shusen Liu
|
Bhavya Kailkhura
|
Zhangyang Wang
|
Brian Gallagher
Traditionally, developing new language models (LMs) capable of addressing multiple tasks involves fine-tuning pre-trained LMs using a wide collection of datasets, a process that often incurs significant computational expenses. Model merging emerges as a cost-effective alternative, allowing the integration of existing models fine-tuned on different tasks into a single model that performs well across all tasks, eliminating the need for additional training. In this paper, we propose RankMean, an algorithm for merging fine-tuned LMs without requiring any downstream data. RankMean determines merging coefficients based on the relative rankings of weight change magnitudes and applies these coefficients for module-wise integration of various fine-tuned models. Our experimental results demonstrate that RankMean outperforms existing baseline methods on multiple benchmarks. The code is available at https://github.com/VITA-Group/RankMean.
pdf
bib
abs
VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models
Haoyi Qiu
|
Wenbo Hu
|
Zi-Yi Dou
|
Nanyun Peng
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose a large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human-annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative.
pdf
bib
abs
Cyclical Contrastive Learning Based on Geodesic for Zero-shot Cross-lingual Spoken Language Understanding
Xuxin Cheng
|
Zhihong Zhu
|
Bang Yang
|
Xianwei Zhuang
|
Hongxiang Li
|
Yuexian Zou
Owing to the scarcity of labeled training data, Spoken Language Understanding (SLU) is still a challenging task in low-resource languages. Therefore, zero-shot cross-lingual SLU attracts more and more attention. Contrastive learning is widely applied to explicitly align representations of similar sentences across different languages. However, the vanilla contrastive learning method may face two problems in zero-shot cross-lingual SLU: (1) the consistency between different languages is neglected; (2) each utterance has two different kinds of SLU labels, i.e. slot and intent, the utterances with one different label are also pushed away without any discrimination, which limits the performance. In this paper, we propose Cyclical Contrastive Learning based on Geodesic (CCLG), which introduces cyclical contrastive learning to achieve the consistency between different languages and leverages geodesic to measure the similarity to construct the positive pairs and negative pairs. Experimental results demonstrate that our proposed framework achieves the new state-of-the-art performance on MultiATIS++ and MTOP datasets, and the model analysis further verifies that CCLG can effectively transfer knowledge between different languages.
pdf
bib
abs
Towards Safer Large Language Models through Machine Unlearning
Zheyuan Liu
|
Guangyao Dou
|
Zhaoxuan Tan
|
Yijun Tian
|
Meng Jiang
The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model’s performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.
pdf
bib
abs
The Impact of Reasoning Step Length on Large Language Models
Mingyu Jin
|
Qinkai Yu
|
Dong Shu
|
Haiyan Zhao
|
Wenyue Hua
|
Yanda Meng
|
Yongfeng Zhang
|
Mengnan Du
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs’ reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs’ potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
pdf
bib
abs
Towards Understanding Task-agnostic Debiasing Through the Lenses of Intrinsic Bias and Forgetfulness
Guangliang Liu
|
Milad Afshari
|
Xitong Zhang
|
Zhiyu Xue
|
Avrajit Ghosh
|
Bidhan Bashyal
|
Rongrong Wang
|
Kristen Johnson
While task-agnostic debiasing provides notable generalizability and reduced reliance on downstream data, its impact on language modeling ability and the risk of relearning social biases from downstream task-specific data remain as the two most significant challenges when debiasing Pretrained Language Models (PLMs). The impact on language modeling ability can be alleviated given a high-quality and long-contextualized debiasing corpus, but there remains a deficiency in understanding the specifics of relearning biases. We empirically ascertain that the effectiveness of task-agnostic debiasing hinges on the quantitative bias level of both the task-specific data used for downstream applications and the debiased model. We empirically show that the lower bound of the bias level of the downstream fine-tuned model can be approximated by the bias level of the debiased model, in most practical cases. To gain more in-depth understanding about how the parameters of PLMs change during fine-tuning due to the forgetting issue of PLMs, we propose a novel framework which can Propagate Socially-fair Debiasing to Downstream Fine-tuning, ProSocialTuning. Our proposed framework can push the fine-tuned model to approach the bias lower bound during downstream fine-tuning, indicating that the ineffectiveness of debiasing can be alleviated by overcoming the forgetting issue through regularizing successfully debiased attention heads based on the PLMs’ bias levels from stages of pretraining and debiasing.
pdf
bib
abs
SKGSum: Structured Knowledge-Guided Document Summarization
Qiqi Wang
|
Ruofan Wang
|
Kaiqi Zhao
|
Robert Amor
|
Benjamin Liu
|
Jiamou Liu
|
Xianda Zheng
|
Zijian Huang
A summary structure is inherent to certain types of texts according to the Genre Theory of Linguistics. Such structures aid readers in efficiently locating information within summaries. However, most existing automatic summarization methods overlook the importance of summary structure, resulting in summaries that emphasize the most prominent information while omitting essential details from other sections. While a few summarizers recognize the importance of summary structure, they rely heavily on the predefined labels of summary structures in the source document and ground truth summaries. To address these shortcomings, we developed a Structured Knowledge-Guided Summarization (SKGSum) and its variant, SKGSum-W, which do not require structure labels. Instead, these methods rely on a set of automatically extracted summary points to generate summaries. We evaluate the proposed methods using three real-world datasets. The results indicate that our methods not only improve the quality of summaries, in terms of ROUGE and BERTScore, but also broaden the types of documents that can be effectively summarized.
pdf
bib
abs
Chinese Spoken Named Entity Recognition in Real-world Scenarios: Dataset and Approaches
Shilin Zhou
|
Zhenghua Li
|
Chen Gong
|
Lei Zhang
|
Yu Hong
|
Min Zhang
Spoken Named Entity Recognition (NER) aims to extract entities from speech. The extracted entities can help voice assistants better understand user’s questions and instructions. However, current Chinese Spoken NER datasets are laboratory-controlled data that are collected by reading existing texts in quiet environments, rather than natural spoken data, and the texts used for reading are also limited in topics. These limitations obstruct the development of Spoken NER in more natural and common real-world scenarios. To address this gap, we introduce a real-world Chinese Spoken NER dataset (RWCS-NER), encompassing open-domain daily conversations and task-oriented intelligent cockpit instructions. We compare several mainstream pipeline approaches on RWCS-NER. The results indicate that the current methods, affected by Automatic Speech Recognition (ASR) errors, do not perform satisfactorily in real settings. Aiming to enhance Spoken NER in real-world scenarios, we propose two approaches: self-training-asr and mapping then distilling (MDistilling). Experiments show that both approaches can achieve significant improvements, particularly MDistilling. Even compared with GPT4.0, MDistilling still reaches better results. We believe that our work will advance the field of Spoken NER in real-world settings.
pdf
bib
abs
DEBATE: Devil’s Advocate-Based Assessment and Text Evaluation
Alex Kim
|
Keonwoo Kim
|
Sangwon Yoon
As natural language generation (NLG) models have become prevalent, systematically assessing the quality of machine-generated texts has become increasingly important. Recent studies introduce LLM-based evaluators that operate as reference-free metrics, demonstrating their capability to adeptly handle novel tasks. However, these models generally rely on a single-agent approach, which, we argue, introduces an inherent limit to their performance. This is because there exist biases in LLM agent’s responses, including preferences for certain text structure or content. In this work, we propose DEBATE, an NLG evaluation framework based on multi-agent scoring system augmented with a concept of Devil’s Advocate. Within the framework, one agent is instructed to criticize other agents’ arguments, potentially resolving the bias in LLM agent’s answers. DEBATE substantially outperforms the previous state-of-the-art methods in two meta-evaluation benchmarks in NLG evaluation, SummEval and TopicalChat. We also show that the extensiveness of debates among agents and the persona of an agent can influence the performance of evaluators.
pdf
bib
abs
Can Large Multimodal Models Uncover Deep Semantics Behind Images?
Yixin Yang
|
Zheng Li
|
Qingxiu Dong
|
Heming Xia
|
Zhifang Sui
Understanding the deep semantics of images is essential in the era dominated by social media. However, current research works primarily on the superficial description of images, revealing a notable deficiency in the systematic investigation of the inherent deep semantics. In this work, we introduce DEEPEVAL, a comprehensive benchmark to assess Large Multimodal Models’ (LMMs) capacities of visual deep semantics. DEEPEVAL includes human-annotated dataset and three progressive subtasks: fine-grained description selection, in-depth title matching, and deep semantics understanding. Utilizing DEEPEVAL, we evaluate 9 open-source LMMs and GPT-4V(ision). Our evaluation demonstrates a substantial gap between the deep semantic comprehension capabilities of existing LMMs and humans. For example, GPT-4V is 30% behind humans in understanding deep semantics, even though it achieves human-comparable performance in image description. Further analysis reveals that LMM performance on DEEPEVAL varies according to the specific facets of deep semantics explored, indicating the fundamental challenges remaining in developing LMMs.
pdf
bib
abs
Harvesting Events from Multiple Sources: Towards a Cross-Document Event Extraction Paradigm
Qiang Gao
|
Zixiang Meng
|
Bobo Li
|
Jun Zhou
|
Fei Li
|
Chong Teng
|
Donghong Ji
Document-level event extraction aims to extract structured event information from unstructured text. However, a single document often contains limited event information and the roles of different event arguments may be biased due to the influence of the information source.This paper addresses the limitations of traditional document-level event extraction by proposing the task of cross-document event extraction (CDEE) to integrate event information from multiple documents and provide a comprehensive perspective on events. We construct a novel cross-document event extraction dataset, namely CLES, which contains 20,059 documents and 37,688 mention-level events, where over 70% of them are cross-document. To address the task, we propose a CDEE pipeline that includes 5 steps, namely event extraction, coreference resolution, entity normalization, role normalization and entity-role resolution. Our CDEE pipeline achieves about 72% F1 in end-to-end cross-document event extraction, suggesting the challenge of this task and setting up a benchmark for future research. Our work builds a new line of information extraction research and will attract new research attention.
pdf
bib
abs
A Graph per Persona: Reasoning about Subjective Natural Language Descriptions
EunJeong Hwang
|
Vered Shwartz
|
Dan Gutfreund
|
Veronika Thost
Reasoning about subjective natural language descriptions, such as opinions and preferences, is a challenging topic that largely remains unsolved to date. In particular, state-of-the-art large language models (LLMs) perform disappointingly in this task, show strong biases, and do not meet the interpretability requirements often needed in these kinds of applications. We propose a novel approach for reasoning about subjective knowledge that integrates potential and implicit meanings and explicitly models the relational nature of the information. We apply supervised graph learning, offer explanations for the model’s reasoning, and show that our model performs well across all 15 topics of OpinionQA, outperforming several prominent LLMs. Our detailed analysis further shows its unique advantages and the complementary nature it offers in comparison to LLMs.
pdf
bib
abs
MolTC: Towards Molecular Relational Modeling In Language Models
Junfeng Fang
|
Shuai Zhang
|
Chang Wu
|
Zhengyi Yang
|
Zhiyuan Liu
|
Sihang Li
|
Kun Wang
|
Wenjie Du
|
Xiang Wang
Molecular Relational Learning (MRL), aiming to understand interactions between molecular pairs, plays a pivotal role in advancing biochemical research. Recently, the adoption of large language models (LLMs), known for their vast knowledge repositories and advanced logical inference capabilities, has emerged as a promising way for efficient and effective MRL. Despite their potential, these methods predominantly rely on textual data, thus not fully harnessing the wealth of structural information inherent in molecular graphs. Moreover, the absence of a unified framework exacerbates the issue of insufficient data exploitation, as it hinders the sharing of interaction mechanism learned across various datasets. To address these challenges, this work proposes a novel LLM-based multi-modal framework for molecular interaction modeling following Chain-of-Thought (CoT) theory, termed MolTC, which effectively integrate graphical information of two molecules in pair. To train this integrated framework efficiently, we introduce a *multi-hierarchical CoT theory* to refine its training paradigm, and conduct a comprehensive *Molecular Interactive Instructions* dataset for the development of biochemical LLMs involving MRL.Our experiments,conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines. Code is available at https://github.com/MangoKiller/MolTC.
pdf
bib
abs
KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation
Di Wu
|
Da Yin
|
Kai-Wei Chang
Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation mainly relies on exact matching with human references. This scheme fails to recognize systems that generate keyphrases semantically equivalent to the references or diverse keyphrases that carry practical utility. To better assess the capability of keyphrase systems, we propose KPEval, a comprehensive evaluation framework consisting of four critical aspects: reference agreement, faithfulness, diversity, and utility. For each aspect, we design semantic-based metrics to reflect the evaluation objectives. Meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously proposed metrics. Using KPEval, we re-evaluate 23 keyphrase systems and discover that (1) established model comparison results have blind-spots especially when considering reference-free evaluation; (2) large language models are underestimated by prior evaluation works; and (3) there is no single best model that can excel in all the aspects.
pdf
bib
abs
Learning Low-dimensional Multi-domain Knowledge Graph Embedding via Dual Archimedean Spirals
Jiang Li
|
Xiangdong Su
|
Fujun Zhang
|
Guanglai Gao
Knowledge graph embedding (KGE) is extensively employed for link prediction by representing entities and relations as low-dimensional vectors. In real-world scenarios, knowledge graphs (KGs) usually encompass diverse domains, which poses challenges to KG representations. However, existing KGE methods rarely make domain constraints on the embedding distribution of multi-domain KGs, leading to the embedding overlapping of different domains and performance degradation of link prediction. To address this challenge, we propose Dual Archimedean Spiral Knowledge Graph Embedding (DuASE), a low-dimensional KGE model for multi-domain KGs. DuASE is inspired by our discovery that relation types can distinguish entities from different domains. Specifically, DuASE encodes entities with the same relation on the same Archimedean spiral, allowing it to differentiate the entities from different domains. To avoid embedding overlapping across domains, DuASE further makes the head and the tail spirals in the same triplet cluster to their respective domain space by a regularization function. Thus, DuASE can better capture the domain information and the dependencies between entities when modeling the multi-domain KGs, leading to improved KG representations. We validate the effectiveness of DuASE on the novel multi-domain dataset (n-MDKG) introduced in this study and three other benchmark datasets.
pdf
bib
abs
LoRA Meets Dropout under a Unified Framework
Sheng Wang
|
Liheng Chen
|
Jiyue Jiang
|
Boyang Xue
|
Lingpeng Kong
|
Chuan Wu
With the remarkable capabilities, large language models (LLMs) have emergedas essential elements in numerous NLP applications, while parameter-efficientfinetuning, especially LoRA, has gained popularity as a lightweight approachfor model customization. Meanwhile, various dropout methods, initially designedfor full finetuning with all the parameters updated, alleviates overfittingassociated with excessive parameter redundancy. Hence, a possible contradictionarises from negligible trainable parameters of LoRA and the effectiveness ofprevious dropout methods, which has been largely overlooked. To fill this gap,we first confirm that parameter-efficient LoRA is also overfitting-prone. Wethen revisit transformer-specific dropout methods, and establish theirequivalence and distinctions mathematically and empirically. Building upon thiscomparative analysis, we introduce a unified framework for a comprehensiveinvestigation, which instantiates these methods based on dropping position,structural pattern and compensation measure. Through this framework, we revealthe new preferences and performance comparisons of them when involved withlimited trainable parameters. This framework also allows us to amalgamate themost favorable aspects into a novel dropout method named HiddenKey. Extensiveexperiments verify the remarkable superiority and sufficiency of HiddenKeyacross multiple models and tasks, which highlights it as the preferred approachfor high-performance and parameter-efficient finetuning of LLMs.
pdf
bib
abs
Enhancing Text-to-SQL Parsing through Question Rewriting and Execution-Guided Refinement
Wenxin Mao
|
Ruiqi Wang
|
Jiyu Guo
|
Jichuan Zeng
|
Cuiyun Gao
|
Peiyi Han
|
Chuanyi Liu
Large Language Model (LLM)-based approach has become the mainstream for Text-to-SQL task and achieves remarkable performance. In this paper, we augment the existing prompt engineering methods by exploiting the database content and execution feedback. Specifically, we introduce DART-SQL, which comprises two key components: (1) Question Rewriting: DART-SQL rewrites natural language questions by leveraging database content information to eliminate ambiguity. (2) Execution-Guided Refinement: DART-SQL incorporates database content information and utilizes the execution results of the generated SQL to iteratively refine the SQL. We apply this framework to the two LLM-based approaches (DAIL-SQL and C3) and test it on four widely used benchmarks (Spider-dev, Spider-test, Realistic and DK). Experiments show that our framework for DAIL-SQL and C3 achieves an average improvement of 12.41% and 5.38%, respectively, in terms of execution accuracy(EX) metric.
pdf
bib
abs
The Knowledge Alignment Problem: Bridging Human and External Knowledge for Large Language Models
Shuo Zhang
|
Liangming Pan
|
Junzhou Zhao
|
William Yang Wang
Large language models often necessitate grounding on external knowledge to generate faithful and reliable answers. Yet even with the correct groundings in the reference, they can ignore them and rely on wrong groundings or their inherent biases to hallucinate when users, being largely unaware of the specifics of the stored information, pose questions that might not directly correlate with the retrieved groundings. In this work, we formulate this knowledge alignment problem and introduce MixAlign, a framework that interacts with both the human user and the knowledge base to obtain and integrate clarifications on how the user question relates to the stored information. MixAlign employs a language model to achieve automatic knowledge alignment and, if necessary, further enhances this alignment through human user clarifications. Experimental results highlight the crucial role of knowledge alignment in boosting model performance and mitigating hallucination, with improvements noted up to 22.2% and 27.1% respectively. We also demonstrate the effectiveness of MixAlign in improving knowledge alignment by producing high-quality, user-centered clarifications.
pdf
bib
abs
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
Haoran Luo
|
Haihong E
|
Zichen Tang
|
Shiyao Peng
|
Yikai Guo
|
Wentai Zhang
|
Chenghao Ma
|
Guanting Dong
|
Meina Song
|
Wei Lin
|
Yifan Zhu
|
Anh Tuan Luu
Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.
pdf
bib
abs
Achilles-Bench: A Challenging Benchmark for Low-Resource Evaluation
Yudong Wang
|
Chang Ma
|
Qingxiu Dong
|
Zhifang Sui
|
Lingpeng Kong
|
Jingjing Xu
With promising yet saturated results in high-resource settings, low-resource datasets have gradually become crucial benchmarks (e.g., BigBench Hard, superGLUE) for evaluating the learning ability of advanced neural networks. In this work, we find that there exists a set of “hard examples” in low-resource settings that challenge neural networks but are not well evaluated, which causes over-estimated performance. We first give a theoretical analysis on which factors bring the difficulty of low-resource learning. It then motivates us to propose a challenging benchmark Achilles-Bench to better evaluate the learning ability, which covers 11 datasets, including 8 natural language process (NLP) datasets and 3 computer vision (CV) datasets. Experiments on a wide range of models show that neural networks, even pre-trained language models, have sharp performance drops on our benchmark, demonstrating the effectiveness of evaluating the weaknesses of neural networks. On NLP tasks, we surprisingly find that despite better results on traditional low-resource benchmarks, pre-trained networks, does not show performance improvements on our benchmarks. there is still a large robustness gap between existing models and human-level performance, highlighting the need for robust low-resource learning models.
pdf
bib
abs
INTERVENOR: Prompting the Coding Ability of Large Language Models with the Interactive Chain of Repair
Hanbin Wang
|
Zhenghao Liu
|
Shuo Wang
|
Ganqu Cui
|
Ning Ding
|
Zhiyuan Liu
|
Ge Yu
This paper introduces INTERVENOR (INTERactiVE chaiN Of Repair), a system designed to emulate the interactive code repair processes observed in humans, encompassing both code diagnosis and code repair. INTERVENOR prompts Large Language Models (LLMs) to play distinct roles during the code repair process, functioning as both a Code Learner and a Code Teacher. Specifically, the Code Learner is tasked with adhering to instructions to generate or repair code, while the Code Teacher is responsible for crafting a Chain-of-Repair (CoR) to serve as guidance for the Code Learner. During generating the CoR, the Code Teacher needs to check the generated codes from Code Learner and reassess how to address code bugs based on error feedback received from compilers. Experimental results demonstrate that INTERVENOR surpasses baseline models, exhibiting improvements of approximately 18% and 4.3% over GPT-3.5 in code generation and code translation tasks, respectively. Our further analyses show that CoR is effective to illuminate the reasons behind bugs and outline solution plans in natural language. With the feedback of code compilers, INTERVENOR can accurately identify syntax errors and assertion errors and provide precise instructions to repair codes. All data and codes are available at [https://github.com/NEUIR/INTERVENOR](https://github.com/NEUIR/INTERVENOR).
pdf
bib
abs
SocialBench: Sociality Evaluation of Role-Playing Conversational Agents
Hongzhan Chen
|
Hehong Chen
|
Ming Yan
|
Wenshen Xu
|
Gao Xing
|
Weizhou Shen
|
Xiaojun Quan
|
Chenliang Li
|
Ji Zhang
|
Fei Huang
Large language models (LLMs) have advanced the development of various AI conversational agents, including role-playing agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge and style of these agents, there has been a noticeable gap in assessing their social intelligence. In this paper, we introduce SocialBench, the first benchmark designed to systematically evaluate the sociality of role-playing agents at both individual and group levels of social interactions. SocialBench is constructed from various sources and covers a wide range of 500 characters and over 6,000 question prompts and 30,800 multi-turn role-playing utterances. We conduct comprehensive evaluations on this benchmark using mainstream LLMs. We find that agents excelling in individual level does not imply their proficiency in group level. Experimental results on SocialBench confirm its significance as a testbed for assessing the social interaction of role-playing agents. The benchmark is publicly accessible at https://github.com/X-PLUG/RoleInteract.
pdf
bib
abs
From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications
Yongqiang Ma
|
Lizhi Qing
|
Jiawei Liu
|
Yangyang Kang
|
Yue Zhang
|
Wei Lu
|
Xiaozhong Liu
|
Qikai Cheng
Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed “Revision Distance,” utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, “Revision Distance” is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.
pdf
bib
abs
Context-Aware Tracking and Dynamic Introduction for Incomplete Utterance Rewriting in Extended Multi-Turn Dialogues
Xinnan Guo
|
Qian Zhu
|
Qiuhui Shi
|
Xuan Lin
|
Liubin Wang
|
DaqianLi DaqianLi
|
Yongrui Chen
Incomplete utterance rewriting (IUR) aims to reconstruct the utterance with omitted information and pronouns to be standalone and complete based on the context. The existing works predominantly focus on simple ellipsis and coreference problems in brief multi-turn dialogues. But in actual scenarios: 1) the context of the dialogues frequently comprises multiple similar candidates for ellipsis and coreference resolution, pouring to confuse. 2) the number of turns tends to be more extensive, while the content with various topics also grows more complex. This paper proposes a novel method called CaT to address these issues. In particular, we first devise a tacker model, distilled from GPT4-turbo, to adopt Context Tracking that dynamically updates a list of key phrases turn by turn, as accurate candidates for ellipsis and coreference resolution. Second, we further present the Dynamic Context Introduction mechanism to filter irrelevant preceding contexts that are not relied on by any element within the key phrase list to condense extended dialogues. Comprehensive experiments indicate that our solution provides a significant improvement over the existing baselines, and achieves state-of-the-art on three benchmarks.
pdf
bib
abs
EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models
Yuyan Chen
|
Songzhou Yan
|
Sijia Liu
|
Yueze Li
|
Yanghua Xiao
Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs’ overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response.We also design two metrics to evaluate LLMs’ capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs’ capabilities and limitations in emotion intelligence.
pdf
bib
abs
Plum: Prompt Learning using Metaheuristics
Rui Pan
|
Shuo Xing
|
Shizhe Diao
|
Wenhe Sun
|
Xiang Liu
|
KaShun Shum
|
Jipeng Zhang
|
Renjie Pi
|
Tong Zhang
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly “general”, i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization.
pdf
bib
abs
HOTVCOM: Generating Buzzworthy Comments for Videos
Yuyan Chen
|
Songzhou Yan
|
Qingpei Guo
|
Jiyuan Jia
|
Zhixu Li
|
Yanghua Xiao
In the era of social media video platforms, popular “hot-comments” play a crucial role in attracting user impressions of short-form videos, making them vital for marketing and branding purpose. However, existing research predominantly focuses on generating descriptive comments or “danmaku” in English, offering immediate reactions to specific video moments. Addressing this gap, our study introduces HOTVCOM, the largest Chinese video hot-comment dataset, comprising 94k diverse videos and 137 million comments. We also present the ComHeat framework, which synergistically integrates visual, auditory, and textual data to generate influential hot-comments on the Chinese video dataset. Empirical evaluations highlight the effectiveness of our framework, demonstrating its excellence on both the newly constructed and existing datasets.
pdf
bib
abs
Do Large Language Models have Problem-Solving Capability under Incomplete Information Scenarios?
Yuyan Chen
|
Yueze Li
|
Songzhou Yan
|
Sijia Liu
|
Jiaqing Liang
|
Yanghua Xiao
The evaluation of the problem-solving capability under incomplete information scenarios of Large Language Models (LLMs) is increasingly important, encompassing capabilities such as questioning, knowledge search, error detection, and path planning. Current research mainly focus on LLMs’ problem-solving capability such as “Twenty Questions”.However, these kinds of games do not require recognizing misleading cues which are necessary in the incomplete information scenario.Moreover, the existing game such as “Who is undercover” are highly subjective, making it challenging for evaluation.Therefore, in this paper, we introduce a novel game named BrainKing based on the “Who is undercover” and “Twenty Questions” for evaluating LLM capabilities under incomplete information scenarios. It requires LLMs to identify target entities with limited yes-or-no questions and potential misleading answers. By setting up easy, medium, and hard difficulty modes, we comprehensively assess the performance of LLMs across various aspects. Our results reveal the capabilities and limitations of LLMs in BrainKing, providing significant insights of LLM problem-solving levels.
pdf
bib
abs
Distilling Robustness into Natural Language Inference Models with Domain-Targeted Augmentation
Joe Stacey
|
Marek Rei
Knowledge distillation optimises a smaller student model to behave similarly to a larger teacher model, retaining some of the performance benefits. While this method can improve results on in-distribution examples, it does not necessarily generalise to out-of-distribution (OOD) settings. We investigate two complementary methods for improving the robustness of the resulting student models on OOD domains. The first approach augments the distillation with generated unlabeled examples that match the target distribution. The second method upsamples data points among the training set that are similar to the target distribution. When applied on the task of natural language inference (NLI), our experiments on MNLI show that distillation with these modifications outperforms previous robustness solutions. We also find that these methods improve performance on OOD domains even beyond the target domain.
pdf
bib
abs
Into the Unknown: Generating Geospatial Descriptions for New Environments
Tzuf Paz-Argaman
|
John Palowitch
|
Sayali Kulkarni
|
Reut Tsarfaty
|
Jason Baldridge
Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data.Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (“shop north of school”) generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.
pdf
bib
abs
Unpacking Tokenization: Evaluating Text Compression and its Correlation with Model Performance
Omer Goldman
|
Avi Caciularu
|
Matan Eyal
|
Kris Cao
|
Idan Szpektor
|
Reut Tsarfaty
Despite it being the cornerstone of BPE, the most common tokenization algorithm, the importance of compression in the tokenization process is still unclear. In this paper, we argue for the theoretical importance of compression, that can be viewed as 0-gram language modeling where equal probability is assigned to all tokens. We also demonstrate the empirical importance of compression for downstream success of pre-trained language models. We control the compression ability of several BPE tokenizers by varying the amount of documents available during their training: from 1 million documents to a character-based tokenizer equivalent to no training data at all. We then pre-train English language models based on those tokenizers and fine-tune them over several tasks. We show that there is a correlation between tokenizers’ compression and models’ downstream performance, suggesting that compression is a reliable intrinsic indicator of tokenization quality. These correlations are more pronounced for generation tasks (over classification) or for smaller models (over large ones). We replicated a representative part of our experiments on Turkish and found similar results, confirming that our results hold for languages with typological characteristics dissimilar to English. We conclude that building better compressing tokenizers is a fruitful avenue for further research and for improving overall model performance.
pdf
bib
abs
Length-aware Byte Pair Encoding for Mitigating Over-segmentation in Korean Machine Translation
Jungseob Lee
|
Hyeonseok Moon
|
Seungjun Lee
|
Chanjun Park
|
Sugyeong Eo
|
Hyunwoong Ko
|
Jaehyung Seo
|
Seungyoon Lee
|
Heuiseok Lim
Byte Pair Encoding is an effective approach in machine translation across several languages. However, our analysis indicates that BPE is prone to over-segmentation in the morphologically rich language, Korean, which can erode word semantics and lead to semantic confusion during training. This semantic confusion, stemming from over-segmentation, ultimately contributes to a degradation of overall translation quality. To address this issue, we introduce Length-aware Subword Vocabulary Construction (LeVoC), a novel approach strategically incorporating longer words into the vocabulary. By utilizing an external monolingual Korean corpus, LeVoC extracts and integrates long words, effectively preserving morphological information and reducing semantic confusion. Our experiments demonstrate that LeVoC not only significantly outperforms BPE, but also can be applied to and surpass current state-of-the-art morpheme-aware subword tokenization methods. We provide evidence that the difficulty in translating sentences with long words in Korean is associated with morphological compositionality, and LeVoC’s ability to reduce semantic confusion during training leads to improved translation quality.
pdf
bib
abs
Multilingual Instruction Tuning With Just a Pinch of Multilinguality
Uri Shaham
|
Jonathan Herzig
|
Roee Aharoni
|
Idan Szpektor
|
Reut Tsarfaty
|
Matan Eyal
As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses.
pdf
bib
abs
M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
Jianlyu Chen
|
Shitao Xiao
|
Peitian Zhang
|
Kun Luo
|
Defu Lian
|
Zheng Liu
In this paper, we introduce a new embedding model called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It provides a uniform support for the semantic retrieval of more than 100 working languages. It can simultaneously accomplish the three common retrieval functionalities: dense retrieval, multi-vector retrieval, and sparse retrieval. Besides, it is also capable of processing inputs of different granularities, spanning from short sentences to long documents of up to 8,192 tokens. The effective training of M3-Embedding presents a series of technical contributions. Notably, we propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, which enables a large batch size and high training throughput to improve the discriminativeness of embeddings. M3-Embedding exhibits a superior performance in our experiment, leading to new state-of-the-art results on multilingual, cross-lingual, and long-document retrieval benchmarks.
pdf
bib
abs
Iterative Refinement of Project-Level Code Context for Precise Code Generation with Compiler Feedback
Zhangqian Bi
|
Yao Wan
|
Zheng Wang
|
Hongyu Zhang
|
Batu Guan
|
Fangxin Lu
|
Zili Zhang
|
Yulei Sui
|
Hai Jin
|
Xuanhua Shi
Large Language Models (LLMs) have shown remarkable progress in automated code generation. Yet, LLM-generated code may contain errors in API usage, class, data structure, or missing project-specific information. As much of this project-specific context cannot fit into the prompts of LLMs, we must find ways to allow the model to explore the project-level code context. We present CoCoGen, a new code generation approach that uses compiler feedback to improve the LLM-generated code. CoCoGen first leverages static analysis to identify mismatches between the generated code and the project’s context. It then iteratively aligns and fixes the identified errors using information extracted from the code repository. We integrate CoCoGen with two representative LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), and apply it to Python code generation. Experimental results show that CoCoGen significantly improves the vanilla LLMs by over 80% in generating code dependent on the project context and consistently outperforms the existing retrieval-based code generation baselines.
pdf
bib
abs
An Element is Worth a Thousand Words: Enhancing Legal Case Retrieval by Incorporating Legal Elements
Chenlong Deng
|
Zhicheng Dou
|
Yujia Zhou
|
Peitian Zhang
|
Kelong Mao
Legal case retrieval plays an important role in promoting judicial justice and fairness. One of its greatest challenges is that the definition of relevance goes far beyond the common semantic relevance as in ad-hoc retrieval. In this paper, we reveal that the legal elements, which typically comprise key facts in a specialized legal context, can largely improve the relevance matching of legal case retrieval. To facilitate the use of legal elements, we construct a Chinese legal element dataset called LeCaRD-Elem based on the widely-used LeCaRD dataset, through a two-stage semi-automatic method with a minimized reliance on human labor. Meanwhile, we introduce two new models to enhance legal search using legal elements. The first, Elem4LCR-E, is a two-stage model that explicitly predicts legal elements from texts and then leverages them for improved ranking. Recognizing the potential benefits of more seamless integration, we further propose an end-to-end model called Elem4LCR-I, which internalizes the legal element knowledge into its model parameters using a tailored teacher-student training framework. Extensive experiments underscore the significant value of legal elements and demonstrate the superiority of our two proposed models in enhancing legal search over existing methods.
pdf
bib
abs
SoMeLVLM: A Large Vision Language Model for Social Media Processing
Xinnong Zhang
|
Haoyu Kuang
|
Xinyi Mou
|
Hanjia Lyu
|
Kun Wu
|
Siming Chen
|
Jiebo Luo
|
Xuanjing Huang
|
Zhongyu Wei
The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
pdf
bib
abs
KoCommonGEN v2: A Benchmark for Navigating Korean Commonsense Reasoning Challenges in Large Language Models
Jaehyung Seo
|
Jaewook Lee
|
Chanjun Park
|
SeongTae Hong
|
Seungjun Lee
|
Heuiseok Lim
The evolution of large language models (LLMs) has culminated in a multitask model paradigm where prompts drive the generation of user-specific outputs. However, this advancement has revealed a critical challenge: LLMs frequently produce outputs against socially acceptable commonsense standards in various scenarios. To address this gap in commonsense reasoning, we present KoCommonGEN v2, a fine-grained benchmark dataset focused on Korean commonsense reasoning. This dataset, enriched with human annotations, comprises multiple-choice questions across seven error categories. These categories include commonsense memorization, numerical commonsense, toxic speech, and more, which are vulnerable to undermining the reliability of LLMs’ commonsense reasoning capabilities. The empirical results present that LLMs struggle with Korean commonsense reasoning. With human accuracy benchmarked at approximately 85%, GPT-4’s performance lags at about 74%, and other LLMs demonstrate an average accuracy of around 42%. Our findings emphasize the need for targeted improvements in Korean commonsense reasoning within LLMs, paving the way for more socially and contextually sensitive AI models.
pdf
bib
abs
NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models
Amit Dhurandhar
|
Tejaswini Pedapati
|
Ronny Luss
|
Soham Dan
|
Aurelie Lozano
|
Payel Das
|
Georgios Kollias
Transformer-based Language Models have become ubiquitous in Natural Language Processing (NLP) due to their impressive performance on various tasks. However, expensive training as well as inference remains a significant impediment to their widespread applicability. While enforcing sparsity at various levels of the model architecture has found promise in addressing scaling and efficiency issues, there remains a disconnect between how sparsity affects network topology. Inspired by brain neuronal networks, we explore sparsity approaches through the lens of network topology. Specifically, we exploit mechanisms seen in biological networks, such as preferential attachment and redundant synapse pruning, and show that principled, model-agnostic sparsity approaches are performant and efficient across diverse NLP tasks, spanning both classification (such as natural language inference) and generation (summarization, machine translation), despite our sole objective not being optimizing performance. NeuroPrune is competitive with (or sometimes superior to) baselines on performance and can be up to 10x faster in terms of training time for a given level of sparsity, simultaneously exhibiting measurable improvements in inference time in many cases.
pdf
bib
abs
Ranking Large Language Models without Ground Truth
Amit Dhurandhar
|
Rahul Nair
|
Moninder Singh
|
Elizabeth Daly
|
Karthikeyan Natesan Ramamurthy
Evaluation and ranking of large language models (LLMs) has become an important problem with the proliferation of these models and their impact. Evaluation methods either require human responses which are expensive to acquire or use pairs of LLMs to evaluate each other which can be unreliable. In this paper, we provide a novel perspective where, given a dataset of prompts (viz. questions, instructions, etc.) and a set of LLMs, we rank them without access to any ground truth or reference responses. Inspired by real life where both an expert and a knowledgeable person can identify a novice our main idea is to consider triplets of models, where each one of them evaluates the other two, correctly identifying the worst model in the triplet with high probability. We also analyze our idea and provide sufficient conditions for it to succeed. Applying this idea repeatedly we propose two methods to rank LLMs. In experiments on different generative tasks (summarization, multiple-choice, and dialog), our methods reliably recover true rankings without reference data. This points to a viable low-resource mechanism for practical use.
pdf
bib
abs
Integrating Physician Diagnostic Logic into Large Language Models: Preference Learning from Process Feedback
Chengfeng Dou
|
Ying Zhang
|
Zhi Jin
|
Wenpin Jiao
|
Haiyan Zhao
|
Yongqiang Zhao
|
Zhengwei Tao
The utilization of large language models for medical dialogue generation has attracted considerable attention due to its potential to enhance response richness and coherence. While previous studies have made strides in optimizing model performance, there is a pressing need to bolster the model’s capacity for diagnostic logic to ensure patient safety. In response to this need, we propose an approach termed preference learning from process feedback (PLPF), which involves integrating the doctor’s diagnostic logic into LLMs. PLPF encompasses three key components: rule modeling, preference data generation, and preference alignment. These components collectively serve to train the model to adhere to the diagnostic process. Our experimental results, utilizing Standardized Patient Testing, demonstrate that PLPF enhances the diagnostic accuracy of the baseline model in medical conversations by 17.6%, surpassing the performance of traditional approaches. Moreover, PLPF exhibits effectiveness in both multi-round and single-round dialogue tasks, thereby highlighting its potential in improving medical dialogue generation. Our dataset is available at https://github.com/Chengfeng-Dou/SpTesting.
pdf
bib
abs
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
Shitao Xiao
|
Zheng Liu
|
Peitian Zhang
|
Xingrun Xing
The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose LM-Cocktail which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging, where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain.
pdf
bib
abs
Episodic Memory Retrieval from LLMs: A Neuromorphic Mechanism to Generate Commonsense Counterfactuals for Relation Extraction
Xin Miao
|
Yongqi Li
|
Shen Zhou
|
Tieyun Qian
Large language models (LLMs) have achieved satisfactory performance in counterfactual generation. However, confined by the stochastic generation process of LLMs, there often are misalignments between LLMs and humans which hinder LLMs from handling complex tasks like relation extraction. As a result, LLMs may generate commonsense-violated counterfactuals like ‘eggs were produced by a box’. To bridge this gap, we propose to mimick the episodic memory retrieval, the working mechanism of human hippocampus, to align LLMs’ generation process with that of humans. In this way, LLMs can derive experience from their extensive memory, which keeps in line with the way humans gain commonsense. We then implement two central functions in the hippocampus, i.e., pattern separation and pattern completion, to retrieve the episodic memory from LLMs and generate commonsense counterfactuals for relation extraction. Experimental results demonstrate the improvements of our framework over existing methods in terms of the quality of counterfactuals.
pdf
bib
abs
SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 13 Languages
Nedjma Ousidhoum
|
Shamsuddeen Muhammad
|
Mohamed Abdalla
|
Idris Abdulmumin
|
Ibrahim Ahmad
|
Sanchit Ahuja
|
Alham Aji
|
Vladimir Araujo
|
Abinew Ayele
|
Pavan Baswani
|
Meriem Beloucif
|
Chris Biemann
|
Sofia Bourhim
|
Christine Kock
|
Genet Dekebo
|
Oumaima Hourrane
|
Gopichand Kanumolu
|
Lokesh Madasu
|
Samuel Rutunda
|
Manish Shrivastava
|
Thamar Solorio
|
Nirmal Surange
|
Hailegnaw Tilaye
|
Krishnapriya Vishnubhotla
|
Genta Winata
|
Seid Yimam
|
Saif Mohammad
Exploring and quantifying semantic relatedness is central to representing language and holds significant implications across various NLP tasks. While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 13 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia – regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, challenges when building the datasets, baseline experiments, and their impact and utility in NLP.
pdf
bib
abs
Alirector: Alignment-Enhanced Chinese Grammatical Error Corrector
Haihui Yang
|
Xiaojun Quan
Chinese grammatical error correction (CGEC) faces serious overcorrection challenges when employing autoregressive generative models such as sequence-to-sequence (Seq2Seq) models and decoder-only large language models (LLMs). While previous methods aim to address overcorrection in Seq2Seq models, they are difficult to adapt to decoder-only LLMs. In this paper, we propose an alignment-enhanced corrector for the overcorrection problem that applies to both Seq2Seq models and decoder-only LLMs. Our method first trains a correction model to generate an initial correction of the source sentence. Then, we combine the source sentence with the initial correction and feed it through an alignment model for another round of correction, aiming to enforce the alignment model to focus on potential overcorrection. Moreover, to enhance the model’s ability to identify nuances, we further explore the reverse alignment of the source sentence and the initial correction. Finally, we transfer the alignment knowledge from two alignment models to the correction model, instructing it on how to avoid overcorrection. Experimental results on three CGEC datasets demonstrate the effectiveness of our approach in alleviating overcorrection and improving overall performance. Our code has been made publicly available.
pdf
bib
abs
VISPool: Enhancing Transformer Encoders with Vector Visibility Graph Neural Networks
Tuna Alikaşifoğlu
|
Arda Aras
|
Aykut Koc
The emergence of transformers has revolutionized natural language processing (NLP), as evidenced in various NLP tasks. While graph neural networks (GNNs) show recent promise in NLP, they are not standalone replacements for transformers. Rather, recent research explores combining transformers and GNNs. Existing GNN-based approaches rely on static graph construction methods requiring excessive text processing, and most of them are not scalable with the increasing document and word counts. We address these limitations by proposing a novel dynamic graph construction method for text documents based on vector visibility graphs (VVGs) generated from transformer output. Then, we introduce visibility pooler (VISPool), a scalable model architecture that seamlessly integrates VVG convolutional networks into transformer pipelines. We evaluate the proposed model on the General Language Understanding Evaluation (GLUE) benchmark datasets. VISPool outperforms the baselines with less trainable parameters, demonstrating the viability of the visibility-based graph construction method for enhancing transformers with GNNs.
pdf
bib
abs
The Emotion Dynamics of Literary Novels
Krishnapriya Vishnubhotla
|
Adam Hammond
|
Graeme Hirst
|
Saif Mohammad
Stories are rich in the emotions they exhibit in their narratives and evoke in the readers. The emotional journeys of the various characters within a story are central to their appeal. Computational analysis of the emotions of novels, however, has rarely examined the variation in the emotional trajectories of the different characters within them, instead considering the entire novel to represent a single story arc. In this work, we use character dialogue to distinguish between the emotion arcs of the narration and the various characters. We analyze the emotion arcs of the various characters in a dataset of English literary novels using the framework of Utterance Emotion Dynamics. Our findings show that the narration and the dialogue largely express disparate emotions through the course of a novel, and that the commonalities or differences in the emotional arcs of stories are more accurately captured by those associated with individual characters.
pdf
bib
abs
Accurate and Nuanced Open-QA Evaluation Through Textual Entailment
Peiran Yao
|
Denilson Barbosa
Open-domain question answering (Open-QA) is a common task for evaluating large language models (LLMs). However, current Open-QA evaluations are criticized for the ambiguity in questions and the lack of semantic understanding in evaluators. Complex evaluators, powered by foundation models or LLMs and pertaining to semantic equivalence, still deviate from human judgments by a large margin. We propose to study the entailment relations of answers to identify more informative and more general system answers, offering a much closer evaluation to human judgment on both NaturalQuestions and TriviaQA while being learning-free. The entailment-based evaluation we propose allows the assignment of bonus or partial marks by quantifying the inference gap between answers, enabling a nuanced ranking of answer correctness that has higher AUC than current methods.
pdf
bib
abs
Dictionary-Aided Translation for Handling Multi-Word Expressions in Low-Resource Languages
Antonios Dimakis
|
Stella Markantonatou
|
Antonios Anastasopoulos
Multi-word expressions (MWEs) present unique challenges in natural language processing (NLP), particularly within the context of translation systems, due to their inherent scarcity, non-compositional nature, and other distinct lexical and morphosyntactic characteristics, issues that are exacerbated in low-resource settings.In this study, we elucidate and attempt to address these challenges by leveraging a substantial corpus of human-annotated Greek MWEs. To address the complexity of translating such phrases, we propose a novel method leveraging an available out-of-context lexicon.We assess the translation capabilities of current state-of-the-art systems on this task, employing both automated metrics and human evaluators.We find that by using our method when applicable, the performance of current systems can be significantly improved, however these models are still unable to produce translations comparable to those of a human speaker.
pdf
bib
abs
LANS: A Layout-Aware Neural Solver for Plane Geometry Problem
Zhong-Zhi Li
|
Ming-Liang Zhang
|
Fei Yin
|
Cheng-Lin Liu
Geometry problem solving (GPS) is a challenging mathematical reasoning task requiring multi-modal understanding, fusion, and reasoning. Existing neural solvers take GPS as a vision-language task but are short in the representation of geometry diagrams that carry rich and complex layout information. In this paper, we propose a layout-aware neural solver named LANS, integrated with two new modules: multimodal layout-aware pre-trained language module (MLA-PLM) and layout-aware fusion attention (LA-FA). MLA-PLM adopts structural-semantic pre-training (SSP) to implement global relationship modeling, and point-match pre-training (PMP) to achieve alignment between visual points and textual points. LA-FA employs a layout-aware attention mask to realize point-guided cross-modal fusion for further boosting layout awareness of LANS. Extensive experiments on datasets Geometry3K and PGPS9K validate the effectiveness of the layout-aware modules and superior problem-solving performance of our LANS solver, over existing symbolic and neural solvers. We have made our code and data publicly available.
pdf
bib
abs
Knowledge Crosswords: Geometric Knowledge Reasoning with Large Language Models
Wenxuan Ding
|
Shangbin Feng
|
Yuhan Liu
|
Zhaoxuan Tan
|
Vidhisha Balachandran
|
Tianxing He
|
Yulia Tsvetkov
We propose Knowledge Crosswords, a geometric knowledge reasoning benchmark consisting of incomplete knowledge networks bounded by structured factual constraints, where LLMs are tasked with inferring the missing facts to meet all constraints. The novel setting of geometric knowledge reasoning necessitates new LM abilities beyond existing atomic/linear multi-hop QA, such as backtracking, verifying facts and constraints, reasoning with uncertainty, and more. Knowledge Crosswords contains 2,101 individual problems, covering diverse knowledge domains, and is further divided into three difficulty levels. We conduct extensive experiments to evaluate existing LLMs and approaches on Knowledge Crosswords. Results demonstrate that baseline approaches struggle with larger knowledge networks and semantically-equivalent entity distractors. In light of their limitations, we propose two new approaches, Staged Prompting and Verify-All, to augment LLMs’ abilities for error-aware backtracking and constraint verification. Our Verify-All significantly outperforms prior methods and is more robust towards problems in the hard subset. Further analysis shows that geometric knowledge reasoning poses new challenges to LLMs’ knowledge abilities, particularly in robustness towards varying option orders, complex structural constraints in knowledge networks, “none of the above” scenarios, and more.
pdf
bib
abs
DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
Herun Wan
|
Shangbin Feng
|
Zhaoxuan Tan
|
Heng Wang
|
Yulia Tsvetkov
|
Minnan Luo
Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
pdf
bib
abs
The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts
Lingfeng Shen
|
Weiting Tan
|
Sihao Chen
|
Yunmo Chen
|
Jingyu Zhang
|
Haoran Xu
|
Boyuan Zheng
|
Philipp Koehn
|
Daniel Khashabi
As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages,we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction.
pdf
bib
abs
Self-Specialization: Uncovering Latent Expertise within Large Language Models
Junmo Kang
|
Hongyin Luo
|
Yada Zhu
|
Jacob Hansen
|
James Glass
|
David Cox
|
Alan Ritter
|
Rogerio Feris
|
Leonid Karlinsky
Recent works have demonstrated the effectiveness of self-alignment in which a large language model is aligned to follow general instructions using instructional data generated from the model itself starting from a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine, finance). As a preliminary, we quantitively show the marginal effect that generic instruction-following training has on downstream expert domains’ performance. To remedy this, we propose self-specialization - allowing for effective model specialization while achieving cross-task generalization by leveraging only a few labeled seeds. Self-specialization offers a data- and parameter-efficient way of “carving out” an expert model out of a generalist pre-trained LLM. Exploring a variety of popular open large models as a base for specialization, our experimental results in both biomedical and financial domains show that our self-specialized models outperform their base models by a large margin, and even larger models that are generally instruction-tuned or that have been adapted to the target domain by other means.
pdf
bib
abs
FUSE: Measure-Theoretic Compact Fuzzy Set Representation for Taxonomy Expansion
Fred Xu
|
Song Jiang
|
Zijie Huang
|
Xiao Luo
|
Shichang Zhang
|
Yuanzhou Chen
|
Yizhou Sun
Taxonomy Expansion, which relies on modeling concepts and concept relations, can be formulated as a set representation learning task. The generalization of set, fuzzy set, incorporates uncertainty and measures the information within a semantic concept, making it suitable for concept modeling. Existing works usually model sets as vectors or geometric objects such as boxes, which are not closed under set operations. In this work, we propose a sound and efficient formulation of set representation learning based on its volume approximation as a fuzzy set. The resulting embedding framework, Fuzzy Set Embedding, satisfies all set operations and compactly approximates the underlying fuzzy set, hence preserving information while being efficient to learn, relying on minimum neural architecture. We empirically demonstrate the power of FUSE on the task of taxonomy expansion, where FUSE achieves remarkable improvements up to 23% compared with existing baselines. Our work marks the first attempt to understand and efficiently compute the embeddings of fuzzy sets.
pdf
bib
abs
Chain of Logic: Rule-Based Reasoning with Large Language Models
Sergio Servantez
|
Joe Barrow
|
Kristian Hammond
|
Rajiv Jain
Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.
pdf
bib
abs
Merging Facts, Crafting Fallacies: Evaluating the Contradictory Nature of Aggregated Factual Claims in Long-Form Generations
Cheng-Han Chiang
|
Hung-yi Lee
Long-form generations from large language models (LLMs) contain a mix of factual and non-factual claims, making evaluating factuality difficult.Prior works evaluate the factuality of a long paragraph by decomposing it into multiple facts, verifying those facts independently, and aggregating the results.Such methods assume that combining factual claims forms a factual paragraph.The above assumption can be violated: we show that strong open-source models like Llama-chat can generate paragraphs that contain verifiable facts, but the facts are combined into a non-factual paragraph due to entity ambiguity.We further reveal that existing factuality metrics, including FActScore and citation recall, cannot properly evaluate these non-factual paragraphs and overestimate their factuality.To address this, we introduce an enhanced metric, **D-FActScore**, specifically designed for content with ambiguous entities.We evaluate the D-FActScores of people biographies generated by retrieval-augmented LLMs.We show that D-FActScore can better assess the factuality of paragraphs with entity ambiguity than FActScore.We also find that four widely used open-source LLMs tend to mix information of distinct entities to form non-factual paragraphs, making their D-FActScore much lower than FActScore by over 10%.
pdf
bib
abs
Can You Learn Semantics Through Next-Word Prediction? The Case of Entailment
William Merrill
|
Zhaofeng Wu
|
Norihito Naka
|
Yoon Kim
|
Tal Linzen
Do LMs infer the semantics of text from co-occurrence patterns in their training data? Merrill et al. (2022) argue that, in theory, sentence co-occurrence probabilities predicted by an optimal LM should reflect the entailment relationship of the constituent sentences, but it is unclear whether probabilities predicted by neural LMs encode entailment in this way because of strong assumptions made by Merrill et al. (namely, that humans always avoid redundancy). In this work, we investigate whether their theory can be used to decode entailment relations from neural LMs. We find that a test similar to theirs can decode entailment relations between natural sentences, well above random chance, though not perfectly, across many datasets and LMs. This suggests LMs implicitly model aspects of semantics to predict semantic effects on sentence co-occurrence patterns. However, we find the test that predicts entailment in practice works in the opposite direction to the theoretical test. We thus revisit the assumptions underlying the original test, finding its derivation did not adequately account for redundancy in human-written text. We argue that better accounting for redundancy related to *explanations* might derive the observed flipped test and, more generally, improve computational models of speakers in linguistics.
pdf
bib
abs
Simulated Misinformation Susceptibility (SMISTS): Enhancing Misinformation Research with Large Language Model Simulations
Weicheng Ma
|
Chunyuan Deng
|
Aram Moossavi
|
Lili Wang
|
Soroush Vosoughi
|
Diyi Yang
Psychological inoculation, a strategy designed to build resistance against persuasive misinformation, has shown efficacy in curbing its spread and mitigating its adverse effects at early stages. Despite its effectiveness, the design and optimization of these inoculations typically demand substantial human and financial resources, primarily due to the need for repeated experimental trials. To address these challenges, this paper introduces Simulated Misinformation Susceptibility Tests (SMISTs), leveraging Large Language Models (LLMs) to simulate participant responses in misinformation studies. SMIST employs a life experience-driven simulation methodology, which accounts for various aspects of participants’ backgrounds, to mitigate common issues of caricatures and stereotypes in LLM simulations and enhance response diversity. Our extensive experimentation demonstrates that SMIST, utilizing GPT-4 as the backend model, yields results that align closely with those obtained from human-subject studies in misinformation susceptibility. This alignment suggests that LLMs can effectively serve as proxies in evaluating the impact of psychological inoculations. Moreover, SMIST offers the critical benefit of being applicable to emerging or anticipated misinformation scenarios without exposing human participants to potentially harmful content. This characteristic of SMIST not only preserves participant safety but also expands the scope of misinformation research to include more sensitive or speculative topics.
pdf
bib
abs
Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future
Minzhi Li
|
Weiyan Shi
|
Caleb Ziems
|
Diyi Yang
As Natural Language Processing (NLP) systems become increasingly integrated into human social life, these technologies will need to increasingly rely on social intelligence. Although there are many valuable datasets that benchmark isolated dimensions of social intelligence, there does not yet exist any body of work to join these threads into a cohesive subfield in which researchers can quickly identify research gaps and future directions. Towards this goal, we build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets. Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models’ performance in different social intelligence aspects. Our analyses demonstrate its utility in enabling a thorough understanding of current data landscape and providing a holistic perspective on potential directions for future dataset development. We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
pdf
bib
abs
Selective Prefix Tuning for Pre-trained Language Models
Hongyi Zhang
|
Zuchao Li
|
Ping Wang
|
Hai Zhao
The prevalent approach for optimizing pre-trained language models in downstream tasks is fine-tuning. However, it is both time-consuming and memory-inefficient. In response, a more efficient method called Prefix Tuning, which insert learnable vectors into each Transformer layers, has been proposed and proven effective. Recent investigations reveal that prefix tokens carry context-specific information, prompting the hypothesis that enhancing their specialization can improve model performance. To address this, we propose Selective Prefix Tuning (SPT), integrating a selective mechanism inspired by selective self-attention. Additionally, we introduce Selective Loss (SL) to encourage diversity in prefix tokens. Extensive experiments validate the effectiveness of SPT in sentence and token classification tasks. We contribute insight into understanding the role of prefix in model adaptation.
pdf
bib
abs
MODABS: Multi-Objective Learning for Dynamic Aspect-Based Summarization
Xiaobo Guo
|
Soroush Vosoughi
The rapid proliferation of online content necessitates effective summarization methods, among which dynamic aspect-based summarization stands out. Unlike its traditional counterpart, which assumes a fixed set of known aspects, this approach adapts to the varied aspects of the input text. We introduce a novel multi-objective learning framework employing a Longformer-Encoder-Decoder for this task. The framework optimizes aspect number prediction, minimizes disparity between generated and reference summaries for each aspect, and maximizes dissimilarity across aspect-specific summaries. Extensive experiments show our method significantly outperforms baselines on three diverse datasets, largely due to the effective alignment of generated and reference aspect counts without sacrificing single-aspect summarization quality.
pdf
bib
abs
Non-compositional Expression Generation and its Continual Learning
Jianing Zhou
|
Suma Bhat
Non-compositional expressions are an integral part of natural language and their meanings cannot be directly derived from the meanings of their component words. Recent work has shown how their processing remains a challenge for pre-trained language models. Here we consider the fact that prior knowledge of their component words is inadequate to infer their meaning as a whole and that these expressions constitute a long-tailed process in language (based on their occurrence in corpora and their coming into use as an idiomatic expression in a continual manner). Against this backdrop, this paper studies the ability of recent pre-trained language models to generate non-compositional expressions in English and their continual learning. Formulating this as a mask infilling task termed as CLoNE, the study uncovers the combined challenges of non-compositionality and their continual learning. Using a set of three diverse idiomatic expression datasets repurposed for this task, we benchmark different large pre-trained language models and different continual learning methods on the task of non-compositional expression generation. Our experiments on the CLoNE task show that large pre-trained language models are limited in their ability to generate non-compositional expressions and available continual learning methods are inadequate for our proposed CLoNE task which calls for more effective methods for continual learning of non-compositionality. Our datasets and code will be released publicly upon acceptance.
pdf
bib
abs
Medical Dialogue System: A Survey of Categories, Methods, Evaluation and Challenges
Xiaoming Shi
|
Zeming Liu
|
Li Du
|
Yuxuan Wang
|
Hongru Wang
|
Yuhang Guo
|
Tong Ruan
|
Jie Xu
|
Xiaofan Zhang
|
Shaoting Zhang
This paper surveys and organizes research works of medical dialog systems, which is an important yet challenging task. Although these systems have been surveyed in the medical community from an application perspective, a systematic review from a rigorous technical perspective has to date remained noticeably absent. As a result, an overview of the categories, methods, evaluation of medical dialogue systems remain limited and underspecified, hindering the further improvement of this area. To fill this gap, we investigate an initial pool of 325 papers from well-known computer science, natural language processing conferences and journals, and make an overview. Recently, large language models have shown strong model capacity on downstream tasks, which also reshape medical dialog systems’ foundation.Despite the alluring practical application value, current medical dialogue systems still suffer from problems. To this end, this paper lists grand challenges of medical dialog systems, especially of large language models.
pdf
bib
abs
Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs
Thi Nguyen
|
Linhao Luo
|
Fatemeh Shiri
|
Dinh Phung
|
Yuan-Fang Li
|
Thuy-Trang Vu
|
Gholamreza Haffari
Large language models (LLMs) have demonstrated strong reasoning abilities when prompted to generate chain-of-thought (CoT) explanations alongside answers. However, previous research on evaluating LLMs has solely focused on answer accuracy, neglecting the correctness of the generated CoT. In this paper, we delve deeper into the CoT reasoning capabilities of LLMs in multi-hop question answering by utilizing knowledge graphs (KGs). We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs’ knowledge of reasoning and the accuracy of the generated CoT. Through experiments conducted on 5 different families of LLMs across 2 multi-hop question-answering datasets, we find that LLMs possess sufficient knowledge to perform reasoning. However, there exists a significant disparity between answer accuracy and faithfulness of the CoT generated by LLMs, indicating that they often arrive at correct answers through incorrect reasoning.
pdf
bib
abs
Comprehensive Abstractive Comment Summarization with Dynamic Clustering and Chain of Thought
Longyin Zhang
|
Bowei Zou
|
Jacintha Yi
|
AiTi Aw
Real-world news comments pose a significant challenge due to their noisy and ambiguous nature, which complicates their modeling for clustering and summarization tasks. Most previous research has predominantly focused on extractive summarization methods within specific constraints. This paper concentrates on Clustering and Abstractive Summarization of online news Comments (CASC). First, we introduce an enhanced fast clustering algorithm that maintains a dynamic similarity threshold to ensure the high density of each comment cluster being built. Moreover, we pioneer the exploration of tuning Large Language Models (LLMs) through a chain-of-thought strategy to generate summaries for each comment cluster. On the other hand, a notable challenge in CASC research is the scarcity of evaluation data. To address this problem, we design an annotation scheme and contribute a manual test suite tailored for CASC. Experimental results on the test suite demonstrate the effectiveness of our improvements to the baseline methods. In addition, the quantitative and qualitative analyses illustrate the adaptability of our approach to real-world news comment scenarios.
pdf
bib
abs
Self-Supervised Position Debiasing for Large Language Models
Zhongkun Liu
|
Zheng Chen
|
Mengqi Zhang
|
Zhaochun Ren
|
Pengjie Ren
|
Zhumin Chen
Fine-tuning has been demonstrated to be an effective method to improve the domain performance of large language models (LLMs). However, LLMs might fit the dataset bias and shortcuts for prediction, leading to poor generation performance. Previous works have proven that LLMs are prone to exhibit position bias, i.e., leveraging information positioned at the beginning or end, or specific positional cues within the input. Existing debiasing methods for LLMs require external bias knowledge or annotated non-biased samples, which is lacking for position debiasing and impractical in reality. In this work, we propose a self-supervised position debiasing (SOD) framework to mitigate position bias for LLMs. SOD leverages unsupervised responses from pre-trained LLMs for debiasing without relying on any external knowledge. To improve the quality of unsupervised responses, we propose an objective alignment (OAM) module to prune these responses. Experiments on eight datasets and five tasks show that SOD consistently outperforms existing methods in mitigating three types of position biases. Besides, SOD achieves this by sacrificing only a small performance on biased samples, which is general and effective. To facilitate the reproducibility of the results, we share the code of all methods and datasets on https://github.com/LZKSKY/SOD.
pdf
bib
abs
HyperCL: A Contrastive Learning Framework for Hyper-Relational Knowledge Graph Embedding with Hierarchical Ontology
Yuhuan Lu
|
Weijian Yu
|
Xin Jing
|
Dingqi Yang
Knowledge Graph (KG) embeddings are essential for link prediction over KGs. Compared to triplets, hyper-relational facts consisting of a base triplet and an arbitrary number of key-value pairs, can better characterize real-world facts and have aroused various hyper-relational embedding techniques recently. Nevertheless, existing works seldom consider the ontology of KGs, which is beneficial to link prediction tasks. A few studies attempt to incorporate the ontology information, by either utilizing the ontology as constraints on entity representations or jointly learning from hyper-relational facts and the ontology. However, existing approaches mostly overlook the ontology hierarchy and suffer from the dominance issue of facts over ontology, resulting in suboptimal performance. Against this background, we propose a universal contrastive learning framework for hyper-relational KG embeddings (HyperCL), which is flexible to integrate different hyper-relational KG embedding methods and effectively boost their link prediction performance. HyperCL designs relation-aware Graph Attention Networks to capture the hierarchical ontology and a concept-aware contrastive loss to alleviate the dominance issue. We evaluate HyperCL on three real-world datasets in different link prediction tasks. Experimental results show that HyperCL consistently boosts the performance of state-of-the-art baselines with an average improvement of 3.1-7.4% across the three datasets.
pdf
bib
abs
Encoding Hierarchical Schema via Concept Flow for Multifaceted Ideology Detection
Songtao Liu
|
Bang Wang
|
Wei Xiang
|
Han Xu
|
Minghua Xu
Multifaceted ideology detection (MID) aims to detect the ideological leanings of texts towards multiple facets. Previous studies on ideology detection mainly focus on one generic facet and ignore label semantics and explanatory descriptions of ideologies, which are a kind of instructive information and reveal the specific concepts of ideologies. In this paper, we develop a novel concept semantics-enhanced framework for the MID task. Specifically, we propose a bidirectional iterative concept flow (BICo) method to encode multifaceted ideologies. BICo enables the concepts to flow across levels of the schema tree and enriches concept representations with multi-granularity semantics. Furthermore, we explore concept attentive matching and concept-guided contrastive learning strategies to guide the model to capture ideology features with the learned concept semantics. Extensive experiments on the benchmark dataset show that our approach achieves state-of-the-art performance in MID, including in the cross-topic scenario.
pdf
bib
abs
Character-Level Chinese Dependency Parsing via Modeling Latent Intra-Word Structure
Yang Hou
|
Zhenghua Li
Revealing the syntactic structure of sentences in Chinese poses significant challenges for word-level parsers due to the absence of clear word boundaries. To facilitate a transition from word-level to character-level Chinese dependency parsing, this paper proposes modeling latent internal structures within words. In this way, each word-level dependency tree is interpreted as a forest of character-level trees. A constrained Eisner algorithm is implemented to ensure the compatibility of character-level trees, guaranteeing a single root for intra-word structures and establishing inter-word dependencies between these roots. Experiments on Chinese treebanks demonstrate the superiority of our method over both the pipeline framework and previous joint models. A detailed analysis reveals that a coarse-to-fine parsing strategy empowers the model to predict more linguistically plausible intra-word structures.
pdf
bib
abs
AlignRE: An Encoding and Semantic Alignment Approach for Zero-Shot Relation Extraction
Zehan Li
|
Fu Zhang
|
Jingwei Cheng
Zero-shot Relation Extraction (ZSRE) aims to predict unseen relations between entity pairs from input sentences. Existing prototype-based ZSRE methods encode relation descriptions into prototype embeddings and predict by measuring the similarity between sentence embeddings and prototype embeddings. However, these methods often overlook abundant side information of relations and suffer from a significant encoding gap between prototypes and sentences, limiting performance. To this end, we propose a framework named AlignRE, based on two Alignment methods for ZSRE. Specifically, we present a novel perspective centered on encoding schema alignment to enhance prototype-based ZSRE methods. We utilize well-designed prompt-tuning to bridge the encoding gap. To improve prototype quality, we explore and leverage multiple side information and propose a prototype aggregation method based on semantic alignment to create comprehensive relation prototype representations. We conduct experiments on FewRel and Wiki-ZSL datasets and consistently outperform state-of-the-art methods. Moreover, our method exhibits substantially faster performance and reduces the need for extensive manual labor in prototype construction. Code is available at https://github.com/lizehan1999/AlignRE.
pdf
bib
abs
Disperse-Then-Merge: Pushing the Limits of Instruction Tuning via Alignment Tax Reduction
Tingchen Fu
|
Deng Cai
|
Lemao Liu
|
Shuming Shi
|
Rui Yan
Supervised fine-tuning (SFT) on instruction-following corpus is a crucial approach toward the alignment of large language models (LLMs). However, the performance of LLMs on standard knowledge and reasoning benchmarks tends to suffer from deterioration at the latter stage of the SFT process, echoing the phenomenon of alignment tax. Through our pilot study, we put a hypothesis that the data biases are probably one cause behind the phenomenon. To address the issue, we introduce a simple disperse-then-merge framework. To be concrete, we disperse the instruction-following data into portions and then train multiple sub-models using different data portions. Lastly, we merge multiple models into a single one via model merging techniques. Despite its simplicity, our framework outperforms various sophisticated methods such as data curation and training regularization on a series of standard knowledge and reasoning benchmarks.
pdf
bib
abs
Efficient Knowledge Infusion via KG-LLM Alignment
Zhouyu Jiang
|
Ling Zhong
|
Mengshu Sun
|
Jun Xu
|
Rui Sun
|
Hui Cai
|
Shuhan Luo
|
Zhiqiang Zhang
To tackle the problem of domain-specific knowledge scarcity within large language models (LLMs), knowledge graph-retrievalaugmented method has been proven to be an effective and efficient technique for knowledge infusion. However, existing approaches face two primary challenges: knowledge mismatch between public available knowledge graphs and the specific domain of the task at hand, and poor information compliance of LLMs with knowledge graphs. In this paper, we leverage a small set of labeled samples and a large-scale corpus to efficiently construct domain-specific knowledge graphs by an LLM, addressing the issue of knowledge mismatch. Additionally, we propose a three-stage KG-LLM alignment strategy to enhance the LLM’s capability to utilize information from knowledge graphs. We conduct experiments with a limited-sample setting on two biomedical question-answering datasets, and the results demonstrate that our approach outperforms existing baselines.
pdf
bib
abs
Towards Precise Localization of Critical Errors in Machine Translation
Dahyun Jung
|
Sugyeong Eo
|
Heuiseok Lim
The advent of large language models has experienced a remarkable improvement in the field of machine translation. However, machine translation is still vulnerable to critical meaning deviations, which may incur catastrophic issues in social or ethical contexts. In particular, existing critical error detection primarily focuses on identifying sentence-level errors, leaving the precise localization of such errors within the sentence unaddressed. In this paper, we introduce a new task, word-level critical error detection (WCED), to detect critical errors at a fine-grained level in machine translation sentences. The task aims to identify the parts of a machine translation that contain catastrophic meaning distortions. We hypothesize that the ability to determine errors at the sentence level will positively influence the detection of more granular errors. We propose a sentence-level error detection module to predict which words in a sentence have critical errors. Experimental results demonstrate that our method outperforms existing methodologies and LLM in En-De, Zh-En, En-Ru, and En-Ko. Our method is helpful for determining the fine-grained location of errors. We hope that such studies will improve the capacity to address critical errors adeptly.
pdf
bib
abs
LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning
Mingyang Zhang
|
Hao Chen
|
Chunhua Shen
|
Zhen Yang
|
Linlin Ou
|
Xinyi Yu
|
Bohan Zhuang
Large Language Models (LLMs), such as LLaMA and T5, have shown exceptional performance across various tasks through fine-tuning. Although low-rank adaption (LoRA) has emerged to cheaply fine-tune these LLMs on downstream tasks, their deployment is still hindered by the vast model scale and computational costs. Post-training model pruning offers a way to compress LLMs. However, the current pruning methods designed for LLMs are not compatible with LoRA. This is due to their utilization of unstructured pruning on LLMs, impeding the merging of LoRA weights, or their dependence on the gradients of pre-trained weights to guide pruning, which can impose significant memory overhead.To this end, we propose LoRAPrune, a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner. Specifically, we first design a LoRA-guided pruning criterion, which uses the weights and gradients of LoRA, rather than the gradients of pre-trained weights for importance estimation. We subsequently integrate this criterion into an iterative pruning process, effectively removing redundant channels and heads. Extensive experimental results demonstrate the superior performance of our LoRAPrune over existing approaches on the LLaMA series models.At a 50% compression rate, LoRAPrune demonstrates superior performance over LLM-Pruner, achieving a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.Besides, LoRAPrune also matches semi-structural pruning across multiple LLMs, proving its wide applicability. The code is available at https://github.com/aim-uofa/LoRAPrune.
pdf
bib
abs
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
Jiahao Liu
|
Qifan Wang
|
Jingang Wang
|
Xunliang Cai
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
pdf
bib
abs
Towards Better Utilization of Multi-Reference Training Data for Chinese Grammatical Error Correction
Yumeng Liu
|
Zhenghua Li
|
HaoChen Jiang
|
Bo Zhang
|
Chen Li
|
Ji Zhang
For the grammatical error correction (GEC) task, there usually exist multiple correction ways for an erroneous input sentence, leading to multiple references. Observing the high proportion of multi-reference instances in Chinese GEC training data, we target a systematic study on how to better utilize multi-reference training data. We propose two new approaches and a simple two-stage training strategy. We compare them against previously proposed approaches, on two Chinese training datasets, i.e., Lang-8 for second language learner texts and FCGEC-Train for native speaker texts, and three test datasets. The experiments and analyses demonstrate the effectiveness of our proposed approaches and reveal interesting insights. Our code is available at https://github.com/ymliucs/MrGEC.
pdf
bib
abs
AgentTuning: Enabling Generalized Agent Abilities for LLMs
Aohan Zeng
|
Mingdao Liu
|
Rui Lu
|
Bowen Wang
|
Xiao Liu
|
Yuxiao Dong
|
Jie Tang
Open large language models (LLMs) with great performance in various tasks have significantly advanced the development of LLMs. However, they are far inferior to commercial models such as ChatGPT and GPT-4 when acting as agents to tackle complex tasks in the real world. These agent tasks employ LLMs as the central controller responsible for planning, memorization, and tool utilization, necessitating both fine-grained prompting methods and robust LLMs to achieve satisfactory performance. Though many prompting methods have been proposed to complete particular agent tasks, there is lack of research focusing on improving the agent capabilities of LLMs themselves without compromising their general abilities. In this work, we present AgentTuning, a simple and general method to enhance the agent abilities of LLMs while maintaining their general LLM capabilities. We construct AgentInstruct, a lightweight instruction-tuning dataset containing high-quality interaction trajectories. We employ a hybrid instruction-tuning strategy by combining AgentInstruct with open-source instructions from general domains. AgentTuning is used to instruction-tune the Llama 2 series, resulting in AgentLM. Our evaluations show that AgentTuning enables LLMs’ agent capabilities without compromising general abilities. The AgentLM-70B is comparable to GPT-3.5-turbo on unseen agent tasks, demonstrating generalized agent capabilities. We open source the AgentInstruct and AgentLM-7B, 13B, and 70B models at https://anonymous.4open.science/r/AgentTuning, serving open and powerful alternatives to commercial LLMs for agent tasks.
pdf
bib
abs
Transition-based Opinion Generation for Aspect-based Sentiment Analysis
Tianlai Ma
|
Zhongqing Wang
|
Guodong Zhou
Recently, the use of pre-trained generation models for extracting sentiment elements has resulted in significant advancements in aspect-based sentiment analysis benchmarks. However, these approaches often overlook the importance of explicitly modeling structure among sentiment elements. To address this limitation, we present a study that aims to integrate general pre-trained sequence-to-sequence language models with a structure-aware transition-based approach. Therefore, we propose a transition system for opinion tree generation, designed to better exploit pre-trained language models for structured fine-tuning. Our proposed transition system ensures the structural integrity of the generated opinion tree. By leveraging pre-trained generation models and simplifying the transition set, we are able to maximize the accuracy of opinion tree generation. Extensive experiments show that our model significantly advances the state-of-the-art performance on several benchmark datasets. In addition, the empirical studies also indicate that the proposed opinion tree generation with transition system is more effective in capturing the sentiment structure than other generation models.
pdf
bib
abs
Modeling Dynamic Topics in Chain-Free Fashion by Evolution-Tracking Contrastive Learning and Unassociated Word Exclusion
Xiaobao Wu
|
Xinshuai Dong
|
Liangming Pan
|
Thong Nguyen
|
Anh Tuan Luu
Dynamic topic models track the evolution of topics in sequential documents, which have derived various applications like trend analysis. However, existing models suffer from repetitive topic and unassociated topic issues, failing to reveal the evolution and hindering further applications. To address these issues, we break the tradition of simply chaining topics in existing work and propose a novel neural Chain-Free Dynamic Topic Model. We introduce a new evolution-tracking contrastive learning method that builds the similarity relations among dynamic topics. This not only tracks topic evolution but also maintains topic diversity, mitigating the repetitive topic issue. To avoid unassociated topics, we further present an unassociated word exclusion method that consistently excludes unassociated words from discovered topics. Extensive experiments demonstrate our model significantly outperforms state-of-the-art baselines, tracking topic evolution with high-quality topics, showing better performance on downstream tasks, and remaining robust to the hyperparameter for evolution intensities.
pdf
bib
abs
A Chinese Dataset for Evaluating the Safeguards in Large Language Models
Yuxia Wang
|
Zenan Zhai
|
Haonan Li
|
Xudong Han
|
Shom Lin
|
Zhenxuan Zhang
|
Angela Zhao
|
Preslav Nakov
|
Timothy Baldwin
Many studies have demonstrated that large language models (LLMs) can produce harmful responses, exposing users to unexpected risks. Previous studies have proposed comprehensive taxonomies of LLM risks, as well as corresponding prompts that can be used to examine LLM safety. However, the focus has been almost exclusively on English. We aim to broaden LLM safety research by introducing a dataset for the safety evaluation of Chinese LLMs, and extending it to better identify false negative and false positive examples in terms of risky prompt rejections. We further present a set of fine-grained safety assessment criteria for each risk type, facilitating both manual annotation and automatic evaluation in terms of LLM response harmfulness. Our experiments over five LLMs show that region-specific risks are the prevalent risk type. Warning: this paper contains example data that may be offensive, harmful, or biased. Our data is available at https://github.com/Libr-AI/do-not-answer.
pdf
bib
abs
LLMFactor: Extracting Profitable Factors through Prompts for Explainable Stock Movement Prediction
Meiyun Wang
|
Kiyoshi Izumi
|
Hiroki Sakaji
Recently, Large Language Models (LLMs) have attracted significant attention for their exceptional performance across a broad range of tasks, particularly in text analysis. However, the finance sector presents a distinct challenge due to its dependence on time-series data for complex forecasting tasks. In this study, we introduce a novel framework called LLMFactor, which employs Sequential Knowledge-Guided Prompting (SKGP) to identify factors that influence stock movements using LLMs. Unlike previous methods that relied on keyphrases or sentiment analysis, this approach focuses on extracting factors more directly related to stock market dynamics, providing clear explanations for complex temporal changes. Our framework directs the LLMs to create background knowledge through a fill-in-the-blank strategy and then discerns potential factors affecting stock prices from related news. Guided by background knowledge and identified factors, we leverage historical stock prices in textual format to predict stock movement. An extensive evaluation of the LLMFactor framework across four benchmark datasets from both the U.S. and Chinese stock markets demonstrates its superiority over existing state-of-the-art methods and its effectiveness in financial time-series forecasting.
pdf
bib
abs
You Only Look at Screens: Multimodal Chain-of-Action Agents
Zhuosheng Zhang
|
Aston Zhang
Autonomous graphical user interface (GUI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, most existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-GUI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique—leveraging a series of intermediate previous action histories and future action plans—to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-GUI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-GUI.
pdf
bib
abs
SP3: Enhancing Structured Pruning via PCA Projection
Yuxuan Hu
|
Jing Zhang
|
Zhe Zhao
|
Chen Zhao
|
Xiaodong Chen
|
Cuiping Li
|
Hong Chen
Structured pruning is a widely used technique for reducing the size of pre-trained language models (PLMs), but current methods often overlook the potential of compressing the hidden dimension d in PLMs, a dimension critical to model size and efficiency. This paper introduces a novel structured pruning approach, Structured Pruning with PCA Projection ( SP3), targeting the effective reduction of d by projecting features into a space defined by principal components before masking. Extensive experiments on benchmarks (GLUE and SQuAD) show that can reduce d by 70%, compress 94% of the BERTbase model, and maintain over 96% accuracy and outperform other methods that compress d by 6% in accuracy at the same compression ratio. SP3 has also proven effective with other models, including OPT and Llama.Our data and code are available at https://github.com/hyx1999/SP3
pdf
bib
abs
GENDEX: Generative Data Augmentation Strategy Leveraging External Data for Abstractive Dialogue Summarization
Sangwon Park
|
Hongseok Choi
|
Dongha Choi
|
Hyunju Lee
With the proliferation of digital communication, dialogue summarization has become increasingly important. However, it still faces a shortage of data. To address this issue, we developed **Gen**erative **D**ata Augmentation Strategy Leveraging **Ex**ternal Data for Abstractive Dialogue Summarization (**GENDEX**), which is based on the hypothetical foundation that texts containing people and their interpersonal interactions can potentially serve as summaries of corresponding dialogues. We filter short texts containing people and resolve coreferences for better contextual analysis. We then identify the semantic roles of words within the texts and filter them based on the patterns observed in the dialogue summarization datasets. Using these texts, we generate synthetic dialogues through a controlled generation method. To better leverage the augmented data, we utilize noise-tolerant training to fine-tune the summarization model. The experimental results demonstrate the effectiveness of our proposed method, showing its robust performance, generalizability, and scalability. Moreover, performance improvements by *GENDEX* were observed regardless of complexity of dialogues. The code is available at https://github.com/DMCB-GIST/GENDEX.
pdf
bib
abs
Concept-Best-Matching: Evaluating Compositionality In Emergent Communication
Boaz Carmeli
|
Yonatan Belinkov
|
Ron Meir
Artificial agents that learn to communicate in order to accomplish a given task acquire communication protocols that are typically opaque to a human. A large body of work has attempted to evaluate the emergent communication via various evaluation measures, with **compositionality** featuring as a prominent desired trait. However, current evaluation procedures do not directly expose the compositionality of the emergent communication. We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts.The best-match algorithm provides both a global score and a translation-map from emergent words to natural language concepts. To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.
pdf
bib
abs
A Tale of Two Revisions: Summarizing Changes Across Document Versions
Santosh T.y.s.s
|
Natwar Modani
|
Apoorv Saxena
Document revision is a crucial aspect of the writing process, particularly in collaborative environments where multiple authors contribute simultaneously. However, current tools lack an efficient way to provide a comprehensive overview of changes between versions, leading to difficulties in understanding revisions. To address this, we propose a novel task of providing thematic summary of changes between document versions, organizing individual edits based on shared themes. We assess capabilities of LLMs on this task and further introduce three strategies to tackle this task: (i) representing the input of two documents along with edits in the ‘diff’ format (ii) a two-stage task decomposition with individual edit description generation as an intermediate task and (iii) clustering based chunking and subsequent merging techniques for handling longer documents. Our experiments demonstrate the effectiveness of our approach in improving the model’s capacity to handle this complex task. Additionally, we introduce ChangeSumm, a curated dataset comprising human-written thematic summaries for pairs of document versions, to facilitate evaluation and further research in this direction.
pdf
bib
abs
Refine, Align, and Aggregate: Multi-view Linguistic Features Enhancement for Aspect Sentiment Triplet Extraction
Guixin Su
|
Mingmin Wu
|
Zhongqiang Huang
|
Yongcheng Zhang
|
Tongguan Wang
|
Yuxue Hu
|
Ying Sha
Aspect Sentiment Triplet Extraction (ASTE) aims to extract the triplets of aspect terms, their associated sentiment and opinion terms. Previous works based on different modeling paradigms have achieved promising results. However, these methods struggle to comprehensively explore the various specific relations between sentiment elements in multi-view linguistic features, which is the prior indication effect for facilitating sentiment triplets extraction, requiring to align and aggregate them to capture the complementary higher-order interactions. In this paper, we propose Multi-view Linguistic Features Enhancement (MvLFE) to explore the aforementioned prior indication effect in the “Refine, Align, and Aggregate” learning process. Specifically, we first introduce the relational graph attention network to encode the word-pair relations represented by each linguistic feature and refine them to pay more attention to the aspect-opinion pairs. Next, we employ the multi-view contrastive learning to align them at a fine-grained level in the contextual semantic space to maintain semantic consistency. Finally, we utilize the multi-semantic cross attention to capture and aggregate the complementary higher-order interactions between diverse linguistic features to enhance the aspect-opinion relations. Experimental results on several benchmark datasets show the effectiveness and robustness of our model, which achieves state-of-the-art performance.
pdf
bib
abs
Pro-Woman, Anti-Man? Identifying Gender Bias in Stance Detection
Yingjie Li
|
Yue Zhang
Gender bias has been widely observed in NLP models, which has the potential to perpetuate harmful stereotypes and discrimination. In this paper, we construct a dataset GenderStance of 36k samples to measure gender bias in stance detection, determining whether models consistently predict the same stance for a particular gender group. We find that all models are gender-biased and prone to classify sentences that contain male nouns as Against and those with female nouns as Favor. Moreover, extensive experiments indicate that sources of gender bias stem from the fine-tuning data and the foundation model itself. We will publicly release our code and dataset.
pdf
bib
abs
Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Masanari Ohi
|
Masahiro Kaneko
|
Ryuto Koike
|
Mengsay Loem
|
Naoaki Okazaki
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics.However, the likelihood, a measure of LLM’s plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure.It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods.In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators.We also propose a method to mitigate the likelihood bias.Our method utilizes highly biased instances as few-shot examples for in-context learning.Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias.Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
pdf
bib
abs
The Music Maestro or The Musically Challenged, A Massive Music Evaluation Benchmark for Large Language Models
Jiajia Li
|
Lu Yang
|
Mingni Tang
|
Chenchong Chenchong
|
Zuchao Li
|
Ping Wang
|
Hai Zhao
Benchmark plays a pivotal role in assessing the advancements of large language models (LLMs). While numerous benchmarks have been proposed to evaluate LLMs’ capabilities, there is a notable absence of a dedicated benchmark for assessing their musical abilities. To address this gap, we present ZIQI-Eval, a comprehensive and large-scale music benchmark specifically designed to evaluate the music-related capabilities of LLMs.ZIQI-Eval encompasses a wide range of questions, covering 10 major categories and 56 subcategories, resulting in over 14,000 meticulously curated data entries. By leveraging ZIQI-Eval, we conduct a comprehensive evaluation over 16 LLMs to evaluate and analyze LLMs’ performance in the domain of music.Results indicate that all LLMs perform poorly on the ZIQI-Eval benchmark, suggesting significant room for improvement in their musical capabilities.With ZIQI-Eval, we aim to provide a standardized and robust evaluation framework that facilitates a comprehensive assessment of LLMs’ music-related abilities. The dataset is available at GitHub and HuggingFace.
pdf
bib
abs
PyramidInfer: Pyramid KV Cache Compression for High-throughput LLM Inference
Dongjie Yang
|
Xiaodong Han
|
Yan Gao
|
Yao Hu
|
Shilin Zhang
|
Hai Zhao
Large Language Models (LLMs) have shown remarkable comprehension abilities but face challenges in GPU memory usage during inference, hindering their scalability for real-time applications like chatbots. To accelerate inference, we store computed keys and values (KV cache) in the GPU memory. Existing methods study the KV cache compression to reduce memory by pruning the pre-computed KV cache. However, they neglect the inter-layer dependency between layers and huge memory consumption in pre-computation. To explore these deficiencies, we find that the number of crucial keys and values that influence future generations decreases layer by layer and we can extract them by the consistency in attention weights. Based on the findings, we propose PyramidInfer, a method that compresses the KV cache by layer-wise retaining crucial context. PyramidInfer saves significant memory by computing fewer keys and values without sacrificing performance. Experimental results show PyramidInfer improves 2.2x throughput compared to Accelerate with over 54% GPU memory reduction in KV cache.
pdf
bib
abs
From Role-Play to Drama-Interaction: An LLM Solution
Weiqi Wu
|
Hongqiu Wu
|
Lai Jiang
|
Xingyuan Liu
|
Hai Zhao
|
Min Zhang
Drama is a form of storytelling inspired by human creativity, proceeding with a predefined storyline, carrying emotions and thoughts.This paper introduces LLM-based interactive drama, which endows traditional drama with an unprecedented immersion, where a person is allowed to walk into it and interact with the characters and scenes.We define this new artistic genre by 6 essential elements—plot, character, thought, diction, spectacle and interaction—and study the entire pipeline to forge a backbone drama LLM to drive the playing process, which is challenged by limited drama resources, uncontrollable narrative development, and complicated instruction following.We propose Narrative Chain to offer finer control over the narrative progression during interaction with players;Auto-Drama to synthesize drama scripts given arbitrary stories;Sparse Instruction Tuning to allow the model to follow sophisticated instructions.We manually craft 3 scripts, Detective Conan, Harry Potter, Romeo and Juliet, and design a 5-dimension principle to evaluate the drama LLM comprehensively.
pdf
bib
abs
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
Jaewoo Ahn
|
Taehyun Lee
|
Junyoung Lim
|
Jin-Hwa Kim
|
Sangdoo Yun
|
Hwaran Lee
|
Gunhee Kim
While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users’ narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters’ identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.
pdf
bib
abs
Red Teaming Visual Language Models
Mukai Li
|
Lei Li
|
Yuwei Yin
|
Masood Ahmed
|
Zhenguang Liu
|
Qi Liu
VLMs (Vision-Language Models) extend the capabilities of LLMs (Large Language Models) to accept multimodal inputs. Since it has been verified that LLMs can be induced to generate harmful or inaccurate content through specific test cases (termed as Red Teaming), how VLMs perform in similar scenarios, especially with their combination of textual and visual inputs, remains a question. To explore this problem, we present a novel red teaming dataset RTVLM, which encompasses 12 subtasks (e.g., image misleading, multi-modal jailbreaking, face fairness, etc) under 4 primary aspects (faithfulness, privacy, safety, fairness). Our RTVLM is the first red teaming dataset to benchmark current VLMs in terms of these 4 different aspects. Detailed analysis shows that 10 prominent open-sourced VLMs struggle with the red teaming in different degrees and have up to 31% performance gap with GPT-4V. Additionally, we simply apply red teaming alignment to LLaVA-v1.5 with Supervised Fine-tuning (SFT) using RTVLM, and this bolsters the models’ performance with 10% in RTVLM test set, 13% in MM-hallu, and without noticeable decline in MM-Bench, overpassing other LLaVA-based models in similar size with regular alignment data. This reveals that current open-sourced VLMs still lack red teaming alignment. Our code and datasets will be open-sourced.
pdf
bib
abs
Enhancing Semantic Consistency of Large Language Models through Model Editing: An Interpretability-Oriented Approach
Jingyuan Yang
|
Dapeng Chen
|
Yajing Sun
|
Rongjun Li
|
Zhiyong Feng
|
Wei Peng
A Large Language Model (LLM) tends to generate inconsistent and sometimes contradictory outputs when presented with a prompt that has equivalent semantics but is expressed differently from the original prompt. To achieve semantic consistency of an LLM, one of the key approaches is to finetune the model with prompt-output pairs with semantically equivalent meanings. Despite its effectiveness, a data-driven finetuning method incurs substantial computation costs in data preparation and model optimization. In this regime, an LLM is treated as a “black box”, restricting our ability to gain deeper insights into its internal mechanism. In this paper, we are motivated to enhance the semantic consistency of LLMs through a more interpretable method (i.e., model editing) to this end. We first identify the model components (i.e., attention heads) that have a key impact on the semantic consistency of an LLM. We subsequently inject biases into the output of these model components along the semantic-consistency activation direction. It is noteworthy that these modifications are cost-effective, without reliance on mass manipulations of the original model parameters. Through comprehensive experiments on the constructed NLU and open-source NLG datasets, our method demonstrates significant improvements in the semantic consistency and task performance of LLMs. Additionally, our method exhibits promising generalization capabilities by performing well on tasks beyond the primary tasks.
pdf
bib
abs
Semantic Skill Grounding for Embodied Instruction-Following in Cross-Domain Environments
Sangwoo Shin
|
SeungHyun Kim
|
Youngsoo Jang
|
Moontae Lee
|
Honguk Woo
In embodied instruction-following (EIF), the integration of pretrained language models (LMs) as task planners emerges as a significant branch, where tasks are planned at the skill level by prompting LMs with pretrained skills and user instructions. However, grounding these pretrained skills in different domains remains challenging due to their intricate entanglement with the domain-specific knowledge. To address this challenge, we present a semantic skill grounding (SemGro) framework that leverages the hierarchical nature of semantic skills. SemGro recognizes the broad spectrum of these skills, ranging from short-horizon low-semantic skills that are universally applicable across domains to long-horizon rich-semantic skills that are highly specialized and tailored for particular domains. The framework employs an iterative skill decomposition approach, starting from the higher levels of semantic skill hierarchy and then moving downwards, so as to ground each planned skill to an executable level within the target domain. To do so, we use the reasoning capabilities of LMs for composing and decomposing semantic skills, as well as their multi-modal extension for assessing the skill feasibility in the target domain. Our experiments in the VirtualHome benchmark show the efficacy of SemGro in 300 cross-domain EIF scenarios.
pdf
bib
abs
LIRE: listwise reward enhancement for preference alignment
Mingye Zhu
|
Yi Liu
|
Lei Zhang
|
Junbo Guo
|
Zhendong Mao
Recently, tremendous strides have been made to align the generation of Large Language Models (LLMs) with human values to mitigate toxic or unhelpful content. Leveraging Reinforcement Learning from Human Feedback (RLHF) proves effective and is widely adopted by researchers. However, implementing RLHF is complex, and its sensitivity to hyperparameters renders achieving stable performance and scalability challenging. Furthermore, prevailing approaches to preference alignment primarily concentrate on pairwise comparisons, with limited exploration into multi-response scenarios, thereby overlooking the potential richness within the candidate pool. For the above reasons, we propose a new approach: Listwise Reward Enhancement for Preference Alignment (LIRE), a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework, thus eliminating the need for online sampling during training. LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm while naturally extending to multi-response scenarios. Moreover, we introduce a self-enhancement algorithm aimed at iteratively refining the reward during training. Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks, with good transferability to out-of-distribution data, assessed using proxy reward models and human annotators.
pdf
bib
abs
See It All: Contextualized Late Aggregation for 3D Dense Captioning
Minjung Kim
|
Hyung Lim
|
Seung Hwan Kim
|
Soonyoung Lee
|
Bumsoo Kim
|
Gunhee Kim
3D dense captioning is a task to localize objects in a 3D scene and generate descriptive sentences for each object. Recent approaches in 3D dense captioning have adopted transformer encoder-decoder frameworks from object detection to build an end-to-end pipeline without hand-crafted components. However, these approaches struggle with contradicting objectives where a single query attention has to simultaneously view both the tightly localized object regions and contextual environment. To overcome this challenge, we introduce SIA (See-It-All), a transformer pipeline that engages in 3D dense captioning with a novel paradigm called late aggregation. SIA simultaneously decodes two sets of queries—context query and instance query. The instance query focuses on localization and object attribute descriptions, while the context query versatilely captures the region-of-interest of relationships between multiple objects or with the global scene, then aggregated afterwards (i.e., late aggregation) via simple distance-based measures. To further enhance the quality of contextualized caption generation, we design a novel aggregator to generate a fully informed caption based on the surrounding context, the global environment, and object instances. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
pdf
bib
abs
DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
Haishuo Fang
|
Xiaodan Zhu
|
Iryna Gurevych
Answering Questions over Knowledge Graphs (KGQA) is key to well-functioning autonomous language agents in various real-life applications. To improve the neural-symbolic reasoning capabilities of language agents powered by Large Language Models (LLMs) in KGQA, we propose the Decomposition-Alignment-Reasoning Agent (DARA) framework. DARA effectively parses questions into formal queries through a dual mechanism: high-level iterative task decomposition and low-level task grounding. Importantly, DARA can be efficiently trained with a small number of high-quality reasoning trajectories. Our experimental results demonstrate that DARA fine-tuned on LLMs (e.g. Llama-2-7B, Mistral) outperforms both in-context learning-based agents with GPT-4 and alternative fine-tuned agents, across different benchmarks, making such models more accessible for real-life applications. We also show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.
pdf
bib
abs
GKT: A Novel Guidance-Based Knowledge Transfer Framework For Efficient Cloud-edge Collaboration LLM Deployment
Yao Yao
|
Zuchao Li
|
Hai Zhao
The burgeoning size of Large Language Models (LLMs) has led to enhanced capabilities in generating responses, albeit at the expense of increased inference times and elevated resource demands. Existing methods of acceleration, predominantly hinged on knowledge distillation, generally necessitate fine-tuning of considerably large models, such as Llama-7B, posing a challenge for average users. Furthermore, present techniques for expediting inference and reducing costs operate independently. To address these issues, we introduce a novel and intuitive Guidance-based Knowledge Transfer (GKT) framework. This approach leverages a larger LLM as a ”teacher” to create guidance prompts, paired with a smaller ”student” model to finalize responses. Remarkably, GKT requires no fine-tuning and doesn’t necessitate the teacher and student models to have the same vocabulary, allowing for extensive batch generation to accelerate the process while ensuring user customization. GKT can be seamlessly integrated into cloud-edge collaboration architectures, and is versatile enough for plug-and-play application across various models. It excels in both efficiency and affordability, epitomizing a ”cheap and cheerful” solution. GKT achieves a maximum accuracy improvement of 14.18%, along with a 10.72 times speed-up on GSM8K and an accuracy improvement of 14.00 % along with a 7.73 times speed-up in CSQA. When utilizing ChatGPT as teacher model and Llama2-70B as the student model, we can achieve 95.00% of ChatGPT’s performance at 52% of the cost. The results highlight substantial enhancements in accuracy and processing speed on the GSM8K and CSQA datasets, surpassing the performance of using either the student or teacher models in isolation.
pdf
bib
abs
Compositional Generalization with Grounded Language Models
Sondre Wold
|
Étienne Simon
|
Lucas Charpentier
|
Egor Kostylev
|
Erik Velldal
|
Lilja Øvrelid
Grounded language models use external sources of information, such as knowledge graphs, to meet some of the general challenges associated with pre-training. By extending previous work on compositional generalization in semantic parsing, we allow for a controlled evaluation of the degree to which these models learn and generalize from patterns in knowledge graphs. We develop a procedure for generating natural language questions paired with knowledge graphs that targets different aspects of compositionality and further avoids grounding the language models in information already encoded implicitly in their weights. We evaluate existing methods for combining language models with knowledge graphs and find them to struggle with generalization to sequences of unseen lengths and to novel combinations of seen base components. While our experimental results provide some insight into the expressive power of these models, we hope our work and released datasets motivate future research on how to better combine language models with structured knowledge representations.
pdf
bib
abs
Rethinking Negative Instances for Generative Named Entity Recognition
Yuyang Ding
|
Juntao Li
|
Pinzheng Wang
|
Zecheng Tang
|
Yan Bowen
|
Min Zhang
Large Language Models (LLMs) have demonstrated impressive capabilities for generalizing in unseen tasks. In the Named Entity Recognition (NER) task, recent advancements have seen the remarkable improvement of LLMs in a broad range of entity domains via instruction tuning, by adopting entity-centric schema. In this work, we explore the potential enhancement of the existing methods by incorporating negative instances into training. Our experiments reveal that negative instances contribute to remarkable improvements by (1) introducing contextual information, and (2) clearly delineating label boundaries. Furthermore, we introduce an efficient longest common subsequence (LCS) matching algorithm, which is tailored to transform unstructured predictions into structured entities. By integrating these components, we present GNER, a Generative NER system that shows improved zero-shot performance across unseen entity domains. Our comprehensive evaluation illustrates our system’s superiority, surpassing state-of-the-art (SoTA) methods by 9 F1 score in zero-shot evaluation.
pdf
bib
abs
WilKE: Wise-Layer Knowledge Editor for Lifelong Knowledge Editing
Chenhui Hu
|
Pengfei Cao
|
Yubo Chen
|
Kang Liu
|
Jun Zhao
Knowledge editing aims to rectify inaccuracies in large language models (LLMs) without costly retraining for outdated or erroneous knowledge. However, current knowledge editing methods primarily focus on single editing, failing to meet the requirements for lifelong editing. This study reveals a performance degradation encountered by knowledge editing in lifelong editing, characterized by toxicity buildup and toxicity flash, with the primary cause identified as pattern unmatch. We introduce a knowledge editing approach named Wise-Layer Knowledge Editor (WilKE), which selects editing layer based on the pattern matching degree of editing knowledge across different layers in language models. Experimental results demonstrate that, in lifelong editing, WilKE exhibits an average improvement of 46.2% and 67.8% on editing GPT2-XL and GPT-J relative to state-of-the-art knowledge editing methods.
pdf
bib
abs
DINER: Debiasing Aspect-based Sentiment Analysis with Multi-variable Causal Inference
Jialong Wu
|
Linhai Zhang
|
Deyu Zhou
|
Guoqiang Xu
Though notable progress has been made, neural-based aspect-based sentiment analysis (ABSA) models are prone to learn spurious correlations from annotation biases, resulting in poor robustness on adversarial data transformations. Among the debiasing solutions, causal inference-based methods have attracted much research attention, which can be mainly categorized into causal intervention methods and counterfactual reasoning methods. However, most of the present debiasing methods focus on single-variable causal inference, which is not suitable for ABSA with two input variables (the target aspect and the review). In this paper, we propose a novel framework based on multi-variable causal inference for debiasing ABSA. In this framework, different types of biases are tackled based on different causal intervention methods. For the review branch, the bias is modeled as indirect confounding from context, where backdoor adjustment intervention is employed for debiasing. For the aspect branch, the bias is described as a direct correlation with labels, where counterfactual reasoning is adopted for debiasing. Extensive experiments demonstrate the effectiveness of the proposed method compared to various baselines on the two widely used real-world aspect robustness test set datasets.
pdf
bib
abs
STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
Linhai Zhang
|
Jialong Wu
|
Deyu Zhou
|
Guoqiang Xu
Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
pdf
bib
abs
How Much Does Nonverbal Communication Conform to Entropy Rate Constancy?: A Case Study on Listener Gaze in Interaction
Yu Wang
|
Yang Xu
|
Gabriel Skantze
|
Hendrik Buschmeier
According to the Entropy Rate Constancy (ERC) principle, the information density of a text is approximately constant over its length. Whether this principle also applies to nonverbal communication signals is still under investigation. We perform empirical analyses of video-recorded dialogue data and investigate whether listener gaze, as an important nonverbal communication signal, adheres to the ERC principle. Results show (1) that the ERC principle holds for listener gaze; and (2) that the two linguistic factors syntactic complexity and turn transition potential are weakly correlated with local entropy of listener gaze.
pdf
bib
abs
Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation
Xu Huang
|
Zhirui Zhang
|
Xiang Geng
|
Yichao Du
|
Jiajun Chen
|
Shujian Huang
This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task, aiming to better understand the mechanisms behind their remarkable performance in this task.We design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information.We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive, indicating LLMs’ inability to fully leverage the cross-lingual capability when evaluating translations.Further analysis of the fine-grained evaluation and fine-tuning experiments show similar results.These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.
pdf
bib
abs
Chain-of-Verification Reduces Hallucination in Large Language Models
Shehzaad Dhuliawala
|
Mojtaba Komeili
|
Jing Xu
|
Roberta Raileanu
|
Xian Li
|
Asli Celikyilmaz
|
Jason Weston
Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models. We study the ability of language models to deliberate on the responses they give in order to correct their mistakes. We develop the Chain-of-Verification (CoVe) method whereby the model first (i) drafts an initial response; then (ii) plans verification questions to fact-check its draft; (iii) answers those questions independently so the answers are not biased by other responses; and (iv) generates its final verified response. In experiments, we show CoVe decreases hallucinations across a variety of tasks, from list-based questions from Wikidata, closed book MultiSpanQA and longform text generation.
pdf
bib
abs
Measuring Bargaining Abilities of LLMs: A Benchmark and A Buyer-Enhancement Method
Tian Xia
|
Zhiwei He
|
Tong Ren
|
Yibo Miao
|
Zhuosheng Zhang
|
Yang Yang
|
Rui Wang
Bargaining is an important and unique part of negotiation between humans. As LLM-driven agents learn to negotiate and act like real humans, how to evaluate agents’ bargaining abilities remains an open problem.For the first time, we formally described the Bargaining task as an asymmetric incomplete information game, defining the gains of the Buyer and Seller in multiple bargaining processes. It allows us to quantitatively assess an agent’s performance in the Bargain task.We collected a real product price dataset, AmazonHistoryPrice, and conducted evaluations of various LLM agents’ bargaining abilities. We find that playing a Buyer is much harder than a Seller, and increasing model size can not effectively improve the Buyer’s performance.To address the challenge, we propose a novel approach called OG-Narrator that integrates a deterministic Offer Generator to control the price range of Buyer’s offers, and an LLM Narrator to create natural language sentences for generated offers.Experimental results show that OG-Narrator improves the buyer’s deal rates from 26.67% to 88.88% and brings a ten times multiplication of profits on all baselines, even a model that has not been aligned.
pdf
bib
abs
DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories
Jia Li
|
Ge Li
|
Yunfei Zhao
|
Yongmin Li
|
Huanyu Liu
|
Hao Zhu
|
Lecheng Wang
|
Kaibo Liu
|
Zheng Fang
|
Lanshen Wang
|
Jiazheng Ding
|
Xuanming Zhang
|
Yuqi Zhu
|
Yihong Dong
|
Zhi Jin
|
Binhua Li
|
Fei Huang
|
Yongbin Li
|
Bin Gu
|
Mengfei Yang
How to evaluate the coding abilities of Large Language Models (LLMs) remains an open question. We find that existing benchmarks are poorly aligned with real-world code repositories and are insufficient to evaluate the coding abilities of LLMs.To address the knowledge gap, we propose a new benchmark named DevEval, which has three advances. (1) DevEval aligns with real-world repositories in multiple dimensions, e.g., code and dependency distributions. (2) DevEval is annotated by 13 developers and contains comprehensive annotations (e.g., requirements, original repositories, reference code, and reference dependencies). (3) DevEval comprises 1,825 testing samples from 115 repositories, covering 10 popular domains (e.g., Internet, Database). Based on DevEval, we propose repository-level code generation and evaluate 8 popular LLMs on DevEval (e.g., gpt-4, gpt-3.5, StarCoder 2, DeepSeek Coder, CodeLLaMa). Our experiments reveal these LLMs’ coding abilities in real-world code repositories. For example, the highest Pass@1 of gpt-4 only is 53.04% in our experiments. We also analyze LLMs’ failed cases and summarize their shortcomings. We hope DevEval can facilitate the development of LLMs in real code repositories. DevEval, prompts, and LLMs’ predictions have been released.
pdf
bib
abs
LPNL: Scalable Link Prediction with Large Language Models
Baolong Bi
|
Shenghua Liu
|
Yiwei Wang
|
Lingrui Mei
|
Xueqi Cheng
Exploring the application of large language models (LLMs) to graph learning is an emerging endeavor. However, the vast amount of information inherent in large graphs poses significant challenges to graph learning with LLMs. This work focuses on the link prediction task and introduces **LPNL** (Link Prediction via Natural Language), a framework based on large language models designed for scalable link prediction on large-scale heterogeneous graphs. We design novel prompts for link prediction that articulate graph details in natural language. We propose a two-stage sampling pipeline to extract crucial information from the graphs, and a divide-and-conquer strategy to control the input tokens within predefined limits, addressing the challenge of overwhelming information. We fine-tune a T5 model based on our self-supervised learning designed for link prediction. Extensive experimental results demonstrate that LPNL outperforms multiple advanced baselines in link prediction tasks on large-scale graphs.
pdf
bib
abs
Aligning Speech Segments Beyond Pure Semantics
Kevin Heffernan
|
Artyom Kozhevnikov
|
Loic Barrault
|
Alexandre Mourachko
|
Holger Schwenk
Multilingual parallel data for speech-to-speech translation is scarce and expensive to create from scratch. This is all the more true for expressive speech translation, which aims at preserving not only the semantics, but also the overall prosody (e.g. style, emotion, rate-of-speech). Existing corpora contain speech utterances with the same meaning, yet the overall prosody is typically different, as human annotators are not tasked with reproducing these aspects, or crowed-sourced efforts do not specifically target this kind of alignment in priority. In this paper, we propose a novel alignment algorithm, which automatically forms pairs of speech segments aligned not only in meaning, but also in expressivity. In order to validate our approach, we train an expressive multilingual speech-to-speech translation system on the automatically aligned data. Our experiments show that in comparison to semantic-only approaches, expressively aligned data yields large improvements in source expressivity preservation (e.g. 43% uplift in speech rate preservation on average), while still maintaining content translation quality. In some scenarios, results also indicate that this alignment algorithm can outperform standard, semantic-focused approaches even on content translation quality.
pdf
bib
abs
Video-Language Understanding: A Survey from Model Architecture, Model Training, and Data Perspectives
Thong Nguyen
|
Yi Bin
|
Junbin Xiao
|
Leigang Qu
|
Yicong Li
|
Jay Zhangjie Wu
|
Cong-Duy Nguyen
|
See-Kiong Ng
|
Anh Tuan Luu
Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.
pdf
bib
abs
Generative Input: Towards Next-Generation Input Methods Paradigm
Keyu Ding
|
Yongcan Wang
|
Zihang Xu
|
Zhenzhen Jia
|
Enhong Chen
Since the release of ChatGPT, generative models have achieved tremendous success and become the de facto approach for various NLP tasks. However, its application in the field of input methods remains under-explored. Many neural network approaches have been applied to the construction of Chinese input method engines (IMEs). Previous research often assumed that the input pinyin was correct and focused on Pinyin-to-character (P2C) task, which significantly falls short of meeting users’ demands. Moreover, previous research could not leverage user feedback to optimize the model and provide personalized results. In this study, we propose a novel Generative Input paradigm named GeneInput. It uses prompts to handle all input scenarios and other intelligent auxiliary input functions, optimizing the model with user feedback. The results demonstrate that we have achieved state-of-the-art performance for the first time in the Full-mode Key-sequence to Characters task. GeneInput also includes RLHF-IME, a novel RLHF application framework for input method, that eliminates the need for manual ranking annotations and the performance surpasses GPT-4. Relevant resources have been open-sourced.
pdf
bib
abs
A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential
Wei Tang
|
Yixin Cao
|
Jiahao Ying
|
Bo Wang
|
Yuyue Zhao
|
Yong Liao
|
Pengyuan Zhou
Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs). Targeting its bottleneck of retriever performance, “generate-then-read” pipeline is proposed to replace the retrieval stage with generation from the LLM itself. Although promising, this research direction is underexplored and still cannot work in the scenario when source knowledge is given. In this paper, we formalize a general “A + B” framework with varying combinations of foundation models and types for systematic investigation. We explore the efficacy of the base and chat versions of LLMs and found their different functionalities suitable for generator A and reader B, respectively. Their combinations consistently outperform single models, especially in complex scenarios. Furthermore, we extend the application of the “A + B” framework to scenarios involving source documents through continuous learning, enabling the direct integration of external knowledge into LLMs. This approach not only facilitates effective acquisition of new knowledge but also addresses the challenges of safety and helpfulness post-adaptation. The paper underscores the versatility of the “A + B” framework, demonstrating its potential to enhance the practical application of LLMs across various domains.
pdf
bib
abs
Functional Overlap Reranking for Neural Code Generation
Hung To
|
Minh Nguyen
|
Nghi Bui
Code Large Language Models (CodeLLMs) have ushered in a new era in code generation advancements. However, selecting the best code solutions from all possible CodeLLM outputs remains a challenge. Previous methods often overlooked the intricate functional similarities and interactions between solution clusters. We introduce SRank, a novel reranking strategy for selecting the best solutions from code generation, focusing on modeling the relationships between clusters of solutions. By quantifying the functional overlap between solution clusters, our approach provides a better ranking strategy for code solutions. Empirical results show that our method achieves remarkable results on the pass@1 score. For instance, on the Human-Eval benchmark, we achieve 69.66% in pass@1 with Codex002, 75.31% with WizardCoder, 53.99% with StarCoder, and 60.55% with CodeGen, surpassing state-of-the-art code generation reranking methods such as CodeT and Coder-Reviewer on the same CodeLLM by a significant margin approx 6.1% improvement on average. Even in scenarios with a limited number of sampled solutions and test cases, our approach demonstrates robustness and superiority, marking a new benchmark in code generation reranking. Our implementation can be found at https://github.com/FSoft-AI4Code/SRank-CodeRanker.
pdf
bib
abs
Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game
Pengyu Cheng
|
Yifan Yang
|
Jian Li
|
Yong Dai
|
Tianhao Hu
|
Peixin Cao
|
Nan Du
|
Xiaolong Li
Human preference alignment is essential to improve the interaction quality of large language models (LLMs). Existing alignment methods depend on manually annotated preference data to guide the LLM optimization directions. However, continuously updating LLMs for alignment raises a distribution gap between model-generated samples and human-annotated responses, hindering training effectiveness. To mitigate this issue, previous methods require additional preference annotation on newly generated samples to adapt to the shifted distribution, which consumes a large amount of annotation resources. Targeting more efficient human preference optimization, we propose an Adversarial Preference Optimization (APO) framework, in which the LLM and the reward model update alternatively via a min-max game. Through adversarial training, the reward model can adapt to the shifted generation distribution of the LLM without any additional annotation. With comprehensive experiments, we find the proposed adversarial training framework further enhances existing alignment baselines in terms of LLM helpfulness and harmlessness. The code is at https://github.com/Linear95/APO.
pdf
bib
abs
Pinpointing Diffusion Grid Noise to Enhance Aspect Sentiment Quad Prediction
Linan Zhu
|
Xiangfan Chen
|
Xiaolei Guo
|
Chenwei Zhang
|
Zhechao Zhu
|
Zehai Zhou
|
Xiangjie Kong
Aspect sentiment quad prediction (ASQP) has garnered significant attention in aspect-based sentiment analysis (ABSA). Current ASQP research primarily relies on pre-trained generative language models to produce templated sequences, often complemented by grid-based auxiliary methods. Despite these efforts, the persistent challenge of generation instability remains unresolved and the effectiveness of grid methods remains underexplored in current studies. To this end, we introduce Grid Noise Diffusion Pinpoint Network (GDP), a T5-based generative model aiming to tackle the issue of generation instability. The model consists of three novel modules, including Diffusion Vague Learning (DVL) to facilitate effective model learning and enhance overall robustness; Consistency Likelihood Learning (CLL) to discern the characteristics and commonalities of sentiment elements and thus reduce the impact of distributed noise; and GDP-FOR, a novel generation template, to enable models to generate outputs in a more natural way. Extensive experiments on four datasets demonstrate the remarkable effectiveness of our approach in addressing ASQP tasks.
pdf
bib
abs
Continual Contrastive Spoken Language Understanding
Umberto Cappellazzo
|
Enrico Fini
|
Muqiao Yang
|
Daniele Falavigna
|
Alessio Brutti
|
Bhiksha Raj
Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
pdf
bib
abs
LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs
Kai Wang
|
Yuwei Xu
|
Zhiyong Wu
|
Siqiang Luo
Knowledge Graph (KG) inductive reasoning, which aims to infer missing facts from new KGs that are not seen during training, has been widely adopted in various applications. One critical challenge of KG inductive reasoning is handling low-resource scenarios with scarcity in both textual and structural aspects. In this paper, we attempt to address this challenge with Large Language Models (LLMs). Particularly, we utilize the state-of-the-art LLMs to generate a graph-structural prompt to enhance the pre-trained Graph Neural Networks (GNNs), which brings us new methodological insights into the KG inductive reasoning methods, as well as high generalizability in practice. On the methodological side, we introduce a novel pretraining and prompting framework ProLINK, designed for low-resource inductive reasoning across arbitrary KGs without requiring additional training. On the practical side, we experimentally evaluate our approach on 36 low-resource KG datasets and find that ProLINK outperforms previous methods in three-shot, one-shot, and zero-shot reasoning tasks, exhibiting average performance improvements by 20%, 45%, and 147%, respectively. Furthermore, ProLINK demonstrates strong robustness for various LLM promptings as well as full-shot scenarios.
pdf
bib
abs
Unsupervised Parsing by Searching for Frequent Word Sequences among Sentences with Equivalent Predicate-Argument Structures
Junjie Chen
|
Xiangheng He
|
Danushka Bollegala
|
Yusuke Miyao
Unsupervised constituency parsing focuses on identifying word sequences that form a syntactic unit (i.e., constituents) in target sentences. Linguists identify the constituent by evaluating a set of Predicate-Argument Structure (PAS) equivalent sentences where we find the constituent appears more frequently than non-constituents (i.e., the constituent corresponds to a frequent word sequence within the sentence set). However, such frequency information is unavailable in previous parsing methods that identify the constituent by observing sentences with diverse PAS. In this study, we empirically show that constituents correspond to frequent word sequences in the PAS-equivalent sentence set. We propose a frequency-based parser, span-overlap, that (1) computes the span-overlap score as the word sequence’s frequency in the PAS-equivalent sentence set and (2) identifies the constituent structure by finding a constituent tree with the maximum span-overlap score. The parser achieves state-of-the-art level parsing accuracy, outperforming existing unsupervised parsers in eight out of ten languages. Additionally, we discover a multilingual phenomenon: participant-denoting constituents tend to have higher span-overlap scores than equal-length event-denoting constituents, meaning that the former tend to appear more frequently in the PAS-equivalent sentence set than the latter. The phenomenon indicates a statistical difference between the two constituent types, laying the foundation for future labeled unsupervised parsing research.
pdf
bib
abs
Data-Centric Explainable Debiasing for Improving Fairness in Pre-trained Language Models
Yingji Li
|
Mengnan Du
|
Rui Song
|
Xin Wang
|
Ying Wang
Human-like social bias of pre-trained language models (PLMs) on downstream tasks have attracted increasing attention. The potential flaws in the training data are the main factor that causes unfairness in PLMs. Existing data-centric debiasing strategies mainly leverage explicit bias words (defined as sensitive attribute words specific to demographic groups) for counterfactual data augmentation to balance the training data. However, they lack consideration of implicit bias words potentially associated with explicit bias words in complex distribution data, which indirectly harms the fairness of PLMs. To this end, we propose a **Data**-Centric **Debias**ing method (named Data-Debias), which uses an explainability method to search for implicit bias words to assist in debiasing PLMs. Specifically, we compute the feature attributions of all tokens using the Integrated Gradients method, and then treat the tokens that have a large impact on the model’s decision as implicit bias words. To make the search results more precise, we iteratively train a biased model to amplify the bias with each iteration. Finally, we use the implicit bias words searched in the last iteration to assist in debiasing PLMs. Extensive experimental results on multiple PLMs debiasing on three different classification tasks demonstrate that Data-Debias achieves state-of-the-art debiasing performance and strong generalization while maintaining predictive abilities.
pdf
bib
abs
Knowledge-Driven Cross-Document Relation Extraction
Monika Jain
|
Raghava Mutharaju
|
Kuldeep Singh
|
Ramakanth Kavuluru
Relation extraction (RE) is a well-known NLP application often treated as a sentence or document-level task. However, a handful of recent efforts explore it across documents or in the cross-document setting (CrossDocRE). This is distinct from the single document case because different documents often focus on disparate themes, while text within a document tends to have a single goal.Current CrossDocRE efforts do not consider domain knowledge, which are often assumed to be known to the reader when documents are authored. Here, we propose a novel approach, KXDocRE, that embed domain knowledge of entities with input text for cross-document RE. Our proposed framework has three main benefits over baselines: 1) it incorporates domain knowledge of entities along with documents’ text; 2) it offers interpretability by producing explanatory text for predicted relations between entities 3) it improves performance over the prior methods. Code and models are available at
https://github.com/kracr/cross-doc-relation-extraction.
pdf
bib
abs
Injecting Salesperson’s Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning
Wen Chang
|
Yun-Nung Chen
Recent research in dialogue systems focuses on two main categories: task-oriented (TOD) and open-domain (chit-chat) dialogues. TOD systems help users complete specific tasks, while open-domain systems aim to create engaging conversations. However, user intents often emerge during interactions. A recent study introduced SalesBot, simulating dialogues that transition from chit-chat to task-oriented scenarios to train sales agents. Unfortunately, the initial data lacked smooth transitions and coherent long dialogues, resulting in unnatural interactions. This paper presents SalesBot 2.0, an improved dataset leveraging commonsense knowledge from large language models (LLMs) through strategic prompting. Additionally, we introduce SalesAgent, a novel model trained on salesperson interactions using chain-of-thought (CoT) reasoning. This model excels in transitioning topics, understanding user intents, and selecting appropriate strategies.Experiments with diverse user simulations validate our method’s effectiveness in controlling dialogue strategies in LLMs. SalesBot 2.0 enhances coherence and reduces aggression, improving model learning for sales-customer interactions.
pdf
bib
abs
KG-Adapter: Enabling Knowledge Graph Integration in Large Language Models through Parameter-Efficient Fine-Tuning
Shiyu Tian
|
Yangyang Luo
|
Tianze Xu
|
Caixia Yuan
|
Huixing Jiang
|
Chen Wei
|
Xiaojie Wang
Although large language models (LLMs) show remarkable capabilities and generalizability across various tasks, they are criticized for lack of expertise. One promising solution is to combine knowledge graphs (KGs) with LLMs, and recent studies focus on integrating KGs into LLMs through prompt-based methods. However, these approaches fail to use the structural information of the KGs, suffer from the problem of knowledge conflict, and over-reliance on super LLMs. To address these challenges, we propose KG-Adapter, a parameter-level KG integration method based on parameter-efficient fine-tuning (PEFT). Specifically, we introduce a novel adapter structure designed for decoder-only LLMs, which can encode KGs from both node-centered and relation-centered perspectives, and then perform joint reasoning with LLMs to generate responses end-to-end. Experiments with diverse models on four datasets for two different tasks all demonstrate significant improvements. With only 28M parameters trained, we make the 7B-parameter LLM outperform the previous full-parameter fine-tuned state-of-the-art method and comparable to the prompt-based ChatGPT methods.
pdf
bib
abs
Just Ask One More Time! Self-Agreement Improves Reasoning of Language Models in (Almost) All Scenarios
Lei Lin
|
Jiayi Fu
|
Pengli Liu
|
Qingyang Li
|
Yan Gong
|
Junchen Wan
|
Fuzheng Zhang
|
Zhongyuan Wang
|
Di Zhang
|
Kun Gai
Although chain-of-thought (CoT) prompting combined with language models has achieved encouraging results on complex reasoning tasks, the naive greedy decoding used in CoT prompting usually causes the repetitiveness and local optimality. To address this shortcoming, ensemble-optimization tries to obtain multiple reasoning paths to get the final answer assembly. However, current ensemble-optimization methods either simply employ rule-based post-processing such as self-consistency, or train an additional model based on several task-related human annotations to select the best one among multiple reasoning paths, yet fail to generalize to realistic settings where the type of input questions is unknown or the answer format of reasoning paths is unknown. To avoid their limitations, we propose Self-Agreement, a generalizable ensemble-optimization method applying in almost all scenarios where the type of input questions and the answer format of reasoning paths may be known or unknown. Self-agreement firstly samples from language model’s decoder to generate a diverse set of reasoning paths, and subsequently prompts the language model one more time to determine the optimal answer by selecting the most agreed answer among the sampled reasoning paths. Self-agreement simultaneously achieves remarkable performance on six public reasoning benchmarks and superior generalization capabilities.
pdf
bib
abs
Evaluating LLMs’ Mathematical Reasoning in Financial Document Question Answering
Pragya Srivastava
|
Manuj Malik
|
Vivek Gupta
|
Tanuja Ganu
|
Dan Roth
Large Language Models (LLMs), excel in natural language understanding, but their capability for complex mathematical reasoning with a hybrid of structured tables and unstructured text remain uncertain. This study explores LLMs’ mathematical reasoning on four financial tabular question-answering datasets: TATQA, FinQA, ConvFinQA, and Multihiertt. Through extensive experiments with various models and prompting techniques, we assess how LLMs adapt to complex tables and mathematical tasks. We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps. The results provide insights into LLMs’ capabilities and limitations in handling complex mathematical scenarios for semi-structured tables. Ultimately, we introduce a novel prompting technique EEDP tailored to semi-structured documents, matching or outperforming baselines performance while providing a nuanced understanding of LLMs abilities.
pdf
bib
abs
Improving In-Context Learning with Prediction Feedback for Sentiment Analysis
Hongling Xu
|
Qianlong Wang
|
Yice Zhang
|
Min Yang
|
Xi Zeng
|
Bing Qin
|
Ruifeng Xu
Large language models (LLMs) have achieved promising results in sentiment analysis through the in-context learning (ICL) paradigm. However, their ability to distinguish subtle sentiments still remains a challenge. Inspired by the human ability to adjust understanding via feedback, this paper enhances ICL by incorporating prior predictions and feedback, aiming to rectify sentiment misinterpretation of LLMs. Specifically, the proposed framework consists of three steps: (1) acquiring prior predictions of LLMs, (2) devising predictive feedback based on correctness, and (3) leveraging a feedback-driven prompt to refine sentiment understanding. Experimental results across nine sentiment analysis datasets demonstrate the superiority of our framework over conventional ICL methods, with an average F1 improvement of 5.95%.
pdf
bib
abs
Can Large Language Models Mine Interpretable Financial Factors More Effectively? A Neural-Symbolic Factor Mining Agent Model
Zhiwei Li
|
Ran Song
|
Caihong Sun
|
Wei Xu
|
Zhengtao Yu
|
Ji-Rong Wen
Finding interpretable factors for stock returns is the most vital issue in the empirical asset pricing domain. As data-driven methods, existing factor mining models can be categorized into symbol-based and neural-based models. Symbol-based models are interpretable but inefficient, while neural-based approaches are efficient but lack interpretability. Hence, mining interpretable factors effectively presents a significant challenge. Inspired by the success of Large Language Models (LLMs) in various tasks, we propose a FActor Mining Agent (FAMA) model that enables LLMs to integrate the strengths of both neural and symbolic models for factor mining. In this paper, FAMA consists of two main components: Cross-Sample Selection (CSS) and Chain-of-Experience (CoE). CSS addresses the homogeneity challenges in LLMs during factor mining by assimilating diverse factors as in-context samples, whereas CoE enables LLMs to leverage past successful mining experiences, expediting the mining of effective factors. Experimental evaluations on real-world stock market data demonstrate the effectiveness of our approach by surpassing the SOTA RankIC by 0.006 and RankICIR by 0.105 in predicting S&P 500 returns. Furthermore, the investment simulation shows that our model can achieve superior performance with an annualized return of 38.4% and a Sharpe ratio of 667.2%.
pdf
bib
abs
Discerning and Resolving Knowledge Conflicts through Adaptive Decoding with Contextual Information-Entropy Constraint
Xiaowei Yuan
|
Zhao Yang
|
Yequan Wang
|
Shengping Liu
|
Jun Zhao
|
Kang Liu
Large language models (LLMs) internalize enormous parametric knowledge during pre-training. Concurrently, realistic applications necessitate external contextual knowledge to aid models on the underlying tasks. This raises a crucial dilemma known as knowledge conflicts, where the contextual knowledge clashes with the parametric knowledge. However, existing decoding works are specialized in resolving knowledge conflicts and could inadvertently deteriorate performance in absence of conflicts. In this paper, we propose an adaptive decoding method, termed as contextual information-entropy constraint decoding (COIECD), to discern whether the knowledge conflicts occur and resolve them. It can improve the model’s faithfulness to conflicting context, and simultaneously maintain high performance among non-conflicting context. Our experiments show that COIECD exhibits strong performance and robustness over knowledge conflicts in realistic datasets.
pdf
bib
abs
SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models
Lijun Li
|
Bowen Dong
|
Ruohui Wang
|
Xuhao Hu
|
Wangmeng Zuo
|
Dahua Lin
|
Yu Qiao
|
Jing Shao
In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose SALAD-Bench, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH
pdf
bib
abs
Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation
Pablo Messina
|
Rene Vidal
|
Denis Parra
|
Alvaro Soto
|
Vladimir Araujo
Advancing representation learning in specialized fields like medicine remains challenging due to the scarcity of expert annotations for text and images. To tackle this issue, we present a novel two-stage framework designed to extract high-quality factual statements from free-text radiology reports in order to improve the representations of text encoders and, consequently, their performance on various downstream tasks.In the first stage, we propose a
Fact Extractor that leverages large language models (LLMs) to identify factual statements from well-curated domain-specific datasets. In the second stage, we introduce a
Fact Encoder (CXRFE) based on a BERT model fine-tuned with objective functions designed to improve its representations using the extracted factual data. Our framework also includes a new embedding-based metric (CXRFEScore) for evaluating chest X-ray text generation systems, leveraging both stages of our approach. Extensive evaluations show that our fact extractor and encoder outperform current state-of-the-art methods in tasks such as sentence ranking, natural language inference, and label extraction from radiology reports. Additionally, our metric proves to be more robust and effective than existing metrics commonly used in the radiology report generation literature. The code of this project is available at
https://github.com/PabloMessina/CXR-Fact-Encoder.
pdf
bib
abs
GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network
Shuzhou Yuan
|
Ercong Nie
|
Michael Färber
|
Helmut Schmid
|
Hinrich Schuetze
Large Language Models (LLMs) exhibit strong In-Context Learning (ICL) capabilities when prompts with demonstrations are used. However, fine-tuning still remains crucial to further enhance their adaptability. Prompt-based fine-tuning proves to be an effective fine-tuning method in low-data scenarios, but high demands on computing resources limit its practicality. We address this issue by introducing a prompt-based parameter-efficient fine-tuning (PEFT) approach. GNNavi leverages insights into ICL’s information flow dynamics, which indicates that label words act in prompts as anchors for information propagation. GNNavi employs a Graph Neural Network (GNN) layer to precisely guide the aggregation and distribution of information flow during the processing of prompts by hardwiring the desired information flow into the GNN. Our experiments on text classification tasks with GPT-2 and Llama2 show GNNavi surpasses standard prompt-based fine-tuning methods in few-shot settings by updating just 0.2% to 0.5% of parameters. We compare GNNavi with prevalent PEFT approaches, such as prefix tuning, LoRA and Adapter in terms of performance and efficiency. Our analysis reveals that GNNavi enhances information flow and ensures a clear aggregation process.
pdf
bib
abs
M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering
Anand Subramanian
|
Viktor Schlegel
|
Abhinav Ramesh Kashyap
|
Thanh-Tung Nguyen
|
Vijay Prakash Dwivedi
|
Stefan Winkler
There is vivid research on adapting Large Language Models (LLMs) to perform a variety of tasks in high-stakes domains such as healthcare. Despite their popularity, there is a lack of understanding of the extent and contributing factors that allow LLMs to recall relevant knowledge and combine it with presented information in the clinical and biomedical domain: a fundamental pre-requisite for success on down-stream tasks.Addressing this gap, we use Multiple Choice and Abstractive Question Answering to conduct a large-scale empirical study on 22 datasets in three generalist and three specialist biomedical sub-domains. Our multifaceted analysis of the performance of 15 LLMs, further broken down by sub-domain, source of knowledge and model architecture, uncovers success factors such as instruction tuning that lead to improved recall and comprehension. We further show that while recently proposed domain-adapted models may lack adequate knowledge, directly fine-tuning on our collected medical knowledge datasets shows encouraging results, even generalising to unseen specialist sub-domains. We complement the quantitative results with a skill-oriented manual error analysis, which reveals a significant gap between the models’ capabilities to simply recall necessary knowledge and to integrate it with the presented context.To foster research and collaboration in this field we share M-QALM, our resources, standardised methodology, and evaluation results, with the research community to facilitate further advancements in clinical knowledge representation learning within language models.
pdf
bib
abs
MovieSum: An Abstractive Summarization Dataset for Movie Screenplays
Rohit Saxena
|
Frank Keller
Movie screenplay summarization is challenging, as it requires an understanding of long input contexts and various elements unique to movies. Large language models have shown significant advancements in document summarization, but they often struggle with processing long input contexts. Furthermore, while television transcripts have received attention in recent studies, movie screenplay summarization remains underexplored. To stimulate research in this area, we present a new dataset, MovieSum, for abstractive summarization of movie screenplays. This dataset comprises 2200 movie screenplays accompanied by their Wikipedia plot summaries. We manually formatted the movie screenplays to represent their structural elements. Compared to existing datasets, MovieSum possesses several distinctive features: 1) It includes movie screenplays which are longer than scripts of TV episodes. 2) It is twice the size of previous movie screenplay datasets. 3) It provides metadata with IMDb IDs to facilitate access to additional external knowledge. We also show the results of recently released large language models applied to summarization on our dataset to provide a detailed baseline.
pdf
bib
abs
Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality
Jiahuan Pei
|
Irene Viola
|
Haochen Huang
|
Junxiao Wang
|
Moonisa Ahsan
|
Fanghua Ye
|
Jiang Yiming
|
Yao Sai
|
Di Wang
|
Zhumin Chen
|
Pengjie Ren
|
Pablo Cesar
Autonomous artificial intelligence (AI) agents have emerged as promising protocols for automatically understanding the language-based environment, particularly with the exponential development of large language models (LLMs). However, a fine-grained, comprehensive understanding of multimodal environments remains under-explored. This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training. We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment. Specifically, we design a cerebral language agent that integrates LLM with memory, planning, and interaction with XR tools and a vision-language agent, enabling agents to decide their actions based on past experiences. Furthermore, we introduce LEGO-MRTA, a multimodal fine-grained assembly dialogue dataset synthesized automatically in the workflow served by a commercial LLM. This dataset comprises multimodal instruction manuals, conversations, XR responses, and vision question answering. Last, we present several prevailing open-resource LLMs as benchmarks, assessing their performance with and without fine-tuning on the proposed dataset. We anticipate that the broader impact of this workflow will advance the development of smarter assistants for seamless user interaction in XR environments, fostering research in both AI and HCI communities.
pdf
bib
abs
Perceptions of Language Technology Failures from South Asian English Speakers
Faye Holt
|
William Held
|
Diyi Yang
English NLP systems have empirically worse performance for dialects other than Standard American English (SAmE). However, how these discrepancies impact use of language technology by speakers of non-SAmE global Englishes is not well understood. We focus on reducing this gap for South Asian Englishes (SAsE), a macro-group of regional varieties with cumulatively more speakers than SAmE, by surveying SAsE speakers about their interactions with language technology and compare their responses to a control survey of SAmE speakers. SAsE speakers are more likely to recall failures with language technology and more likely to reference specific issues with written language technology than their SAmE counterparts. Furthermore, SAsE speakers indicate that they modify both their lexicon and syntax to make technology work better, but that lexical issues are perceived as the most salient challenge. We then assess whether these issues are pervasive in more recently developed Large Language Models (LLMs), introducing two benchmarks for broader SAsE Lexical and Indian English Syntactic understanding and evaluating 11 families of LLMs on them.
pdf
bib
abs
A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task
Jannik Brinkmann
|
Abhay Sheshadri
|
Victor Levoso
|
Paul Swoboda
|
Christian Bartelt
Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.
pdf
bib
abs
Optimal Transport Guided Correlation Assignment for Multimodal Entity Linking
Zefeng Zhang
|
Jiawei Sheng
|
Zhang Chuang
|
Liangyunzhi Liangyunzhi
|
Wenyuan Zhang
|
Siqi Wang
|
Tingwen Liu
Multimodal entity linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.
pdf
bib
abs
On Efficiently Representing Regular Languages as RNNs
Anej Svete
|
Robin Chan
|
Ryan Cotterell
Recent work by Hewitt et al. (2020) provides an interpretation of the empirical success of recurrent neural networks (RNNs) as language models (LMs). It shows that RNNs can efficiently represent bounded hierarchical structures that are prevalent in human language.This suggests that RNNs’ success might be linked to their ability to model hierarchy. However, a closer inspection of hewitt-etal-2020-rnns construction shows that it is not inherently limited to hierarchical structures. This poses a natural question: What other classes of LMs RNNs can efficiently represent? To this end, we generalize Hewitt et al.’s (2020) construction and show that RNNs can efficiently represent a larger class of LMs than previously claimed—specifically, those that can be represented by a pushdown automaton with a bounded stack and a specific stack update function. Altogether, the efficiency of representing this diverse class of LMs with RNN LMs suggests novel interpretations of their inductive bias.
pdf
bib
abs
A Survey on Modelling Morality for Text Analysis
Ines Reinig
|
Maria Becker
|
Ines Rehbein
|
Simone Ponzetto
In this survey, we provide a systematic review of recent work on modelling morality in text, an area of research that has garnered increasing attention in recent years. Our survey is motivated by the importance of modelling decisions on the created resources, the models trained on these resources and the analyses that result from the models’ predictions. We review work at the interface of NLP, Computational Social Science and Psychology and give an overview of the different goals and research questions addressed in the papers, their underlying theoretical backgrounds and the methods that have been applied to pursue these goals. We then identify and discuss challenges and research gaps, such as the lack of a theoretical framework underlying the operationalisation of morality in text, the low IAA reported for manyhuman-annotated resulting resources and the lack of validation of newly proposed resources and analyses.
pdf
bib
abs
Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection
Ruibo Chen
|
Yihan Wu
|
Lichang Chen
|
Guodong Liu
|
Qi He
|
Tianyi Xiong
|
Chenxi Liu
|
Junfeng Guo
|
Heng Huang
Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.
pdf
bib
abs
DebugBench: Evaluating Debugging Capability of Large Language Models
Runchu Tian
|
Yining Ye
|
Yujia Qin
|
Xin Cong
|
Yankai Lin
|
Yinxu Pan
|
Yesai Wu
|
Hui Haotian
|
Liu Weichuan
|
Zhiyuan Liu
|
Maosong Sun
Large Language Models (LLMs) have demonstrated exceptional coding capability. However, as another critical component of programming proficiency, the debugging capability of LLMs remains relatively unexplored. Previous evaluations of LLMs’ debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs. To overcome these deficiencies, we introduce ‘DebugBench’, an LLM debugging benchmark consisting of 4,253 instances. It covers four major bug categories and 18 minor types in C++, Java, and Python. To construct DebugBench, we collect code snippets from the LeetCode community, implant bugs into source data with GPT-4, and assure rigorous quality checks. We evaluate two commercial and four open-source models in a zero-shot scenario. We find that (1) while closed-source models exhibit inferior debugging performance compared to humans, open-source models relatively lower pass rate scores; (2) the complexity of debugging notably fluctuates depending on the bug category; (3) incorporating runtime feedback has a clear impact on debugging performance which is not always helpful. As an extension, we also compare LLM debugging and code generation, revealing a strong correlation between them for closed-source models. These findings will benefit the development of LLMs in debugging.
pdf
bib
abs
POP-CEE: Position-oriented Prompt-tuning Model for Causal Emotion Entailment
Zhihan Zhou
|
Xue Gu
|
Yujie Zhao
|
Hao Xu
The objective of the Causal Emotion Entailment (CEE) task is to identify the causes of the target emotional utterances in a given conversation. Most existing studies have focused on a fine-tuning paradigm based on a pretrained model, e.g., the BERT model. However, there are gaps between the pretrained task and the CEE task. Although a pretrained model enhances contextual comprehension to some extent, it cannot acquire specific knowledge that is relevant to the CEE task. In addition, in a typical CEE task, there are peculiarities in the distribution of the positions with different emotion types of emotion utterances and cause utterances in conversations. Existing methods employ a fixed-size window to capture the relationship between neighboring conversations; however, these methods ignore the specific semantic associations between emotions and cause utterances. To address these issues, we propose the Position-oriented Prompt-tuning (POP-CEE) model to solve the CEE task in an end-to-end manner. Specifically, we can model the CEE task by designing prompts with multiple unified goals and by exploring the positional relationship between emotion and cause utterances using a position constraint module. Experimental results demonstrate that the proposed POP-CEE model achieves state-of-the-art performance on a benchmark dataset. Ourcode and data can be found at: https://github.com/Zh0uzh/POP-CEE.
pdf
bib
abs
Context Length Extension via Generalized Extrapolation Scale
Linhan Li
|
Zhang Huaping
Context length expansion of transformer models is considered a key challenge, especially when handling context beyond the training length during inference stage. In this paper, we propose Geeneralized extrapolatioN scalE (GeNE), a set of parameterized extrapolation functions applied to each layer and attention head to adaptively adjust its extrapolation scales. Experimental results show that GeNE provides a significant improvement on long context language modeling. By randomly scaling the extrapolation ratio during the finetuning, GeNE achieves stable extrapolation on 64k contexts by training on 16k length text. Further, the instruction following Llama2 model based on GeNE achieved competitive results compared with other open-source models of the same parameter scale.
pdf
bib
abs
Selectively Answering Visual Questions
Julian Eisenschlos
|
Hernán Maina
|
Guido Ivetta
|
Luciana Benotti
Recently, large multi-modal models (LMMs) have emerged with the capacity to perform vision tasks such as captioning and visual question answering (VQA) with unprecedented accuracy. Applications such as helping the blind or visually impaired have a critical need for precise answers. It is specially important for models to be well calibrated and be able to quantify their uncertainty in order to selectively decide when to answer and when to abstain or ask for clarifications. We perform the first in-depth analysis of calibration methods and metrics for VQA with in-context learning LMMs. Studying VQA on two answerability benchmarks, we show that the likelihood score of visually grounded models is better calibrated than in their text-only counterparts for in-context learning, where sampling based methods are generally superior, but no clear winner arises. We propose Avg BLEU, a calibration score combining the benefits of both sampling and likelihood methods across modalities.
pdf
bib
abs
Wav2SQL: Direct Generalizable Speech-To-SQL Parsing
Huadai Liu
|
Rongjie Huang
|
Jinzheng He
|
Gang Sun
|
Ran Shen
|
Xize Cheng
|
Zhou Zhao
We release a multi-accent dataset and propose speech-programming and gradient reversal classifier to improve the generalization.Abstract: Speech-to-SQL (S2SQL) aims to convert spoken questions into SQL queries given relational databases, which has been traditionally implemented in a cascaded manner while facing the following challenges: 1) model training is faced with the major issue of data scarcity, where limited parallel data is available; and 2) the systems should be robust enough to handle diverse out-of-domain speech samples that differ from the source data. In this work, we propose the direct generalizable speech-to-SQL parsing model Wav2SQL which avoids error compounding across cascaded systems. Specifically, 1) to accelerate speech-driven SQL parsing research in the community, we release a large-scale and multi-accent dataset MASpider; 2) leveraging the recent progress in the large-scale pre-training, we show that it alleviates the data scarcity issue and allow for direct speech-to-SQL parsing; and 3) we include the speech re-programming and gradient reversal classifier techniques to reduce acoustic variance and learned style-agnostic representation, improving generalization to unseen out-of-domain custom data. Experimental results demonstrate that Wav2SQL avoids error compounding and achieves state-of-the-art results by up to 4.7% accuracy improvement over the baseline.
pdf
bib
abs
E2-LLM: Efficient and Extreme Length Extension of Large Language Models
Jiaheng Liu
|
ZhiqiBai ZhiqiBai
|
Yuanxing Zhang
|
Chenchen Zhang
|
YuangZh YuangZh
|
Ge Zhang
|
JiakaiWang JiakaiWang
|
Haoran Que
|
Yukang Chen
|
Wenbo Su
|
Tiezheng Ge
|
Jie Fu
|
Wenhu Chen
|
Bo Zheng
Training Large Language Models (LLMs) to process extensive context lengths incurs prohibitive computational costs. Prevailing techniques for extending context capabilities in LLMs typically require not only additional training procedures but also access to datasets with long context (e.g., sequences of 32K tokens), presupposing substantial GPU expenditures. To address the aforementioned issues, we introduce a novel solution named Efficient and Extreme length extension for Large Language Models (E2-LLM). E2-LLM entails a singular training process over considerably short sequences (e.g., 4K tokens), which greatly mitigates the cost of continual-pretraining or fine-tuning. Within the training phase, we incorporate a dual augmentation strategy with Rotary Position Embeddings (RoPE) that adjusts the scale and position indices across distinct training samples. E 2 -LLM is meticulously designed to enhance the model’s robustness to diverse relative positions. The experimental results on multiple benchmark datasets demonstrate the superior performance of E 2 -LLM on demanding tasks of processing long contexts.
pdf
bib
abs
Are Female Carpenters like Blue Bananas? A Corpus Investigation of Occupation Gender Typicality
Da Ju
|
Karen Ullrich
|
Adina Williams
People tend to use language to mention surprising properties of events: for example, when a banana is blue, we are more likely to mention color than when it is yellow. This fact is taken to suggest that yellowness is somehow a typical feature of bananas, and blueness is exceptional. Similar to how a yellow color is typical of bananas, there may also be genders that are typical of occupations. In this work, we explore this question using information theoretic techniques coupled with corpus statistic analysis. In two distinct large corpora, we do not find strong evidence that occupations and gender display the same patterns of mentioning as do bananas and color. Instead, we find that gender mentioning is correlated with femaleness of occupation in particular, suggesting perhaps that woman-dominated occupations are seen as somehow “more gendered” than male-dominated ones, and thereby they encourage more gender mentioning overall.
pdf
bib
abs
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
Sitao Cheng
|
Ziyuan Zhuang
|
Yong Xu
|
Fangkai Yang
|
Chaoyun Zhang
|
Xiaoting Qin
|
Xiang Huang
|
Ling Chen
|
Qingwei Lin
|
Dongmei Zhang
|
Saravan Rajmohan
|
Qi Zhang
Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on
https://aka.ms/readi.
pdf
bib
abs
Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts
Shubham Nigam
|
Anurag Sharma
|
Danush Khanna
|
Noel Shallum
|
Kripabandhu Ghosh
|
Arnab Bhattacharya
In the era of Large Language Models (LLMs), predicting judicial outcomes poses significant challenges due to the complexity of legal proceedings and the scarcity of expert-annotated datasets. Addressing this, we introduce Prediction with Explanation (PredEx), the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context, featuring over 15,000 annotations. This groundbreaking corpus significantly enhances the training and evaluation of AI models in legal analysis, with innovations including the application of instruction tuning to LLMs. This method has markedly improved the predictive accuracy and explanatory depth of these models for legal judgments. We employed various transformer-based models, tailored for both general and Indian legal contexts. Through rigorous lexical, semantic, and expert assessments, our models effectively leverage PredEx to provide precise predictions and meaningful explanations, establishing it as a valuable benchmark for both the legal profession and the NLP community.
pdf
bib
abs
RulE: Knowledge Graph Reasoning with Rule Embedding
Xiaojuan Tang
|
Song-Chun Zhu
|
Yitao Liang
|
Muhan Zhang
Knowledge graph reasoning is an important problem for knowledge graphs. In this paper, we propose a novel and principled framework called RulE (stands for Rule Embedding) to effectively leverage logical rules to enhance KG reasoning. Unlike knowledge graph embedding methods, RulE learns rule embeddings from existing triplets and first-order rules by jointly representing entities, relations and logical rules in a unified embedding space. Based on the learned rule embeddings, a confidence score can be calculated for each rule, reflecting its consistency with the observed triplets. This allows us to perform logical rule inference in a soft way, thus alleviating the brittleness of logic. On the other hand, RulE injects prior logical rule information into the embedding space, enriching and regularizing the entity/relation embeddings. This makes KGE alone perform better too. RulE is conceptually simple and empirically effective. We conduct extensive experiments to verify each component of RulE.Results on multiple benchmarks reveal that our model outperforms the majority of existing embedding-based and rule-based approaches.
pdf
bib
abs
Multi-Objective Linguistic Control of Large Language Models
Dang Nguyen
|
Jiuhai Chen
|
Tianyi Zhou
Large language models (LLMs), despite their breakthroughs on many challenging benchmark tasks, prefer to generate verbose responses and lack the controllability of output complexity, which is usually preferred by human users in practice. In this paper, we study how to precisely control multiple linguistic complexities of LLM output by finetuning using off-the-shelf data. To this end, we propose multi-control tuning (MCTune), which includes multiple linguistic complexity values of ground-truth responses as controls in the input for instruction tuning. We finetune LLaMA2-7B on Alpaca-GPT4 and WizardLM datasets. Evaluations on widely used benchmarks demonstrate that our method does not only improve LLMs’ multi-complexity controllability substantially but also retains or even enhances the quality of the responses as a side benefit.
pdf
bib
abs
Evaluating the Smooth Control of Attribute Intensity in Text Generation with LLMs
Shang Zhou
|
Feng Yao
|
Chengyu Dong
|
Zihan Wang
|
Jingbo Shang
Controlling the attribute intensity of text generation is crucial across scenarios (e.g., writing conciseness, chatting emotion, and explanation clarity). The remarkable capabilities of large language models (LLMs) have revolutionized text generation, prompting us to explore such smooth control of LLM generation. Specifically, we propose metrics to assess the range, calibration, and consistency of the generated text’s attribute intensity in response to varying control values, as well as its relevance to the intended context. To quantify the attribute intensity and context relevance, we leverage an Elo rating system and GPT4, respectively, both renowned for their robust alignment with human judgment. We look into two viable training-free methods for achieving smooth control of LLMs: (1) Prompting with semantic shifters, and (2) Modifying internal model representations. The evaluations of these two methods are conducted on 5 different attributes with various models.
pdf
bib
abs
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
Shijue Huang
|
Wanjun Zhong
|
Jianqiao Lu
|
Qi Zhu
|
Jiahui Gao
|
Weiwen Liu
|
Yutai Hou
|
Xingshan Zeng
|
Yasheng Wang
|
Lifeng Shang
|
Xin Jiang
|
Ruifeng Xu
|
Qun Liu
The recent trend of using Large Language Models (LLMs) as tool agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs’ ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.
pdf
bib
abs
Do Androids Know They’re Only Dreaming of Electric Sheep?
Sky CH-Wang
|
Benjamin Van Durme
|
Jason Eisner
|
Chris Kedzie
We design probes trained on the internal representations of a transformer language model to predict its hallucinatory behavior on three grounded generation tasks. To train the probes, we annotate for span-level hallucination on both sampled (organic) and manually edited (synthetic) reference outputs. Our probes are narrowly trained and we find that they are sensitive to their training domain: they generalize poorly from one task to another or from synthetic to organic hallucinations. However, on in-domain data, they can reliably detect hallucinations at many transformer layers, achieving 95% of their peak performance as early as layer 4. Here, probing proves accurate for evaluating hallucination, outperforming several contemporary baselines and even surpassing an expert human annotator in response-level detection F1. Similarly, on span-level labeling, probes are on par or better than the expert annotator on two out of three generation tasks. Overall, we find that probing is a feasible and efficient alternative to language model hallucination evaluation when model states are available.
pdf
bib
abs
URG: A Unified Ranking and Generation Method for Ensembling Language Models
Bo Lv
|
Chen Tang
|
Yanan Zhang
|
Xin Liu
|
Ping Luo
|
Yue Yu
Prior research endeavors of the ensemble Large Language Models (LLMs) achieved great success by employing an individual language model (LM) rank before the text generation. However, the use of an individual LM ranker faces two primary challenges: (1) The time-intensive nature of the ranking process, stemming from the comparisons between models; (2) The issue of error propagation arising from the separate ranking and generation models within the framework. In order to overcome these challenges, we propose a novel ensemble framework, namely Unified Ranking and Generation (URG). URG represents an end-to-end framework that jointly ranks the outputs of LLMs and generates fine-grained fusion results, via utilizing a dedicated cross-attention-based module and noise mitigation training against irrelevant information stemming from bad ranking results. Through extensive experimentation and evaluation, we demonstrate the efficiency and effectiveness of our framework in both the ranking and generation tasks. With the close coordination of the ranking and generation modules, our end-to-end framework achieves the state-of-the-art (SOTA) performance on these tasks, and exhibits substantial enhancements to any of the ensembled models.
pdf
bib
abs
Multi-Modal Retrieval For Large Language Model Based Speech Recognition
Aditya Gourav
|
Jari Kolehmainen
|
Prashanth Shivakumar
|
Yile Gu
|
Grant Strimel
|
Ankur Gandhe
|
Ariya Rastrow
|
Ivan Bulyko
Retrieval is a widely adopted approach for improving language models leveraging external information. As the field moves towards multi-modal large language models, it is important to extend the pure text based methods to incorporate other modalities in retrieval as well for applications across the wide spectrum of machine learning tasks and data types. In this work, we propose multi-modal retrieval with two approaches: kNN-LM and cross-attention techniques. We demonstrate the effectiveness of our retrieval approaches empirically by applying them to automatic speech recognition tasks with access to external information. Under this setting, we show that speech-based multi-modal retrieval outperforms text based retrieval, and yields up to improvement in word error rate over the multi-modal language model baseline. Furthermore, we achieve state-of-the-art recognition results on the Spoken-Squad question answering dataset.
pdf
bib
abs
LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed Tasks in the Wild
Ziyu Zhao
|
Leilei Gan
|
Guoyin Wang
|
Wangchunshu Zhou
|
Hongxia Yang
|
Kun Kuang
|
Fei Wu
Low-Rank Adaptation (LoRA) provides an effective yet efficient solution for fine-tuning large language models (LLMs). The modular and plug-and-play nature of LoRA enables the integration of diverse domain-specific LoRAs to enhance the capabilities of LLMs. Previous research on exploiting multiple LoRAs either focuses on specific isolated downstream tasks or fixes the selection of LoRAs during training. However, in real-world scenarios, LLMs receive diverse prompts covering different tasks, and the pool of candidate LoRAs is often dynamically updated. To bridge this gap, we propose LoraRetriever, a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts. LoraRetriever contains three main components: firstly, identifying and retrieving LoRAs relevant to the given input; secondly, formulating strategies for effectively integrating the retrieved LoRAs; and thirdly, developing efficient batch inference to accommodate heterogeneous requests. Experimental results indicate that LoraRetriever consistently outperforms the baselines, highlighting its practical effectiveness and versatility. Our code is available at https://github.com/StyxXuan/LoraRetriever.
pdf
bib
abs
ELAD: Explanation-Guided Large Language Models Active Distillation
Yifei Zhang
|
Bo Pan
|
Chen Ling
|
Yuntong Hu
|
Liang Zhao
The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences. Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred, potentially resulting in high costs or incomplete distillation. In this paper, we propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance. To improve the efficiency of sample selection, we introduce an explanation-guided sample selection method that identifies samples challenging its reasoning by exploiting uncertainties in reasoning explanation steps. Additionally, we present a customized LLM-annotated explanation revision technique where the teacher model detects and corrects flaws in the student model’s reasoning. Our experiments across various reasoning datasets demonstrate that our framework significantly enhances the efficiency of LLMs knowledge distillation.
pdf
bib
abs
Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ
Carolin Holtermann
|
Paul Röttger
|
Timm Dill
|
Anne Lauscher
Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers. However, most LLMs today, and open LLMs in particular, are often intended for use in just English (e.g. Llama2, Mistral) or a small handful of high-resource languages (e.g. Mixtral, Qwen). Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages.Therefore, in this paper, we investigate the basic multilingual capabilities of state-of-the-art open LLMs beyond their intended use.For this purpose, we introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions across a typologically diverse set of 137 languages. With MultiQ, we evaluate language fidelity, i.e. whether models respond in the prompted language, and question answering accuracy. All LLMs we test respond faithfully and/or accurately for at least some languages beyond their intended use. Most models are more accurate when they respond faithfully. However, differences across models are large, and there is a long tail of languages where models are neither accurate nor faithful. We explore differences in tokenization as a potential explanation for our findings, identifying possible correlations that warrant further investigation.
pdf
bib
abs
Semantics or spelling? Probing contextual word embeddings with orthographic noise
Jacob Matthews
|
John Starr
|
Marten Schijndel
Pretrained language model (PLM) hidden states are frequently employed as contextual word embeddings (CWE): high-dimensional representations that encode semantic information given linguistic context. Across many areas of computational linguistics research, similarity between CWEs is interpreted as semantic similarity. However, it remains unclear exactly what information is encoded in PLM hidden states. We investigate this practice by probing PLM representations using minimal orthographic noise. We expect that if CWEs primarily encode semantic information, a single character swap in the input word will not drastically affect the resulting representation, given sufficient linguistic context. Surprisingly, we find that CWEs generated by popular PLMs are highly sensitive to noise in input data, and that this sensitivity is related to subword tokenization: the fewer tokens used to represent a word at input, the more sensitive its corresponding CWE. This suggests that CWEs capture information unrelated to word-level meaning and can be manipulated through trivial modifications of input data. We conclude that these PLM-derived CWEs may not be reliable semantic proxies, and that caution is warranted when interpreting representational similarity.
pdf
bib
abs
The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (RAG)
Shenglai Zeng
|
Jiankun Zhang
|
Pengfei He
|
Yiding Liu
|
Yue Xing
|
Han Xu
|
Jie Ren
|
Yi Chang
|
Shuaiqiang Wang
|
Dawei Yin
|
Jiliang Tang
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model generation with proprietary and private data, where data privacy is a pivotal concern. Whereas extensive research has demonstrated the privacy risks of large language models (LLMs), the RAG technique could potentially reshape the inherent behaviors of LLM generation, posing new privacy issues that are currently under-explored. To this end, we conduct extensive empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database. Despite the new risks brought by RAG on the retrieval data, we further discover that RAG can be used to mitigate the old risks, i.e., the leakage of the LLMs’ training data. In general, we reveal many new insights in this paper for privacy protection of retrieval-augmented LLMs, which could benefit both LLMs and RAG systems builders.
pdf
bib
abs
EmpathicStories++: A Multimodal Dataset for Empathy Towards Personal Experiences
Jocelyn Shen
|
Yubin Kim
|
Mohit Hulse
|
Wazeer Zulfikar
|
Sharifa Alghowinem
|
Cynthia Breazeal
|
Hae Park
Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants’ homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals’ empathy toward others’ stories based on their personal experiences, evaluated in two contexts: participants’ own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.
pdf
bib
abs
MRL Parsing Without Tears: The Case of Hebrew
Shaltiel Shmidman
|
Avi Shmidman
|
Moshe Koppel
|
Reut Tsarfaty
Syntactic parsing remains a critical tool for relation extraction and information extraction, especially in resource-scarce languages where LLMs are lacking. Yet in morphologically rich languages (MRLs), where parsers need to identify multiple lexical units in each token, existing systems suffer in latency and setup complexity. Some use a pipeline to peel away the layers: first segmentation, then morphology tagging, and then syntax parsing; however, errors in earlier layers are then propagated forward. Others use a joint architecture to evaluate all permutations at once; while this improves accuracy, it is notoriously slow. In contrast, and taking Hebrew as a test case, we present a new “flipped pipeline”: decisions are made directly on the whole-token units by expert classifiers, each one dedicated to one specific task. The classifier predictions are independent of one another, and only at the end do we synthesize their predictions. This blazingly fast approach requires only a single huggingface call, without the need for recourse to lexicons or linguistic resources. When trained on the same training set used in previous studies, our model achieves near-SOTA performance on a wide array of Hebrew NLP tasks. Furthermore, when trained on a newly enlarged training corpus, our model achieves a new SOTA for Hebrew POS tagging and dependency parsing. We release this new SOTA model to the community. Because our architecture does not rely on any language-specific resources, it can serve as a model to develop similar parsers for other MRLs.
pdf
bib
abs
SyntaxShap: Syntax-aware Explainability Method for Text Generation
Kenza Amara
|
Rita Sevastjanova
|
Mennatallah El-Assady
To harness the power of large language models in safety-critical domains, we need to ensure the explainability of their predictions. However, despite the significant attention to model interpretability, there remains an unexplored domain in explaining sequence-to-sequence tasks using methods tailored for textual data. This paper introduces *SyntaxShap*, a local, model-agnostic explainability method for text generation that takes into consideration the syntax in the text data. The presented work extends Shapley values to account for parsing-based syntactic dependencies. Taking a game theoric approach, SyntaxShap only considers coalitions constraint by the dependency tree. We adopt a model-based evaluation to compare SyntaxShap and its weighted form to state-of-the-art explainability methods adapted to text generation tasks, using diverse metrics including faithfulness, coherency, and semantic alignment of the explanations to the model. We show that our syntax-aware method produces explanations that help build more faithful and coherent explanations for predictions by autoregressive models. Confronted with the misalignment of human and AI model reasoning, this paper also highlights the need for cautious evaluation strategies in explainable AI.
pdf
bib
abs
Automated Detection and Analysis of Data Practices Using A Real-World Corpus
Mukund Srinath
|
Pranav Narayanan Venkit
|
Maria Badillo
|
Florian Schaub
|
C. Giles
|
Shomir Wilson
Privacy policies are crucial for informing users about data practices, yet their length and complexity often deter users from reading them. In this paper, we propose an automated approach to identify and visualize data practices within privacy policies at different levels of detail. Leveraging crowd-sourced annotations from the ToS;DR platform, we experiment with various methods to match policy excerpts with predefined data practice descriptions. We further conduct a case study to evaluate our approach on a real-world policy, demonstrating its effectiveness in simplifying complex policies. Experiments show that our approach accurately matches data practice descriptions with policy excerpts, facilitating the presentation of simplified privacy information to users.
pdf
bib
abs
Enhancing Hyperbolic Knowledge Graph Embeddings via Lorentz Transformations
Xiran Fan
|
Minghua Xu
|
Huiyuan Chen
|
Yuzhong Chen
|
Mahashweta Das
|
Hao Yang
Knowledge Graph Embedding (KGE) is a powerful technique for predicting missing links in Knowledge Graphs (KGs) by learning the entities and relations. Hyperbolic space has emerged as a promising embedding space for KGs due to its ability to represent hierarchical data. Nevertheless, most existing hyperbolic KGE methods rely on tangent approximation and are not fully hyperbolic, resulting in distortions and inaccuracies. To overcome this limitation, we propose LorentzKG, a fully hyperbolic KGE method that represents entities as points in the Lorentz model and represents relations as the intrinsic transformation—the Lorentz transformations between entities. We demonstrate that the Lorentz transformation, which can be decomposed into Lorentz rotation/reflection and Lorentz boost, captures various types of relations including hierarchical structures. Experimental results show that our LorentzKG achieves state-of-the-art performance.
pdf
bib
abs
Tell Me What’s Next: Textual Foresight for Generic UI Representations
Andrea Burns
|
Kate Saenko
|
Bryan Plummer
Mobile app user interfaces (UIs) are rich with action, text, structure, and image content that can be utilized to learn generic UI representations for tasks like automating user commands, summarizing content, and evaluating the accessibility of user interfaces. Prior work has learned strong visual representations with local or global captioning losses, but fails to retain both granularities.To combat this, we propose Textual Foresight, a novel pretraining objective for learning UI screen representations. Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken. Our approach requires joint reasoning over elements and entire screens, resulting in improved UI features: on generation tasks, UI agents trained with Textual Foresight outperform state-of-the-art by 2% with 28x fewer images. We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning. OpenApp enables new baselines, and we find Textual Foresight improves average task performance over them by 5.7% while having access to 2x less data.
pdf
bib
abs
Probing the Uniquely Identifiable Linguistic Patterns of Conversational AI Agents
Iqra Zahid
|
Tharindu Madusanka
|
Riza Batista-Navarro
|
Youcheng Sun
The proliferation of Conversational AI agents (CAAs) has emphasised the need to distinguish between human and machine-generated texts, with implications spanning digital forensics and cybersecurity. While prior research primarily focussed on distinguishing human from machine-generated text, our study takes a more refined approach by analysing different CAAs. We construct linguistic profiles for five CAAs, aiming to identify Uniquely Identifiable Linguistic Patterns (UILPs) for each model using authorship attribution techniques. Authorship attribution (AA) is the task of identifying the author of an unknown text from a pool of known authors. Our research seeks to answer crucial questions about the existence of UILPs in CAAs, the linguistic overlap between various text types generated by these models, and the feasibility of Authorship Attribution (AA) for CAAs based on UILPs. Promisingly, we are able to attribute CAAs based on their original texts with a weighted F1-score of 96.94%. Further, we are able to attribute CAAs according to their writing style (as specified by prompts), yielding a weighted F1-score of 95.84%, which sets the baseline for this task. By employing principal component analysis (PCA), we identify the top 100 most informative linguistic features for each CAA, achieving a weighted F1-score ranging from 86.04% to 97.93%, and an overall weighted F1-score of 93.86%.
pdf
bib
abs
The Butterfly Effect of Altering Prompts: How Small Changes and Jailbreaks Affect Large Language Model Performance
Abel Salinas
|
Fred Morstatter
Large Language Models (LLMs) are regularly being used to label data across many domains and for myriad tasks. By simply asking the LLM for an answer, or “prompting,” practitioners are able to use LLMs to quickly get a response for an arbitrary task. This prompting is done through a series of decisions by the practitioner, from simple wording of the prompt, to requesting the output in a certain data format, to jailbreaking in the case of prompts that address more sensitive topics. In this work, we ask: do variations in the way a prompt is constructed change the ultimate decision of the LLM? We answer this using a series of prompt variations across a variety of text classification tasks. We find that even the smallest of perturbations, such as adding a space at the end of a prompt, can cause the LLM to change its answer. Further, we find that requesting responses in XML and commonly used jailbreaks can have cataclysmic effects on the data labeled by LLMs.
pdf
bib
abs
X-Shot: A Unified System to Handle Frequent, Few-shot and Zero-shot Learning Simultaneously in Classification
Hanzi Xu
|
Muhao Chen
|
Lifu Huang
|
Slobodan Vucetic
|
Wenpeng Yin
In recent years, few-shot and zero-shot learning, which learn to predict labels with limited annotated instances, have garnered significant attention. Traditional approaches often treat frequent-shot (freq-shot; labels with abundant instances), few-shot, and zero-shot learning as distinct challenges, optimizing systems for just one of these scenarios. Yet, in real-world settings, label occurrences vary greatly. Some of them might appear thousands of times, while others might only appear sporadically or not at all. For practical deployment, it is crucial that a system can adapt to any label occurrence. We introduce a novel classification challenge: **X-shot**, reflecting a real-world context where freq-shot, few-shot, and zero-shot labels co-occur without predefined limits. Here, **X** can span from 0 to positive infinity. The crux of **X-shot** centers on open-domain generalization and devising a system versatile enough to manage various label scenarios. To solve **X-shot**, we propose **BinBin** (**B**inary **IN**ference **B**ased on **IN**struction following) that leverages the Indirect Supervision from a large collection of NLP tasks via instruction following, bolstered by Weak Supervision provided by large language models. **BinBin** surpasses previous state-of-the-art techniques on three benchmark datasets across multiple domains. To our knowledge, this is the first work addressing **X-shot** learning, where **X** remains variable.
pdf
bib
abs
SPIN: Sparsifying and Integrating Internal Neurons in Large Language Models for Text Classification
Difan Jiao
|
Yilun Liu
|
Zhenwei Tang
|
Daniel Matter
|
Jürgen Pfeffer
|
Ashton Anderson
Among the many tasks that Large Language Models (LLMs) have revolutionized is text classification. Current text classification paradigms, however, rely solely on the output of the final layer in the LLM, with the rich information contained in internal neurons largely untapped. In this study, we present SPIN: a model-agnostic framework that sparsifies and integrates internal neurons of intermediate layers of LLMs for text classification. Specifically, SPIN sparsifies internal neurons by linear probing-based salient neuron selection layer by layer, avoiding noise from unrelated neurons and ensuring efficiency. The cross-layer salient neurons are then integrated to serve as multi-layered features for the classification head. Extensive experimental results show our proposed SPIN significantly improves text classification accuracy, efficiency, and interpretability.
pdf
bib
abs
Decomposing Co-occurrence Matrices into Interpretable Components as Formal Concepts
Akihiro Maeda
|
Takuma Torii
|
Shohei Hidaka
This study addresses the interpretability of word representations through an investigation of a count-based co-occurrence matrix. Employing the mathematical methodology of Formal Concept Analysis, we reveal an underlying structure that is amenable to human interpretation. Furthermore, we unveil the emergence of hierarchical and geometrical structures within word vectors as consequences of word usage. Our experiments on the PPMI matrix demonstrate that the formal concepts that we identified align with interpretable categories, as shown in the category completion task.
pdf
bib
abs
Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
Ziyu Yang
|
Santhosh Cherian
|
Slobodan Vucetic
Radiology reports are highly technical documents aimed primarily at doctor-doctor communication. There has been an increasing interest in sharing those reports with patients, necessitating providing them patient-friendly simplifications of the original reports. This study explores the suitability of large language models in automatically generating those simplifications. We examine the usefulness of chain-of-thought and self-correction prompting mechanisms in this domain. We also propose a new evaluation protocol that employs radiologists and laypeople, where radiologists verify the factual correctness of simplifications, and laypeople assess simplicity and comprehension. Our experimental results demonstrate the effectiveness of self-correction prompting in producing high-quality simplifications. Our findings illuminate the preferences of radiologists and laypeople regarding text simplification, informing future research on this topic.
pdf
bib
abs
Planning First, Question Second: An LLM-Guided Method for Controllable Question Generation
Kunze Li
|
Yu Zhang
In the field of education, for better assessment of students’ abilities, generated questions often need to meet experts’ requirements, indicating the need for controllable question generation (CQG). However, current CQG methods mainly focus on difficulty control, neglecting the control of question content and assessed abilities, which are also crucial in educational QG. In this paper, we propose an LLM-guided method PFQS (for Planning First, Question Second), which utilizes Llama 2 to generate an answer plan and then generates questions based on it. The plan not only includes candidate answers but also integrates LLM’s understanding and multiple requirements, which make question generation simple and controllable. We evaluate our approach on the FairytaleQA dataset, a well-structured QA dataset derived from child-friendly storybooks. In the dataset, the attribute label represents content control, while the local_or_sum and ex_or_im labels denote difficulty control. Experimental results demonstrate that our approach outperforms previous state-of-the-art results and achieves better consistency with requirements compared to prompt-based method. Further application of our method to Llama 2 and Mistral also leads to improved requirement consistency in a zero-shot setting.
pdf
bib
abs
RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback
Yanming Liu
|
Xinyue Peng
|
Xuhong Zhang
|
Weihao Liu
|
Jianwei Yin
|
Jiannan Cao
|
Tianyu Du
Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters. Moreover, updating this knowledge incurs high training costs. Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge. The model can answer questions it couldn’t previously by retrieving knowledge relevant to the query. This approach improves performance in certain scenarios for specific tasks. However, if irrelevant texts are retrieved, it may impair model performance. In this paper, we propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model’s problem-solving capabilities. Experiments show that our method outperforms existing benchmarks, performing well on models like GPT3.5, Llama2, significantly enhancing factual reasoning capabilities and reducing hallucinations.
pdf
bib
abs
MrRank: Improving Question Answering Retrieval System through Multi-Result Ranking Model
Danupat Khamnuansin
|
Tawunrat Chalothorn
|
Ekapol Chuangsuwanich
Large Language Models (LLMs) often struggle with hallucinations and outdated information. To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge. However, existing IR techniques contain deficiencies, posing a performance bottleneck. Given the extensive array of IR systems, combining diverse approaches presents a viable strategy. Nevertheless, prior attempts have yielded restricted efficacy. In this work, we propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems. We demonstrate the method on two Retrieval Question Answering (ReQA) tasks. Our empirical findings exhibit a significant performance enhancement, outperforming previous approaches and achieving state-of-the-art results on ReQA SQuAD.
pdf
bib
abs
Chain-of-Question: A Progressive Question Decomposition Approach for Complex Knowledge Base Question Answering
Peng Yixing
|
Quan Wang
|
Licheng Zhang
|
Yi Liu
|
Zhendong Mao
Complex KBQA leverages the knowledge base (KB) to answer complex natural questions involving complicated semantics like multi-hop reasoning. Existing methods involve a question decomposition process, i.e., breaking a complex question into several simpler sub-questions, to assist obtaining logical forms for querying the KB. However, existing question decomposition process derives all sub-questions directly according to the original question, resulting in limitations when one sub-question relies on the answer from a previous one. In this work, we propose Chain-of-Question, a progressive question decomposition approach to address complex KBQA challenges. First, inspired by chain-of-thought, we design a prompt to guide LLM to sequentially decompose multiple semantically clear sub-questions and provide corresponding reference answers, where each step of the decomposition relies on the previous results. Next, we utilize the decomposition result to select relevant patterns (relation-entity pairs) as accurate and faithful auxiliary information for the following logical form generation. Finally, we jointly perform logical form generation and answer prediction, utilizing the predicted answer to supplement non-executable logical forms. Experimental results demonstrate that our method achieves state-of-the-art performance on multiple datasets.
pdf
bib
abs
Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis
Guangmin Zheng
|
Jin Wang
|
Liang-Chih Yu
|
Xuejie Zhang
Aspect-based sentiment analysis (ABSA) identifies sentiment information related to specific aspects and provides deeper market insights to businesses and organizations. With the emergence of large language models (LMs), recent studies have proposed using fixed examples for instruction tuning to reformulate ABSA as a generation task. However, the performance is sensitive to the selection of in-context examples; several retrieval methods are based on surface similarity and are independent of the LM generative objective. This study proposes an instruction learning method with retrieval-based example ranking for ABSA tasks. For each target sample, an LM was applied as a scorer to estimate the likelihood of the output given the input and a candidate example as the prompt, and training examples were labeled as positive or negative by ranking the scores. An alternating training schema is proposed to train both the retriever and LM. Instructional prompts can be constructed using high-quality examples. The LM is used for both scoring and inference, improving the generation efficiency without incurring additional computational costs or training difficulties. Extensive experiments on three ABSA subtasks verified the effectiveness of the proposed method, demonstrating its superiority over various strong baseline models. Code and data are released at https://github.com/zgMin/IT-RER-ABSA.
pdf
bib
abs
Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
Xinyi Mou
|
Zhongyu Wei
|
Xuanjing Huang
Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.
pdf
bib
abs
Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models
Hiroshi Kanayama
|
Yang Zhao
|
Ran Iwamoto
|
Takuya Ohko
This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages.
pdf
bib
abs
Locating and Extracting Relational Concepts in Large Language Models
Zijian Wang
|
Britney Whyte
|
Chang Xu
Relational concepts are indeed foundational to the structure of knowledge representation, as they facilitate the association between various entity concepts, allowing us to express and comprehend complex world knowledge.By expressing relational concepts in natural language prompts, people can effortlessly interact with large language models (LLMs) and recall desired factual knowledge. However, the process of knowledge recall lacks interpretability, and representations of relational concepts within LLMs remain unknown to us. In this paper, we identify hidden states that can express entity and relational concepts through causal mediation analysis in fact recall processes. Our finding reveals that at the last token position of the input prompt, there are hidden states that solely express the causal effects of relational concepts. Based on this finding, we assume that these hidden states can be treated as relational representations and we can successfully extract them from LLMs. The experimental results demonstrate high credibility of the relational representations: they can be flexibly transplanted into other fact recall processes, and can also be used as robust entity connectors. Moreover, we also show that the relational representations exhibit significant potential for controllable fact recall through relation rewriting.
pdf
bib
abs
Unraveling and Mitigating Retriever Inconsistencies in Retrieval-Augmented Large Language Models
Mingda Li
|
Xinyu Li
|
Yifan Chen
|
Wenfeng Xuan
|
Weinan Zhang
Although Retrieval-Augmented Large Language Models (RALMs) demonstrate their superiority in terms of factuality, they do not consistently outperform the original retrieval-free Language Models (LMs). Our experiments reveal that this example-level performance inconsistency exists not only between retrieval-augmented and retrieval-free LM but also among different retrievers. To understand this phenomenon, we investigate the degeneration behavior of RALMs and theoretically decompose it into four categories. Further analysis based on our decomposition reveals that the innate difference in knowledge sources and the unpredictable degeneration of the reader model contribute most to the inconsistency. Drawing from our analysis, we introduce Ensemble of Retrievers (EoR), a trainable framework that can adaptively retrieve from different knowledge sources and effectively decrease unpredictable reader errors. Our experiments on Open Domain Question Answering show that EoR substantially improves performance over the RALM with a single retriever by considerably reducing inconsistent behaviors.
pdf
bib
abs
SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis
Xulang Zhang
|
Rui Mao
|
Erik Cambria
The success of state-of-the-art Natural Language Processing (NLP) systems heavily depends on deep neural networks, which excel in various tasks through strong data fitting and latent feature modeling abilities. However, certain challenges linked to deep neural networks and supervised deep learning deserve considerations, e.g., extensive computing resources, knowledge forgetting, etc. Previous research attempted to tackle these challenges individually through irrelative techniques. However, they do not instigate fundamental shifts in the learning paradigm. In this work, we propose a novel neurosymbolic method for sentiment analysis to tackle these issues. We also propose a novel sentiment-pragmatic knowledge base that places emphasis on human subjectivity within varying domain annotations. We conducted extensive experiments to show that our neurosymbolic framework for sentiment analysis stands out for its lightweight nature, robustness across domains and languages, efficient few-shot training, and rapid convergence.
pdf
bib
abs
Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models
Chen Qian
|
Jie Zhang
|
Wei Yao
|
Dongrui Liu
|
Zhenfei Yin
|
Yu Qiao
|
Yong Liu
|
Jing Shao
Ensuring the trustworthiness of large language models (LLMs) is crucial. Most studies concentrate on fully pre-trained LLMs to better understand and improve LLMs’ trustworthiness. In this paper, to reveal the untapped potential of pre-training, we pioneer the exploration of LLMs’ trustworthiness during this period, focusing on five key dimensions: reliability, privacy, toxicity, fairness, and robustness. To begin with, we apply linear probing to LLMs. The high probing accuracy suggests that LLMs in early pre-training can already distinguish concepts in each trustworthiness dimension. Therefore, to further uncover the hidden possibilities of pre-training, we extract steering vectors from a LLM’s pre-training checkpoints to enhance the LLM’s trustworthiness. Finally, inspired by the theoretical result that mutual information estimation is bounded by linear probing accuracy, we also probe LLMs with mutual information to investigate the dynamics of trustworthiness during pre-training. We are the first to observe a similar two-phase phenomenon: fitting and compression. This research provides an initial exploration of trustworthiness modeling during LLM pre-training, seeking to unveil new insights and spur further developments in the field.
pdf
bib
abs
Language Models can Evaluate Themselves via Probability Discrepancy
Tingyu Xia
|
Bowen Yu
|
Yuan Wu
|
Yi Chang
|
Chang Zhou
In this paper, we begin by illustrating that, when presented with a query, Large Language Models (LLMs) capable of providing accurate responses tend to exhibit a more uniform probability distribution compared to their less proficient counterparts. Building upon this observation, we introduce a novel self-assessment criterion termed ProbDiff for evaluating the performance of diverse LLMs. This method eliminates the need for training an additional evaluation model or relying on external proprietary models such as GPT-4 as a judger. Instead, it solely relies on the LLMs under evaluation to compute the probability discrepancy between the original response generation and its revised versions. A higher discrepancy in two LLMs for the same query suggests a relatively weaker ability. We discover that ProbDiff yields comparable results to mainstream GPT-4-based evaluations on various scenarios including NLG tasks like translation and summarization, as well as LLM evaluation benchmarks such as AlignBench, MT-Bench, and AlpacaEval, across LLMs of different sizes.
pdf
bib
abs
Evaluating the Validity of Word-level Adversarial Attacks with Large Language Models
Huichi Zhou
|
Zhaoyang Wang
|
Hongtao Wang
|
Dongping Chen
|
Wenhan Mu
|
Fangyuan Zhang
Deep neural networks exhibit vulnerability to word-level adversarial attacks in natural language processing. Most of these attack methods adopt synonymous substitutions to perturb original samples for crafting adversarial examples while attempting to maintain semantic consistency with the originals. Some of them claim that they could achieve over 90% attack success rate, thereby raising serious safety concerns. However, our investigation reveals that many purportedly successful adversarial examples are actually invalid due to significant changes in semantic meanings compared to their originals. Even when equipped with semantic constraints such as BERTScore, existing attack methods can generate up to 87.9% invalid adversarial examples. Building on this insight, we first curate a 13K dataset for adversarial validity evaluation with the help of GPT-4. Then, an open-source large language model is fine-tuned to offer an interpretable validity score for assessing the semantic consistency between original and adversarial examples. Finally, this validity score can serve as a guide for existing adversarial attack methods to generate valid adversarial examples. Comprehensive experiments demonstrate the effectiveness of our method in evaluating and refining the quality of adversarial examples.
pdf
bib
abs
On the Language Encoder of Contrastive Cross-modal Models
Mengjie Zhao
|
Junya Ono
|
Zhi Zhong
|
Chieh-Hsin Lai
|
Yuhta Takida
|
Naoki Murata
|
Wei-Hsiang Liao
|
Takashi Shibuya
|
Hiromi Wakaki
|
Yuki Mitsufuji
Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder – the central component of encoding natural language descriptions of image/audio into vector representations. We extensively evaluate how unsupervised and supervised sentence embedding training affect language encoder quality and cross-modal task performance. In VL pretraining, we found that sentence embedding training enhances language encoder quality and aids in cross-modal tasks, improving contrastive VL models such as CyCLIP. Sentence embedding training benefits AL tasks when the amount of training data is large. We analyze the representation spaces to understand the strengths of sentence embedding training, and find that it improves text-space uniformity, at the cost of decreased cross-modal alignment.
pdf
bib
abs
Your Co-Workers Matter: Evaluating Collaborative Capabilities of Language Models in Blocks World
Guande Wu
|
Chen Zhao
|
Claudio Silva
|
He He
Language agents that interact with the world on their own have great potential for automating digital tasks. While large language model (LLM) agents have made progress in understanding and executing tasks such as textual games and webpage control, many real-world tasks also require collaboration with humans or other LLMs in equal roles, which involves intent understanding, task coordination, and communication. To test LLM’s ability to collaborate, we design a blocks-world environment, where two agents, each having unique goals and skills, build a target structure together. To complete the goals, they can act in the world and communicate in natural language. Under this environment, we design increasingly challenging settings to evaluate different collaboration perspectives, from independent to more complex, dependent tasks. We further adopt chain-of-thought prompts that include intermediate reasoning steps to model the partner’s state and identify and correct execution errors. Both human-machine and machine-machine experiments show that LLM agents have strong grounding capacities, and our approach significantly improves the evaluation metric.
pdf
bib
abs
Anchor-based Large Language Models
Jianhui Pang
|
Fanghua Ye
|
Derek Wong
|
Xin He
|
Wanshun Chen
|
Longyue Wang
Large language models (LLMs) predominantly employ decoder-only transformer architectures, necessitating the retention of keys/values information for historical tokens to provide contextual information and avoid redundant computation. However, the substantial size and parameter volume of these LLMs require massive GPU memory. This memory demand increases with the length of the input text, leading to an urgent need for more efficient methods of information storage and processing. This study introduces Anchor-based LLMs (AnLLMs), which utilize an innovative anchor-based self-attention network (AnSAN) and also an anchor-based inference strategy. This approach enables LLMs to compress sequence information into an anchor token, reducing the keys/values cache and enhancing inference efficiency. Experiments on question-answering benchmarks reveal that AnLLMs maintain similar accuracy levels while achieving up to 99% keys/values cache reduction and up to 3.5 times faster inference. Despite a minor compromise in accuracy, the substantial enhancements of AnLLMs employing the AnSAN technique in resource utilization and computational efficiency underscore their potential for practical LLM applications.
pdf
bib
abs
MLeVLM: Improve Multi-level Progressive Capabilities based on Multimodal Large Language Model for Medical Visual Question Answering
Dexuan Xu
|
Yanyuan Chen
|
Jieyi Wang
|
Yue Huang
|
Hanpin Wang
|
Zhi Jin
|
Hongxing Wang
|
Weihua Yue
|
Jing He
|
Hang Li
|
Yu Huang
Medical visual question answering (MVQA) requires in-depth understanding of medical images and questions to provide reliable answers. We summarize multi-level progressive capabilities that models need to focus on in MVQA: recognition, details, diagnosis, knowledge, and reasoning. Existing MVQA models tend to ignore the above capabilities due to unspecific data and plain architecture. To address these issues, this paper proposes Multi-level Visual Language Model (MLeVLM) for MVQA. On the data side, we construct a high-quality multi-level instruction dataset MLe-VQA via GPT-4, which covers multi-level questions and answers as well as reasoning processes from visual clues to semantic cognition. On the architecture side, we propose a multi-level feature alignment module, including attention-based token selector and context merger, which can efficiently align features at different levels from visual to semantic. To better evaluate the model’s capabilities, we manually construct a multi-level MVQA evaluation benchmark named MLe-Bench. Extensive experiments demonstrate the effectiveness of our constructed multi-level instruction dataset and the multi-level feature alignment module. It also proves that MLeVLM outperforms existing medical multimodal large language models.
pdf
bib
abs
Disentangling Length from Quality in Direct Preference Optimization
Ryan Park
|
Rafael Rafailov
|
Stefano Ermon
|
Chelsea Finn
Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models. However, RLHF is know to exploit biases in human preferences, such as verbosity. A well-formatted and eloquent answer is often more highly rated by users, even when it is less helpful and objective. A number of approaches have been developed to control those biases in the classical RLHF literature, but the problem remains relatively under-explored for Direct Alignment Algorithms such as Direct Preference Optimization (DPO). Unlike classical RLHF, DPO does not train a separate reward model or use reinforcement learning directly, so previous approaches developed to control verbosity cannot be directly applied to this setting. Our work makes several contributions. For the first time, we study the length problem in the DPO setting, showing significant exploitation in DPO and linking it to out-of-distribution bootstrapping. We then develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality. We demonstrate these affects across datasets on summarization and dialogue, where we achieve up to 20% improvement in win rates when controlling for length, despite the GPT4 judge’s well-known verbosity bias.
pdf
bib
abs
MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge Editing
Jiaqi Li
|
Miaozeng Du
|
Chuanyi Zhang
|
Yongrui Chen
|
Nan Hu
|
Guilin Qi
|
Haiyun Jiang
|
Siyuan Cheng
|
Bozhong Tian
Multimodal knowledge editing represents a critical advancement in enhancing the capabilities of Multimodal Large Language Models (MLLMs). Despite its potential, current benchmarks predominantly focus on coarse-grained knowledge, leaving the intricacies of fine-grained (FG) multimodal entity knowledge largely unexplored. This gap presents a notable challenge, as FG entity recognition is pivotal for the practical deployment and effectiveness of MLLMs in diverse real-world scenarios. To bridge this gap, we introduce MIKE, a comprehensive benchmark and dataset specifically designed for the FG multimodal entity knowledge editing. MIKE encompasses a suite of tasks tailored to assess different perspectives, including Vanilla Name Answering, Entity-Level Caption, and Complex-Scenario Recognition. In addition, a new form of knowledge editing, Multi-step Editing, is introduced to evaluate the editing efficiency. Through our extensive evaluations, we demonstrate that the current state-of-the-art methods face significant challenges in tackling our proposed benchmark, underscoring the complexity of FG knowledge editing in MLLMs. Our findings spotlight the urgent need for novel approaches in this domain, setting a clear agenda for future research and development efforts within the community.
pdf
bib
abs
Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise: A Case Study on Chinese Legal Domain
Zhen Wan
|
Yating Zhang
|
Yexiang Wang
|
Fei Cheng
|
Sadao Kurohashi
While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it’s not plausible to continue training LLMs of the GPT-4’s scale on in-domain data.This paper introduces a simple yet effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the Chinese legal domain by continuing learning in-domain data. When solving an in-domain task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves the average score by +33.6 points, compared to GPT-4 direct generation. When compared to two stronger retrieval-based baselines, our method outperforms them by +17.0 and +23.5.
pdf
bib
abs
MemeMQA: Multimodal Question Answering for Memes via Rationale-Based Inferencing
Siddhant Agarwal
|
Shivam Sharma
|
Preslav Nakov
|
Tanmoy Chakraborty
Memes have evolved as a prevalent medium for diverse communication, ranging from humour to propaganda. With the rising popularity of image-focused content, there is a growing need to explore its potential harm from different aspects. Previous studies have analyzed memes in closed settings - detecting harm, applying semantic labels, and offering natural language explanations. To extend this research, we introduce MemeMQA, a multimodal question-answering framework aiming to solicit accurate responses to structured questions while providing coherent explanations. We curate MemeMQACorpus, a new dataset featuring 1,880 questions related to 1,122 memes with corresponding answer-explanation pairs. We further propose ARSENAL, a novel two-stage multimodal framework that leverages the reasoning capabilities of LLMs to address MemeMQA. We benchmark MemeMQA using competitive baselines and demonstrate its superiority - ~18% enhanced answer prediction accuracy and distinct text generation lead across various metrics measuring lexical and semantic alignment over the best baseline. We analyze ARSENAL’s robustness through diversification of question-set, confounder-based evaluation regarding MemeMQA’s generalizability, and modality-specific assessment, enhancing our understanding of meme interpretation in the multimodal communication landscape.
pdf
bib
abs
Improving Attributed Text Generation of Large Language Models via Preference Learning
Dongfang Li
|
Zetian Sun
|
Baotian Hu
|
Zhenyu Liu
|
Xinshuo Hu
|
Xuebo Liu
|
Min Zhang
Large language models have been widely adopted in natural language processing, yet they face the challenge of generating unreliable content. Recent works aim to reduce misinformation and hallucinations by resorting to attribution as a means to provide evidence (i.e., citations). However, current attribution methods usually focus on the retrieval stage and automatic evaluation that neglect mirroring the citation mechanisms in human scholarly writing to bolster credibility. In this paper, we address these challenges by modelling the attribution task as preference learning and introducing an Automatic Preference Optimization (APO) framework. First, we create a curated collection for post-training with 6,330 examples by collecting and filtering from existing datasets. Second, considering the high cost of labelling preference data, we further propose an automatic method to synthesize attribution preference data resulting in 95,263 pairs. Moreover, inspired by the human citation process, we further propose a progressive preference optimization method by leveraging fine-grained information. Extensive experiments on three datasets (i.e., ASQA, StrategyQA, and ELI5) demonstrate that APO achieves state-of-the-art citation F1 with higher answer quality.
pdf
bib
abs
KOMBO: Korean Character Representations Based on the Combination Rules of Subcharacters
SungHo Kim
|
Juhyeong Park
|
Yeachan Kim
|
SangKeun Lee
The Korean writing system, Hangeul, has a unique character representation rigidly following the invention principles recorded in Hunminjeongeum. However, existing pre-trained language models (PLMs) for Korean have overlooked these principles. In this paper, we introduce a novel framework for Korean PLMs called KOMBO, which firstly brings the invention principles of Hangeul to represent character. Our proposed method, KOMBO, exhibits notable experimental proficiency across diverse NLP tasks. In particular, our method outperforms the state-of-the-art Korean PLM by an average of 2.11% in five Korean natural language understanding tasks. Furthermore, extensive experiments demonstrate that our proposed method is suitable for comprehending the linguistic features of the Korean language. Consequently, we shed light on the superiority of using subcharacters over the typical subword-based approach for Korean PLMs. Our code is available at: https://github.com/SungHo3268/KOMBO.
pdf
bib
abs
Tree-Planted Transformers: Unidirectional Transformer Language Models with Implicit Syntactic Supervision
Ryo Yoshida
|
Taiga Someya
|
Yohei Oseki
Syntactic Language Models (SLMs) can be trained efficiently to reach relatively high performance; however, they have trouble with inference efficiency due to the explicit generation of syntactic structures. In this paper, we propose a new method dubbed tree-planting: instead of explicitly generating syntactic structures, we “plant” trees into attention weights of unidirectional Transformer LMs to implicitly reflect syntactic structures of natural language. Specifically, unidirectional Transformer LMs trained with tree-planting will be called Tree-Planted Transformers (TPT), which inherit the training efficiency from SLMs without changing the inference efficiency of their underlying Transformer LMs. Targeted syntactic evaluations on the SyntaxGym benchmark demonstrated that TPTs, despite the lack of explicit generation of syntactic structures, significantly outperformed not only vanilla Transformer LMs but also various SLMs that generate hundreds of syntactic structures in parallel. This result suggests that TPTs can learn human-like syntactic knowledge as data-efficiently as SLMs while maintaining the modeling space of Transformer LMs unchanged.
pdf
bib
abs
Play Guessing Game with LLM: Indirect Jailbreak Attack with Implicit Clues
Zhiyuan Chang
|
Mingyang Li
|
Yi Liu
|
Junjie Wang
|
Qing Wang
|
Yang Liu
With the development of LLMs, the security threats of LLMs are getting more and more attention. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks primarily utilize scenario camouflage techniques. However their explicitly mention of malicious intent will be easily recognized and defended by LLMs. In this paper, we propose an indirect jailbreak attack approach, Puzzler, which can bypass the LLM’s defensive strategies and obtain malicious response by implicitly providing LLMs with some clues about the original malicious query. In addition, inspired by the wisdom of “When unable to attack, defend” from Sun Tzu’s Art of War, we adopt a defensive stance to gather clues about the original malicious query through LLMs. The experimental results indicate that the Query Success Rate of the Puzzler is 14.0%-82.7% higher than baselines on the most prominent LLMs. Furthermore, when tested against the state-of-the-art jailbreak detection approaches, Puzzler proves to be more effective at evading detection compared to baselines.
pdf
bib
abs
Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes
Sunjun Kweon
|
Junu Kim
|
Jiyoun Kim
|
Sujeong Im
|
Eunbyeol Cho
|
Seongsu Bae
|
Jungwoo Oh
|
Gyubok Lee
|
Jong Hak Moon
|
Seng Chan You
|
Seungjin Baek
|
Chang Hoon Han
|
Yoon Bin Jung
|
Yohan Jo
|
Edward Choi
The development of large language models tailored for handling patients’ clinical notes is often hindered by the limited accessibility and usability of these notes due to strict privacy regulations.To address these challenges, we first create synthetic large-scale clinical notes using publicly available case reports extracted from biomedical literature.We then use these synthetic notes to train our specialized clinical large language model, Asclepius.While Asclepius is trained on synthetic data, we assess its potential performance in real-world applications by evaluating it using real clinical notes.We benchmark Asclepius against several other large language models, including GPT-3.5-turbo and other open-source alternatives. To further validate our approach using synthetic notes, we also compare Asclepius with its variants trained on real clinical notes. Our findings convincingly demonstrate that synthetic clinical notes can serve as viable substitutes for real ones when constructing high-performing clinical language models. This conclusion is supported by detailed evaluations conducted by both GPT-4 and medical professionals. All resources—including weights, codes, and data—used in the development of Asclepius will be made publicly accessible for future research.
pdf
bib
abs
Extending Context Window of Large Language Models via Semantic Compression
Weizhi Fei
|
Xueyan Niu
|
Pingyi Zhou
|
Lu Hou
|
Bo Bai
|
Lei Deng
|
Wei Han
Transformer based Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses due to the quadratic complexity. These constraints restrict their applicability in long text scenarios. In this paper, we propose a novel semantic compression method that enables generalization to texts that are 6-8 times longer without incurring significant computational costs or requiring fine-tuning. Our proposed framework draws inspiration from source coding in information theory and employs a pre-trained model to reduce the semantic redundancy of long inputs before passing them to the LLMs for downstream tasks. Experimental results demonstrate that our method effectively extends the context window of LLMs across a range of tasks including question answering, summarization, few-shot learning, and information retrieval. Furthermore, the proposed semantic compression method exhibits consistent fluency in text generation while reducing the associated computational overhead.
pdf
bib
abs
Plausible Extractive Rationalization through Semi-Supervised Entailment Signal
Yeo Wei Jie
|
Ranjan Satapathy
|
Erik Cambria
The increasing use of complex and opaque black box models requires the adoption of interpretable measures, one such option is extractive rationalizing models, which serve as a more interpretable alternative. These models, also known as Explain-Then-Predict models, employ an explainer model to extract rationales and subsequently condition the predictor with the extracted information. Their primary objective is to provide precise and faithful explanations, represented by the extracted rationales. In this paper, we take a semi-supervised approach to optimize for the plausibility of extracted rationales. We adopt a pre-trained natural language inference (NLI) model and further fine-tune it on a small set of supervised rationales (10%). The NLI predictor is leveraged as a source of supervisory signals to the explainer via entailment alignment. We show that, by enforcing the alignment agreement between the explanation and answer in a question-answering task, the performance can be improved without access to ground truth labels. We evaluate our approach on the ERASER dataset and show that our approach achieves comparable results with supervised extractive models and outperforms unsupervised approaches by > 100%.
pdf
bib
abs
Translation Deserves Better: Analyzing Translation Artifacts in Cross-lingual Visual Question Answering
ChaeHun Park
|
Koanho Lee
|
Hyesu Lim
|
Jaeseok Kim
|
Junmo Park
|
Yu-Jung Heo
|
Du-Seong Chang
|
Jaegul Choo
Building a reliable visual question answering (VQA) system across different languages is a challenging problem, primarily due to the lack of abundant samples for training. To address this challenge, recent studies have employed machine translation systems for the cross-lingual VQA task. This involves translating the evaluation samples into a source language (usually English) and using monolingual models (i.e., translate-test). However, our analysis reveals that translated texts contain unique characteristics distinct from human-written ones, referred to as translation artifacts. We find that these artifacts can significantly affect the models, confirmed by extensive experiments across diverse models, languages, and translation processes. In light of this, we present a simple data augmentation strategy that can alleviate the adverse impacts of translation artifacts.
pdf
bib
abs
Scented-EAE: Stage-Customized Entity Type Embedding for Event Argument Extraction
Yu Yang
|
Jinyu Guo
|
Kai Shuang
|
Chenrui Mao
Existing methods for incorporating entities into EAE rely on prompts or NER. They typically fail to explicitly explore the role of entity types, which results in shallow argument comprehension and often encounter three issues: (1) weak semantic associations due to missing role-entity correspondence cues; (2) compromised semantic integrity from abandoning context after recognizing entities regardless of their types; (3) one-sided semantic understanding relying solely on argument role semantics. To tackle these issues, we propose Scented-EAE, an EAE model with stage-customized entity type embedding to explicitly underscore and explore the role of entity types, thus intervening in argument selection. Specifically, at the input stage, we strengthen semantic associations by prompting role-entity correspondence after extending a non-autoregressive decoder as part of the encoder. At the intermediate stage, we preserve semantic integrity by optimizing our proposed BIO-aware NER and EAE via a novel IPE joint learning. At the output stage, we expand semantic understanding dimensions by determining arguments using span selectors from argument roles and entity types. Experiments show that our model achieves state-of-the-art performance on mainstream benchmarks. In addition, it also exhibits robustness in low-resource settings with the help of prompts and entity types.
pdf
bib
abs
Fast Randomized Low-Rank Adaptation of Pre-trained Language Models with PAC Regularization
Zijian Lei
|
Dong Qian
|
William Cheung
Low-rank adaptation (LoRA) achieves parameter efficient fine-tuning for large language models (LLMs) by decomposing the model weight update into a pair of low-rank projection matrices. Yet, the memory overhead restricts it to scale up when the model size increases. We propose Randomized LoRA (RLoRA) which adopts Randomized Walsh-Hadamard Transform to achieve significant reduction in the size of trainable parameters compared to LoRA. At the same time, it allows a PAC-Bayes regularizer to be efficiently incorporated to improve generalization. We evaluate the effectiveness of RLoRA on LLMs RoBERTa, GPT-2 and LLaMA-7B using GLUE, E2E and math reasoning benchmarks. With a much lower memory requirement, RLoRA can give similar performance as the SOTA low-rank adaptation methods for these three tasks and significantly better performance under few-shot settings.
pdf
bib
abs
SDA: Semantic Discrepancy Alignment for Text-conditioned Image Retrieval
Yuchen Yang
|
Yu Wang
|
Yanfeng Wang
In the realm of text-conditioned image retrieval, models utilize a query composed of a reference image and modification text to retrieve corresponding images. Despite its significance, this task is fraught with challenges, including small-scale datasets due to labeling costs and the complexity of attributes in modification texts. These challenges often result in models learning a generalized representation of the query, thereby missing the semantic correlations of image and text attributes.In this paper, we introduce a general boosting framework designed to address these issues by employing semantic discrepancy alignment. Our framework first leverages the ChatGPT to augment text data by modifying the original modification text’s attributes. The augmented text is then combined with the original reference image to create an augmented composed query. Then we generate corresponding images using GPT-4 for the augmented composed query.We realize the cross-modal semantic discrepancy alignment by formulating distance consistency and neighbor consistency between the image and text domains. Through this novel approach, attribute in the text domain can be more effectively transferred to the image domain, enhancing retrieval performance. Extensive experiments on three prominent datasets validate the effectiveness of our approach, with state-of-the-art results on a majority of evaluation metrics compared to various baseline methods.
pdf
bib
abs
Se2: Sequential Example Selection for In-Context Learning
Haoyu Liu
|
Jianfeng Liu
|
Shaohan Huang
|
Yuefeng Zhan
|
Hao Sun
|
Weiwei Deng
|
Furu Wei
|
Qi Zhang
The remarkable capability of large language models(LLMs) for in-context learning(ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the “select then organize” paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a Sequential Selection problem and introduce Se2, a sequential-aware method that leverages the LLM’s feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis shows the effectiveness of proposed strategies, highlighting Se2‘s exceptional stability and adaptability across various scenarios. Code available at https://github.com/microsoft/LMOps.
pdf
bib
abs
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
Hanling Yi
|
Feng Lin
|
Hongbin Li
|
Ning Peiyang
|
Xiaotian Yu
|
Rong Xiao
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose Smart Parallel Auto-Correct dEcoding (SPACE), an approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
pdf
bib
abs
StructEval: Deepen and Broaden Large Language Model Assessment via Structured Evaluation
Boxi Cao
|
Mengjie Ren
|
Hongyu Lin
|
Xianpei Han
|
Feng Zhang
|
Junfeng Zhan
|
Le Sun
Evaluation is the baton for the development of large language models. Current evaluations typically employ a single-item assessment paradigm for each atomic test objective, which struggle to discern whether a model genuinely possesses the required capabilities or merely memorizes/guesses the answers to specific questions. To this end, this paper proposes a novel evaluation framework referred to as StructEval. Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a structured assessment across multiple cognitive levels and critical concepts, and therefore offers a comprehensive, robust and consistent evaluations for large language models. Experiments on three widely-used benchmarks demonstrate that StructEval serves as a reliable tool for resisting the risk of data contamination, and reducing the interference of potential biases, thereby providing a more reliable and consistent conclusion regarding model capabilities. Our framework also sheds light on the design of future principled and trustworthy LLM evaluation protocols.
pdf
bib
abs
Mitigating Privacy Seesaw in Large Language Models: Augmented Privacy Neuron Editing via Activation Patching
Xinwei Wu
|
Weilong Dong
|
Shaoyang Xu
|
Deyi Xiong
Protecting privacy leakage in large language models remains a paramount challenge. In this paper, we reveal Privacy Seesaw in LLM privacy safeguarding, a phenomenon where measures to secure specific private information inadvertently heighten exposure risks for other privacy. Through comprehensive analysis, we identify the amount of targeted privacy data and the volume of edited privacy neurons as the two central triggers to this issue. To mitigate privacy seesaw, we propose Augmented Privacy Neuron Editing via Activation Patching (APNEAP), a novel framework designed to well balance model performance with privacy protection. The proposed APNEAP augments collected private data by automatically synthesizing new private data, which deactivates the first trigger to the privacy seesaw issue. Additionally, it adapts activation patching to privacy neuron editing for switching off the second trigger to the privacy seesaw problem. Experimental results show that the proposed APNEAP is capable of alleviating the privacy seesaw phenomenon and offers a more stable and reliable approach to privacy protection in LLMs than previous methods.
pdf
bib
abs
Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition
Laura Mascarell
|
Yan LHomme
|
Majed El Helou
Understanding the nature of high-quality summaries is crucial to further improve the performance of multi-document summarization. We propose an approach to characterize human-written summaries using partial information decomposition, which decomposes the mutual information provided by all source documents into union, redundancy, synergy, and unique information. Our empirical analysis on different MDS datasets shows that there is a direct dependency between the number of sources and their contribution to the summary.
pdf
bib
abs
BadActs: A Universal Backdoor Defense in the Activation Space
Biao Yi
|
Sishuo Chen
|
Yiming Li
|
Tong Li
|
Baolei Zhang
|
Zheli Liu
Backdoor attacks pose an increasingly severe security threat to Deep Neural Networks (DNNs) during their development stage. In response, backdoor sample purification has emerged as a promising defense mechanism, aiming to eliminate backdoor triggers while preserving the integrity of the clean content in the samples. However, existing approaches have been predominantly focused on the word space, which are ineffective against feature-space triggers and significantly impair performance on clean data. To address this, we introduce a universal backdoor defense that purifies backdoor samples in the activation space by drawing abnormal activations towards optimized minimum clean activation distribution intervals. The advantages of our approach are twofold: (1) By operating in the activation space, our method captures from surface-level information like words to higher-level semantic concepts such as syntax, thus counteracting diverse triggers; (2) the fine-grained continuous nature of the activation space allows for more precise preservation of clean content while removing triggers. Furthermore, we propose a detection module based on statistical information of abnormal activations, to achieve a better trade-off between clean accuracy and defending performance. Extensive experiments on diverse datasets and against diverse attacks (including syntax and style attacks) demonstrate that our defense achieves state-of-the-art performance.
pdf
bib
abs
ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining
Zhiyuan Liu
|
Yaorui Shi
|
An Zhang
|
Sihang Li
|
Enzhi Zhang
|
Xiang Wang
|
Kenji Kawaguchi
|
Tat-Seng Chua
Molecule-text modeling, which aims to facilitate molecule-relevant tasks with a textual interface and textual knowledge, is an emerging research direction. Beyond single molecules, studying reaction-text modeling holds promise for helping the synthesis of new materials and drugs. However, previous works mostly neglect reaction-text modeling: they primarily focus on modeling individual molecule-text pairs or learning chemical reactions without texts in context. Additionally, one key task of reaction-text modeling – experimental procedure prediction – is less explored due to the absence of an open-source dataset. The task is to predict step-by-step actions of conducting chemical experiments and is crucial to automating chemical synthesis. To resolve the challenges above, we propose a new pretraining method, ReactXT, for reaction-text modeling, and a new dataset, OpenExp, for experimental procedure prediction. Specifically, ReactXT features three types of input contexts to incrementally pretrain LMs. Each of the three input contexts corresponds to a pretraining task to improve the text-based understanding of either reactions or single molecules. ReactXT demonstrates consistent improvements in experimental procedure prediction and molecule captioning and offers competitive results in retrosynthesis. Our code is available at https://github.com/syr-cn/ReactXT.
pdf
bib
abs
Multi-modal Concept Alignment Pre-training for Generative Medical Visual Question Answering
Quan Yan
|
Junwen Duan
|
Jianxin Wang
Medical Visual Question Answering (Med-VQA) seeks to accurately respond to queries regarding medical images, a task particularly challenging for open-ended questions. This study unveils the Multi-modal Concept Alignment Pre-training (MMCAP) approach for generative Med-VQA, leveraging a knowledge graph sourced from medical image-caption datasets and the Unified Medical Language System. MMCAP advances the fusion of visual and textual medical knowledge via a graph attention network and a transformer decoder. Additionally, it incorporates a Type Conditional Prompt in the fine-tuning phase, markedly boosting the accuracy and relevance of answers to open-ended questions. Our tests on benchmark datasets illustrate MMCAP’s superiority over existing methods, demonstrating its high efficiency in data-limited settings and effective knowledge-image alignment capability.
pdf
bib
abs
Exploring Ordinality in Text Classification: A Comparative Study of Explicit and Implicit Techniques
Siva Rajesh Kasa
|
Aniket Goel
|
Karan Gupta
|
Sumegh Roychowdhury
|
Pattisapu Priyatam
|
Anish Bhanushali
|
Prasanna Srinivasa Murthy
Ordinal Classification (OC) is a widely encountered challenge in Natural Language Processing (NLP), with applications in various domains such as sentiment analysis, rating prediction, and more. Previous approaches to tackle OC have primarily focused on modifying existing or creating novel loss functions that explicitly account for the ordinal nature of labels. However, with the advent of Pre-trained Language Models (PLMs), it became possible to tackle ordinality through the implicit semantics of the labels as well. This paper provides a comprehensive theoretical and empirical examination of both these approaches. Furthermore, we also offer strategic recommendations regarding the most effective approach to adopt based on specific settings.
pdf
bib
abs
Evaluating Large Language Models on Wikipedia-Style Survey Generation
Fan Gao
|
Hang Jiang
|
Rui Yang
|
Qingcheng Zeng
|
Jinghui Lu
|
Moritz Blum
|
Tianwei She
|
Yuang Jiang
|
Irene Li
Educational materials such as survey articles in specialized fields like computer science traditionally require tremendous expert inputs and are therefore expensive to create and update. Recently, Large Language Models (LLMs) have achieved significant success across various general tasks. However, their effectiveness and limitations in the education domain are yet to be fully explored. In this work, we examine the proficiency of LLMs in generating succinct survey articles specific to the niche field of NLP in computer science, focusing on a curated list of 99 topics. Automated benchmarks reveal that GPT-4 surpasses its predecessors, inluding GPT-3.5, PaLM2, and LLaMa2 by margins ranging from 2% to 20% in comparison to the established ground truth. We compare both human and GPT-based evaluation scores and provide in-depth analysis. While our findings suggest that GPT-created surveys are more contemporary and accessible than human-authored ones, certain limitations were observed. Notably, GPT-4, despite often delivering outstanding content, occasionally exhibited lapses like missing details or factual errors. At last, we compared the rating behavior between humans and GPT-4 and found systematic bias in using GPT evaluation.
pdf
bib
abs
The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse
Wanli Yang
|
Fei Sun
|
Xinyu Ma
|
Xun Liu
|
Dawei Yin
|
Xueqi Cheng
Although model editing has shown promise in revising knowledge in Large Language Models (LLMs), its impact on the inherent capabilities of LLMs is often overlooked. In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks. However, benchmarking LLMs after each edit, while necessary to prevent such collapses, is impractically time-consuming and resource-intensive. To mitigate this, we propose using perplexity as a surrogate metric, validated by extensive experiments demonstrating changes in an edited model’s perplexity are strongly correlated with its downstream task performances. We further conduct an in-depth study on sequential editing, a practical setting for real-world scenarios, across various editing methods and LLMs, focusing on hard cases from our previous single edit studies. The results indicate that nearly all examined editing methods result in model collapse after only few edits. To facilitate further research, we have utilized GPT-3.5 to develop a new dataset, HardEdit, based on those hard cases. This dataset aims to establish the foundation for pioneering research in reliable model editing and the mechanisms underlying editing-induced model collapse. We hope this work can draw the community’s attention to the potential risks inherent in model editing practices.
pdf
bib
abs
Can We Continually Edit Language Models? On the Knowledge Attenuation in Sequential Model Editing
Qi Li
|
Xiaowen Chu
Model editing has become a promising method for precisely and effectively updating knowledge in language models. In this paper, we investigate knowledge attenuation, in which the retention of updated knowledge within the language model decreases as the number of edits increases after sequential editing. Through empirical study, we discovered that existing editing methods generally suffer from knowledge attenuation. We attribute this phenomenon to two aspects: (1) redundant parameters interference and (2) update weight disentanglement. To this end, we propose the AdaPLE method. It not only mitigates the knowledge attenuation issue but also improves the performance on existing benchmarks. To the best of our knowledge, we are the first to investigate the cause and mitigation of knowledge attenuation in sequential LLM editing.
pdf
bib
abs
Before Generation, Align it! A Novel and Effective Strategy for Mitigating Hallucinations in Text-to-SQL Generation
Ge Qu
|
Jinyang Li
|
Bowen Li
|
Bowen Qin
|
Nan Huo
|
Chenhao Ma
|
Reynold Cheng
Large Language Models (LLMs) driven by In-Context Learning (ICL) have significantly improved the performance of text-to-SQL. Previous methods generally employ a two-stage reasoning framework, namely 1) schema linking and 2) logical synthesis, making the framework not only effective but also interpretable. Despite these advancements, the inherent bad nature of the generalization of LLMs often results in hallucinations, which limits the full potential of LLMs. In this work, we first identify and categorize the common types of hallucinations at each stage in text-to-SQL. We then introduce a novel strategy, Task Alignment (TA), designed to mitigate hallucinations at each stage. TA encourages LLMs to take advantage of experiences from similar tasks rather than starting the tasks from scratch. This can help LLMs reduce the burden of generalization, thereby mitigating hallucinations effectively. We further propose TA-SQL, a text-to-SQL framework based on this strategy. The experimental results and comprehensive analysis demonstrate the effectiveness and robustness of our framework. Specifically, it enhances the performance of the GPT-4 baseline by 21.23% relatively on BIRD dev and it yields significant improvements across six models and four mainstream, complex text-to-SQL benchmarks.
pdf
bib
abs
Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
Zhibin Lan
|
Liqiang Niu
|
Fandong Meng
|
Jie Zhou
|
Min Zhang
|
Jinsong Su
In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language. In this regard, conventional cascaded methods suffer from issues such as error propagation, massive parameters, and difficulties in deployment and retaining visual characteristics of the input image.Thus, constructing end-to-end models has become an option, which, however, faces two main challenges: 1) the huge modeling burden, as it is required to simultaneously learn alignment across languages and preserve the visual characteristics of the input image; 2) the difficulties of directly predicting excessively lengthy pixel sequences.In this paper, we propose Translatotron-V(ision), an end-to-end IIMT model consisting of four modules. In addition to an image encoder, and an image decoder, our model contains a target text decoder and an image tokenizer. Among them, the target text decoder is used to alleviate the language alignment burden, and the image tokenizer converts long sequences of pixels into shorter sequences of visual tokens, preventing the model from focusing on low-level visual features. Besides, we present a two-stage training framework for our model to assist the model in learning alignment across modalities and languages. Finally, we propose a location-aware evaluation metric called Structure-BLEU to assess the translation quality of the generated images. Experimental results demonstrate that our model achieves competitive performance compared to cascaded models with only 70.9% of parameters, and significantly outperforms the pixel-level end-to-end IIMT model.
pdf
bib
abs
StatBot.Swiss: Bilingual Open Data Exploration in Natural Language
Farhad Nooralahzadeh
|
Yi Zhang
|
Ellery Smith
|
Sabine Maennel
|
Cyril Matthey-Doret
|
Raphaël De Fondeville
|
Kurt Stockinger
The potential for improvements brought by Large Language Models (LLMs) in Text-to-SQL systems is mostly assessed on monolingual English datasets. However, LLMs’ performance for other languages remains vastly unexplored. In this work, we release the StatBot.Swiss dataset, the first bilingual benchmark for evaluating Text-to-SQL systems based on real-world applications. The StatBot.Swiss dataset contains 455 natural language/SQL-pairs over 35 big databases with varying level of complexity for both English and German.We evaluate the performance of state-of-the-art LLMs such as GPT-3.5-Turbo and mixtral-8x7b-instruct for the Text-to-SQL translation task using an in-context learning approach. Our experimental analysis illustrates that current LLMs struggle to generalize well in generating SQL queries on our novel bilingual dataset.
pdf
bib
abs
Subtle Signatures, Strong Shields: Advancing Robust and Imperceptible Watermarking in Large Language Models
Yubing Ren
|
Ping Guo
|
Yanan Cao
|
Wei Ma
The widespread adoption of Large Language Models (LLMs) has led to an increase in AI-generated text on the Internet, presenting a crucial challenge to differentiate AI-created content from human-written text. This challenge is critical to prevent issues of authenticity, trust, and potential copyright violations. Current research focuses on watermarking LLM-generated text, but traditional techniques struggle to balance robustness with text quality. We introduce a novel watermarking approach, Robust and Imperceptible Watermarking (RIW) for LLMs, which leverages token prior probabilities to improve detectability and maintain watermark imperceptibility. RIW methodically embeds watermarks by partitioning selected tokens into two distinct groups based on their prior probabilities and employing tailored strategies for each group. In the detection stage, the RIW method employs the ‘voted z-test’ to provide a statistically robust framework to identify the presence of a watermark accurately. The effectiveness of RIW is evaluated across three key dimensions: success rate, text quality, and robustness against removal attacks. Our experimental results on various LLMs, including GPT2-XL, OPT-1.3B, and LLaMA2-7B, indicate that RIW surpasses existing models, and also exhibits increased robustness against various attacks and good imperceptibility, thus promoting the responsible use of LLMs.
pdf
bib
abs
Thinking about how to extract: Energizing LLMs’ emergence capabilities for document-level event argument extraction
Kai Shuang
|
Zhouji Zhouji
|
Wang Qiwei
|
Jinyu Guo
There are two key challenges remaining for the document-level event argument extraction (D-EAE) tasks: key feature forgetting and cross-event argument confusion. The emergence capability of large language models (LLMs) holds promise for solving the above two challenges. In this paper, we propose a document-level event argument extraction method based on guided summarization and reasoning (EAESR), which leverages the emergence capabilities of LLMs to highlight key event information and to clarify the explicit and implicit association between multiple events. Specifically, we generate document summarization information that shorten the length of the event context while preserving the key event features. In addition, we generate inter-event reasoning information, which helps EAESR make sense of the correlations between events and reduces their dependence on the event context, especially to better cope with the few-shot D-EAE task. Then, we obtain named entity information to enable EAESR to learn argument boundary features to improve the sensitivity of its argument boundary recognition. Eventually, we fused the above features and sentence features to make EAESR have summarizing and reasoning capabilities simultaneously. Extensive experiments on WIKIEVENTS and RAMS have shown that EAESR achieves a new state-of-the-art that outperforms the baseline models by 1.3% F1 and 1.6% F1, respectively, and averages 11% F1 in few-shot settings.
pdf
bib
abs
Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning
Shuzheng Si
|
Helan Hu
|
Haozhe Zhao
|
Shuang Zeng
|
Kaikai An
|
Zefan Cai
|
Baobao Chang
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the burden of annotation, but meanwhile suffers from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, we argue that these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we attempt to mitigate this issue by proposing: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher. This approach further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER denoising methods.
pdf
bib
abs
Predicting Narratives of Climate Obstruction in Social Media Advertising
Harri Rowlands
|
Gaku Morio
|
Dylan Tanner
|
Christopher Manning
Social media advertising offers a platform for fossil fuel value chain companies and their agents to reinforce their narratives, often emphasizing economic, labor market, and energy security benefits to promote oil and gas policy and products. Whether such narratives can be detected automatically and the extent to which the cost of human annotation can be reduced is our research question. We introduce a task of classifying narratives into seven categories, based on existing definitions and data.Experiments showed that RoBERTa-large outperforms other methods, while GPT-4 Turbo can serve as a viable annotator for the task, thereby reducing human annotation costs. Our findings and insights provide guidance to automate climate-related ad analysis and lead to more scalable ad scrutiny.
pdf
bib
abs
SSS: Editing Factual Knowledge in Language Models towards Semantic Sparse Space
Huazheng Wang
|
Haifeng Sun
|
Jingyu Wang
|
Qi Qi
|
Zixuan Xia
|
Menghao Zhang
|
Jianxin Liao
Language Models (LMs) acquire factual knowledge during pre-training and store it in the parameters, which can be valuable for downstream tasks. As world evolves, some facts may be incorrectly induced or become obsolete over time. Various model editing methods have been proposed to modify specific examples in LMs. However, existing training-based methods still suffer from sub-optimal locality, where irrelevant neighborhood examples can be adversely influenced. Model’s gradients are still struggling to identify the appropriate direction when updating the parameters. To address this issue, we find that directing the hidden state of the edit example towards spaces where semantics are sparse tends to help preserve the semantics of irrelevant neighborhood examples. Based on this hypothesis, we propose a novel metric, named SSS, to evaluate the degree of sparsity around a sentence embedding in the semantic space without any human or machine annotation. Subsequently, we incorporate SSS into the original loss function of the existing training-based methods to enhance locality. Experiments conducted on two datasets across various models demonstrate that SSS is effective in improving both locality and reasoning capability.
pdf
bib
abs
GeoHard: Towards Measuring Class-wise Hardness through Modelling Class Semantics
Fengyu Cai
|
Xinran Zhao
|
Hongming Zhang
|
Iryna Gurevych
|
Heinz Koeppl
Recent advances in measuring hardness-wise properties of data guide language models in sample selection within low-resource scenarios. However, class-specific properties are overlooked for task setup and learning. How will these properties influence model learning and is it generalizable across datasets? To answer this question, this work formally initiates the concept of class-wise hardness. Experiments across eight natural language understanding (NLU) datasets demonstrate a consistent hardness distribution across learning paradigms, models, and human judgment. Subsequent experiments unveil a notable challenge in measuring such class-wise hardness with instance-level metrics in previous works. To address this, we propose GeoHard for class-wise hardness measurement by modeling class geometry in the semantic embedding space. GeoHard surpasses instance-level metrics by over 59 percent on Pearson‘s correlation on measuring class-wise hardness. Our analysis theoretically and empirically underscores the generality of GeoHard as a fresh perspective on data diagnosis. Additionally, we showcase how understanding class-wise hardness can practically aid in improving task learning.
pdf
bib
abs
Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
Sheng-Lun Wei
|
Cheng-Kuang Wu
|
Hen-Hsen Huang
|
Hsin-Hsi Chen
In this paper, we investigate the phenomena of “selection biases” in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs’ decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.
pdf
bib
abs
ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic
Fajri Koto
|
Haonan Li
|
Sara Shatnawi
|
Jad Doughman
|
Abdelrahman Sadallah
|
Aisha Alraeesi
|
Khalid Almubarak
|
Zaid Alyafeai
|
Neha Sengupta
|
Shady Shehata
|
Nizar Habash
|
Preslav Nakov
|
Timothy Baldwin
The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for the Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%.
pdf
bib
abs
On the Relationship Between RNN Hidden-State Vectors and Semantic Structures
Edi Muskardin
|
Martin Tappler
|
Ingo Pill
|
Bernhard Aichernig
|
Thomas Pock
We examine the assumption that hidden-state vectors of recurrent neural networks (RNNs) tend to form clusters of semantically similar vectors, which we dub the clustering hypothesis. While this hypothesis has been assumed in RNN analyses in recent years, its validity has not been studied thoroughly on modern RNN architectures. We first consider RNNs that were trained to recognize regular languages. This enables us to draw on perfect ground-truth automata in our evaluation, against which we can compare the RNN’s accuracy and the distribution of the hidden-state vectors. Then, we consider context-free languages to examine if RNN states form clusters for more expressive languages.For our analysis, we fit (generalized) linear models to classify RNN states into automata states and we apply different unsupervised clustering techniques. With a new ambiguity score, derived from information entropy, we measure how well an abstraction function maps the hidden state vectors to abstract clusters. Our evaluation supports the validity of the clustering hypothesis for regular languages, especially if RNNs are well-trained, i.e., clustering techniques succeed in finding clusters of similar state vectors. However, the clustering accuracy decreases substantially for context-free languages. This suggests that clustering is not a reliable abstraction technique for RNNs used in tasks like natural language processing.
pdf
bib
abs
XMC-Agent : Dynamic Navigation over Scalable Hierarchical Index for Incremental Extreme Multi-label Classification
Yanjiang Liu
|
Tianyun Zhong
|
Yaojie Lu
|
Hongyu Lin
|
Ben He
|
Shuheng Zhou
|
Huijia Zhu
|
Weiqiang Wang
|
Zhongyi Liu
|
Xianpei Han
|
Le Sun
The eXtreme Multi-label Classification (XMC) aims at accurately assigning large-scale labels to instances, and is challenging for learning, managing, and predicting over the large-scale and rapidly growing set of labels. Traditional XMC methods, like one-vs-all and tree-based methods struggle with the growing set of labels due to their static label assumptions, and embedding-based methods struggle with the complex mapping relationships due to their late-interaction paradigm. In this paper, we propose a large language model (LLM) powered agent framework for extreme multi-label classification – XMC-Agent, which can effectively learn, manage and predict the extremely large and dynamically increasing set of labels. Specifically, XMC-Agent models the extreme multi-label classification task as a dynamic navigation problem, employing a scalable hierarchical label index to effectively manage the unified label space. Additionally, we propose two algorithms to enhance the dynamic navigation capabilities of XMC-Agent: a self-construction algorithm for building the scalable hierarchical index, and an iterative feedback learning algorithm for adjusting the agent to specific tasks. Experiments show that XMC-Agentachieves the state-of-the-art performance on three standard datasets.
pdf
bib
abs
Benchmarking Large Language Models on CFLUE - A Chinese Financial Language Understanding Evaluation Dataset
Jie Zhu
|
Junhui Li
|
Yalong Wen
|
Lifan Guo
In light of recent breakthroughs in large language models (LLMs) that have revolutionized natural language processing (NLP), there is an urgent need for new benchmarks to keep pace with the fast development of LLMs. In this paper, we propose CFLUE, the Chinese Financial Language Understanding Evaluation benchmark, designed to assess the capability of LLMs across various dimensions. Specifically, CFLUE provides datasets tailored for both knowledge assessment and application assessment. In knowledge assessment, it consists of 38K+ multiple-choice questions with associated solution explanations. These questions serve dual purposes: answer prediction and question reasoning. In application assessment, CFLUE features 16K+ test instances across distinct groups of NLP tasks such as text classification, machine translation, relation extraction, reading comprehension, and text generation. Upon CFLUE, we conduct a thorough evaluation of representative LLMs. The results reveal that only Qwen-72B, GPT-4, and GPT-4-turbo achieve an accuracy exceeding 60% in answer prediction for knowledge assessment, suggesting that there is still substantial room for improvement in current LLMs. In application assessment, while GPT-4 and GPT-4-turbo rank as the top two performers on average, their significant advantage over open-source LLMs is noticeably diminished, given that Qwen-72B achieves the best performance in 2 out of 5 tasks. The datasets and scripts associated with CFLUE are openly accessible at
https://github.com/aliyun/cflue.
pdf
bib
abs
Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint
Zhipeng Chen
|
Kun Zhou
|
Xin Zhao
|
Junchen Wan
|
Fuzheng Zhang
|
Di Zhang
|
Ji-Rong Wen
Reinforcement learning (RL) has been widely used in training large language models (LLMs) for preventing unexpected outputs, e.g., reducing harmfulness and errors. However, existing RL methods mainly adopt instance-level reward, which cannot provide fine-grained supervision for complex reasoning tasks. As a result, the RL training cannot be fully aware of the specific part or step that actually leads to the incorrectness in model response. To address it, we propose a new RL method named RLMEC that incorporates a generative model as the reward model, which is trained by the erroneous solution rewriting task under the minimum editing constraint, which can produce token-level supervision for RL training. Based 0on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process. And these two objectives focus on the revision of the key tokens for the erroneous solution, reducing the effect of other unimportant tokens. Experiment results on 8 tasks have demonstrated the effectiveness of our approach. Our code and data will be publicly released.
pdf
bib
abs
Definition generation for lexical semantic change detection
Mariia Fedorova
|
Andrey Kutuzov
|
Yves Scherrer
We use contextualized word definitions generated by large language models as semantic representations in the task of diachronic lexical semantic change detection (LSCD). In short, generated definitions are used as ‘senses’, and the change score of a target word is retrieved by comparing their distributions in two time periods under comparison. On the material of five datasets and three languages, we show that generated definitions are indeed specific and general enough to convey a signal sufficient to rank sets of words by the degree of their semantic change over time. Our approach is on par with or outperforms prior non-supervised sense-based LSCD methods. At the same time, it preserves interpretability and allows to inspect the reasons behind a specific shift in terms of discrete definitions-as-senses. This is another step in the direction of explainable semantic change modeling.
pdf
bib
abs
MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector
Marta Costa-jussà
|
Mariano Meglioli
|
Pierre Andrews
|
David Dale
|
Prangthip Hansanti
|
Elahe Kalbassi
|
Alexandre Mourachko
|
Christophe Ropers
|
Carleigh Wood
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels which covers 14 different linguistic families. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 28 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier performs on par with existing text-based trainable classifiers, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, MuTox improves F1-Score by an average of 100%. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
pdf
bib
abs
Phased Instruction Fine-Tuning for Large Language Models
Wei Pang
|
Chuan Zhou
|
Xiao-Hua Zhou
|
Xiaojie Wang
Instruction Fine-Tuning, a method enhancing pre-trained language models’ capabilities from mere next-word prediction to complex instruction following, often employs a one-off training approach on diverse instruction dataset. However, this method may not effectively enhance models’ adherence to instructions due to the simultaneous handling of varying instruction complexities. To address this, we propose a novel phased instruction fine-tuning (Phased IFT) method, grounded in the hypothesis of progressive alignment, which posits that the transition of a pre-trained language model from simple next-word prediction to sophisticated instruction following is a gradual learning process. Specifically, we obtain the score of difficulty for each instruction via GPT-4, stratify the instruction data into subsets of increasing difficulty, and sequentially uptrain on these subsets using the standard supervised loss. Through extensive experiments on the pre-trained models Llama-2 7B/13B, and Mistral-7B using the 52K Alpaca instruction data, we demonstrate that Phased IFT significantly surpasses traditional one-off instruction fine-tuning (One-off IFT) method in win rate, empirically validating the progressive alignment hypothesis. Our findings suggest that Phased IFT offers a simple yet effective pathway for elevating the instruction-following capabilities of pre-trained language models.
pdf
bib
abs
TOREE: Evaluating Topic Relevance of Student Essays for Chinese Primary and Middle School Education
Xinlin Zhuang
|
Hongyi Wu
|
Xinshu Shen
|
Peimin Yu
|
Gaowei Yi
|
Xinhao Chen
|
Tu Hu
|
Yang Chen
|
Yupei Ren
|
Yadong Zhang
|
Youqi Song
|
Binxuan Liu
|
Man Lan
Topic relevance of an essay demands that the composition adheres to a clear theme and aligns well with the essay prompt requirements, a critical aspect of essay quality evaluation. However, existing research of Automatic Essay Scoring (AES) for Chinese essays has overlooked topic relevance and lacks detailed feedback, while Automatic Essay Comment Generation (AECG) faces much complexity and difficulty. Additionally, current Large Language Models, including GPT-4, often make incorrect judgments and provide overly impractical feedback when evaluating topic relevance. This paper introduces TOREE (Topic Relevance Evaluation), a comprehensive dataset developed to assess topic relevance in Chinese primary and middle school students’ essays, which is beneficial for AES, AECG and other applications. Moreover, our proposed two-step method utilizes TOREE through a combination of Supervised Fine-tuning and Preference Learning. Experimental results demonstrate that TOREE is of high quality, and our method significantly enhances models’ performance on two designed tasks for topic relevance evaluation, improving both automatic and human evaluations across four diverse LLMs.
pdf
bib
abs
Predicting the Unpredictable: Uncertainty-Aware Reasoning over Temporal Knowledge Graphs via Diffusion Process
Yuxiang Cai
|
Qiao Liu
|
Yanglei Gan
|
Changlin Li
|
Xueyi Liu
|
Run Lin
|
Da Luo
|
JiayeYang JiayeYang
Temporal Knowledge Graph (TKG) reasoning seeks to predict future incomplete facts leveraging historical data. While existing approaches have shown effectiveness in addressing the task through various perspectives, such as graph learning and logic rules, they are limited in capturing the indeterminacy in future events, particularly in the case of rare/unseen facts. To tackle the highlighted issues, we introduce a novel approach by conceptualizing TKG reasoning as a sequence denoising process for future facts, namely DiffuTKG. Concretely, we first encodes the historical events as the conditional sequence. Then we gradually introduce Gaussian noise to corrupt target facts during the forward process and then employ a transformer-based conditional denoiser to restore them in the reverse phase. Moreover, we introduce an uncertainty regularization loss to mitigate the risk of prediction biases by favoring frequent scenarios over rare/unseen facts. Empirical results on four real-world datasets show that DiffuTKG outperforms state-of-the-art methods across multiple evaluation metrics.
pdf
bib
abs
Asymmetric Bias in Text-to-Image Generation with Adversarial Attacks
Haz Shahgir
|
Xianghao Kong
|
Greg Ver Steeg
|
Yue Dong
The widespread use of Text-to-Image (T2I) models in content generation requires careful examination of their safety, including their robustness to adversarial attacks. Despite extensive research on adversarial attacks, the reasons for their effectiveness remain underexplored. This paper presents an empirical study on adversarial attacks against T2I models, focusing on analyzing factors associated with attack success rates (ASR). We introduce a new attack objective - entity swapping using adversarial suffixes and two gradient-based attack algorithms. Human and automatic evaluations reveal the asymmetric nature of ASRs on entity swap: for example, it is easier to replace “human” with “robot” in the prompt “a human dancing in the rain.” with an adversarial suffix, but the reverse replacement is significantly harder. We further propose probing metrics to establish indicative signals from the model’s beliefs to the adversarial ASR. We identify conditions that result in a success probability of 60% for adversarial attacks and others where this likelihood drops below 5%. The code and data are available at https://github.com/Patchwork53/AsymmetricAttack
pdf
bib
abs
Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs
Xun Liang
|
Hanyu Wang
|
Shichao Song
|
Mengting Hu
|
Xunzhi Wang
|
Zhiyu Li
|
Feiyu Xiong
|
Bo Tang
Controlled Text Generation (CTG) aims to produce texts that exhibit specific desired attributes. In this study, we introduce a pluggable CTG framework for Large Language Models (LLMs) named Dynamic Attribute Graphs-based controlled text generation (DATG). This framework utilizes an attribute scorer to evaluate the attributes of sentences generated by LLMs and constructs dynamic attribute graphs. DATG modulates the occurrence of key attribute words and key anti-attribute words, achieving effective attribute control without compromising the original capabilities of the model. We conduct experiments across four datasets in two tasks: toxicity mitigation and sentiment transformation, employing five LLMs as foundational models. Our findings highlight a remarkable enhancement in control accuracy, achieving a peak improvement of 19.29% over baseline methods in the most favorable task across four datasets. Additionally, we observe a significant decrease in perplexity, markedly improving text fluency.
pdf
bib
abs
Coconut: Contextualized Commonsense Unified Transformers for Graph-Based Commonsense Augmentation of Language Models
Jun-Hyung Park
|
Mingyu Lee
|
Junho Kim
|
SangKeun Lee
In this paper, we introduce COCONUT to effectively guide the contextualization of structured commonsense knowledge based on largelanguage models. COCONUT employs a contextualized knowledge prompting scheme to gather high-quality contextualization examplesfrom a large language model. These examples are subsequently distilled into small language models to enhance their contextualization capability. Extensive evaluations show that COCONUT considerably improves commonsense reasoning performance across diverse benchmarks, models, and settings, exhibiting its flexibility and universality in generating contextualized commonsense knowledge. Notably,COCONUT consistently outperforms the state-of-the-art technique by an average of 5.8%.
pdf
bib
abs
Mass-Editing Memory with Attention in Transformers: A cross-lingual exploration of knowledge
Daniel Tamayo
|
Aitor Gonzalez-Agirre
|
Javier Hernando
|
Marta Villegas
Recent research has explored methods for updating and modifying factual knowledge in large language models, often focusing on specific multi-layer perceptron blocks. This study expands on this work by examining the effectiveness of existing knowledge editing methods across languages and delving into the role of attention mechanisms in this process. Drawing from the insights gained, we propose Mass-Editing Memory with Attention in Transformers (MEMAT), a method that achieves significant improvements in all metrics while requiring minimal parameter modifications. MEMAT delivers a remarkable 10% increase in magnitude metrics, benefits languages not included in the training data and also demonstrates a high degree of portability. Our code and data are at https://github.com/dtamayo-nlp/MEMAT.
pdf
bib
abs
BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
Yanis Labrak
|
Adrien Bazoge
|
Emmanuel Morin
|
Pierre-Antoine Gourraud
|
Mickael Rouvier
|
Richard Dufour
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral’s superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
pdf
bib
abs
All Languages Matter: On the Multilingual Safety of LLMs
Wenxuan Wang
|
Zhaopeng Tu
|
Chang Chen
|
Youliang Yuan
|
Jen-tse Huang
|
Wenxiang Jiao
|
Michael Lyu
Safety lies at the core of developing and deploying large language models (LLMs). However, previous safety benchmarks only concern the safety in one language, e.g. the majority language in the pretraining data such as English. In this work, we build the first multilingual safety benchmark for LLMs, XSafety, in response to the global deployment of LLMs in practice. XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families. We utilize XSafety to empirically study the multilingual safety for 4 widely-used LLMs, including both close-API and open-source models. Experimental results show that all LLMs produce significantly more unsafe responses for non-English queries than English ones, indicating the necessity of developing safety alignment for non-English languages. In addition, we propose a simple and effective prompting method to improve the multilingual safety of ChatGPT by enhancing cross-lingual generalization of safety alignment. Our prompting method can significantly reduce the ratio of unsafe responses by 42% for non-English queries. We will release all the data and results to facilitate future research on LLMs’ safety.
pdf
bib
abs
LJPCheck: Functional Tests for Legal Judgment Prediction
Yuan Zhang
|
Wanhong Huang
|
Yi Feng
|
Chuanyi Li
|
Zhiwei Fei
|
Jidong Ge
|
Bin Luo
|
Vincent Ng
Legal Judgment Prediction (LJP) refers to the task of automatically predicting judgment results (e.g., charges, law articles and term of penalty) given the fact description of cases. While SOTA models have achieved high accuracy and F1 scores on public datasets, existing datasets fail to evaluate specific aspects of these models (e.g., legal fairness, which significantly impact their applications in real scenarios). Inspired by functional testing in software engineering, we introduce LJPCHECK, a suite of functional tests for LJP models, to comprehend LJP models’ behaviors and offer diagnostic insights. We illustrate the utility of LJPCHECK on five SOTA LJP models. Extensive experiments reveal vulnerabilities in these models, prompting an in-depth discussion into the underlying reasons of their shortcomings.
pdf
bib
abs
CMDL: A Large-Scale Chinese Multi-Defendant Legal Judgment Prediction Dataset
Wanhong Huang
|
Yi Feng
|
Chuanyi Li
|
Honghan Wu
|
Jidong Ge
|
Vincent Ng
Legal Judgment Prediction (LJP) has attracted significant attention in recent years. However, previous studies have primarily focused on cases involving only a single defendant, skipping multi-defendant cases due to complexity and difficulty. To advance research, we introduce CMDL, a large-scale real-world Chinese Multi-Defendant LJP dataset, which consists of over 393,945 cases with nearly 1.2 million defendants in total. For performance evaluation, we propose case-level evaluation metrics dedicated for the multi-defendant scenario. Experimental results on CMDL show existing SOTA approaches demonstrate weakness when applied to cases involving multiple defendants. We highlight several challenges that require attention and resolution.
pdf
bib
abs
Model Editing by Standard Fine-Tuning
Govind Krishnan Gangadhar
|
Karl Stratos
Standard fine-tuning is considered not as effective as specialized methods for model editing due to its comparatively poor performance. However, it is simple, agnostic to the architectural details of the model being edited, and able to leverage advances in standard training techniques with no additional work (e.g., black-box PEFT for computational efficiency), making it an appealing choice for a model editor. In this work, we show that standard fine-tuning alone can yield competitive model editing performance with two minor modifications. First, we optimize the conditional likelihood rather than the full likelihood. Second, in addition to the typical practice of training on randomly paraphrased edit prompts to encourage generalization, we also train on random or similar unedited facts to encourage locality. Our experiments on the ZsRE and CounterFact datasets demonstrate that these simple modifications allow standard fine-tuning to match or outperform highly specialized editors in terms of edit score.
pdf
bib
abs
Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning
Qiming Bao
|
Alex Peng
|
Zhenyun Deng
|
Wanjun Zhong
|
Gael Gendron
|
Timothy Pistotti
|
Neset Tan
|
Nathan Young
|
Yang Chen
|
Yonghua Zhu
|
Paul Denny
|
Michael Witbrock
|
Jiamou Liu
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard. The source code and data are publicly available
pdf
bib
abs
CodeInsight: A Curated Dataset of Practical Coding Solutions from Stack Overflow
Nathanaël Beau
|
Benoit Crabbé
We introduce a novel dataset tailored for code generation, aimed at aiding developers in common tasks. Our dataset provides examples that include a clarified intent, code snippets associated, and an average of three related unit tests. It encompasses a range of libraries such as Pandas, Numpy, and Regex, along with more than 70 standard libraries in Python code derived from Stack Overflow. Comprising 3,402 crafted examples by Python experts, our dataset is designed for both model finetuning and standalone evaluation. To complete unit tests evaluation, we categorize examples in order to get more fine grained analysis, enhancing the understanding of models’ strengths and weaknesses in specific coding tasks. The examples have been refined to reduce data contamination, a process confirmed by the performance of three leading models: Mistral 7B, CodeLLAMA 13B, and Starcoder 15B. We further investigate data-contamination testing GPT-4 performance on a part of our dataset. The benchmark can be accessed at anonymized address.
pdf
bib
abs
ViHateT5: Enhancing Hate Speech Detection in Vietnamese With a Unified Text-to-Text Transformer Model
Luan Thanh Nguyen
Recent advancements in hate speech detection (HSD) in Vietnamese have made significant progress, primarily attributed to the emergence of transformer-based pre-trained language models, particularly those built on the BERT architecture. However, the necessity for specialized fine-tuned models has resulted in the complexity and fragmentation of developing a multitasking HSD system. Moreover, most current methodologies focus on fine-tuning general pre-trained models, primarily trained on formal textual datasets like Wikipedia, which may not accurately capture human behavior on online platforms. In this research, we introduce ViHateT5, a T5-based model pre-trained on our proposed large-scale domain-specific dataset named VOZ-HSD. By harnessing the power of a text-to-text architecture, ViHateT5 can tackle multiple tasks using a unified model and achieve state-of-the-art performance across all standard HSD benchmarks in Vietnamese. Our experiments also underscore the significance of label distribution in pre-training data on model efficacy. We provide our experimental materials for research purposes, including the VOZ-HSD dataset, pre-trained checkpoint, the unified HSD-multitask ViHateT5 model, and related source code on GitHub publicly.
pdf
bib
abs
Bias in News Summarization: Measures, Pitfalls and Corpora
Julius Steen
|
Katja Markert
Summarization is an important application of large language models (LLMs). Most previous evaluation of summarization models has focused on their content selection, faithfulness, grammaticality and coherence. However, it is well known that LLMs can reproduce and reinforce harmful social biases. This raises the question: Do biases affect model outputs in a constrained setting like summarization?To help answer this question, we first motivate and introduce a number of definitions for biased behaviours in summarization models, along with practical operationalizations. Since we find that biases inherent to input documents can confound bias analysis in summaries, we propose a method to generate input documents with carefully controlled demographic attributes. This allows us to study summarizer behavior in a controlled setting, while still working with realistic input documents.We measure gender bias in English summaries generated by both purpose-built summarization models and general purpose chat models as a case study. We find content selection in single document summarization to be largely unaffected by gender bias, while hallucinations exhibit evidence of bias.To demonstrate the generality of our approach, we additionally investigate racial bias, including intersectional settings.
pdf
bib
abs
When to Trust LLMs: Aligning Confidence with Response Quality
Shuchang Tao
|
Liuyi Yao
|
Hanxing Ding
|
Yuexiang Xie
|
Qi Cao
|
Fei Sun
|
Jinyang Gao
|
Huawei Shen
|
Bolin Ding
Despite the success of large language models (LLMs) in natural language generation, much evidence shows that LLMs may produce incorrect or nonsensical text. This limitation highlights the importance of discerning when to trust LLMs, especially in safety-critical domains. Existing methods often express reliability by confidence level, however, their effectiveness is limited by the lack of objective guidance. To address this, we propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD), which leverages reinforcement learning guided by a tailored dual-component reward function. This function integrates quality reward and order-preserving alignment reward functions. Specifically, the order-preserving reward incentivizes the model to verbalize greater confidence for responses of higher quality to align the order of confidence and quality. Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy, without causing over-cautious. Furthermore, the aligned confidence provided by CONQORD informs when to trust LLMs, and acts as a determinant for initiating the retrieval process of external knowledge. Aligning confidence with response quality ensures more transparent and reliable responses, providing better trustworthiness.
pdf
bib
abs
Zero-shot Cross-lingual Alignment for Embedding Initialization
Xi Ai
|
Zhiyong Huang
For multilingual training, we present CrossInit, an initialization method that initializes embeddings into similar geometrical structures across languages in an unsupervised manner. CrossInit leverages a common cognitive linguistic mechanism, Zipf’s law, which indicates that similar concepts across languages have similar word ranks or frequencies in their monolingual corpora. Instead of considering point-to-point alignments based on ranks, CrossInit considers the same span of consecutive ranks in each language as the Positive pairs for alignment, while others out of the span are used as Negative pairs. CrossInit then employs Contrastive Learning to iteratively refine randomly initialized embeddings for similar geometrical structures across languages. Our experiments on Unsupervised NMT, XNLI, and MLQA showed significant gains in low-resource and dissimilar languages after applying CrossInit.
pdf
bib
abs
Mitigating Hallucinations in Large Vision-Language Models (LVLMs) via Language-Contrastive Decoding (LCD)
Avshalom Manevich
|
Reut Tsarfaty
Large Vision-Language Models (LVLMs) are an extension of Large Language Models (LLMs) that facilitate processing both image and text inputs, expanding AI capabilities. However, LVLMs struggle with object hallucinations due to their reliance on text cues and learned object co-occurrence biases. While most research quantifies these hallucinations, mitigation strategies are still lacking. Our study introduces a Language Contrastive Decoding (LCD) algorithm that adjusts LVLM outputs based on LLM distribution confidence levels, effectively reducing object hallucinations. We demonstrate the advantages of LCD in leading LVLMs, showing up to %4 improvement in POPE F1 scores and up to %36 reduction in CHAIR scores on the COCO validation set, while also improving captioning quality scores. Our method effectively improves LVLMs without needing complex post-processing or retraining, and is easily applicable to different models. Our findings highlight the potential of further exploration of LVLM-specific decoding algorithms.
pdf
bib
abs
It takes two to borrow: a donor and a recipient. Who’s who?
Liviu Dinu
|
Ana Uban
|
Anca Dinu
|
Ioan-Bogdan Iordache
|
Simona Georgescu
|
Laurentiu Zoicas
We address the open problem of automatically identifying the direction of lexical borrowing, given word pairs in the donor and recipient languages. We propose strong benchmarks for this task, by applying a set of machine learning models. We extract and publicly release a comprehensive borrowings dataset from the recent RoBoCoP cognates and borrowings database for five Romance languages. We experiment on this dataset with both graphic and phonetic representations and with different features, models and architectures. We interpret the results, in terms of F1 score, commenting on the influence of features and model choice, of the imbalanced data and of the inherent difficulty of the task for particular language pairs. We show that automatically determining the direction of borrowing is a feasible task, and propose additional directions for future work.
pdf
bib
abs
Advancing Post-OCR Correction: A Comparative Study of Synthetic Data
Shuhao Guan
|
Derek Greene
This paper explores the application of synthetic data in the post-OCR domain on multiple fronts by conducting experiments to assess the impact of data volume, augmentation, and synthetic data generation methods on model performance. Furthermore, we introduce a novel algorithm that leverages computer vision feature detection algorithms to calculate glyph similarity for constructing post-OCR synthetic data. Through experiments conducted across a variety of languages, including several low-resource ones, we demonstrate that models like ByT5 can significantly reduce Character Error Rates (CER) without the need for manually annotated data, and our proposed synthetic data generation method shows advantages over traditional methods, particularly in low-resource languages.
pdf
bib
abs
GeoAgent: To Empower LLMs using Geospatial Tools for Address Standardization
Chenghua Huang
|
Shisong Chen
|
Zhixu Li
|
Jianfeng Qu
|
Yanghua Xiao
|
Jiaxin Liu
|
Zhigang Chen
This paper presents a novel solution to tackle the challenges that posed by the abundance of non-standard addresses, which input by users in modern applications such as navigation maps, ride-hailing apps, food delivery platforms, and logistics services. These manually entered addresses often contain irregularities, such as missing information, spelling errors, colloquial descriptions, and directional offsets, which hinder address-related tasks like address matching and linking. To tackle these challenges, we propose GeoAgent, a new framework comprising two main components: a large language model (LLM) and a suite of geographical tools. By harnessing the semantic understanding capabilities of the LLM and integrating specific geospatial tools, GeoAgent incorporates spatial knowledge into address texts and achieves efficient address standardization. Further, to verify the effectiveness and practicality of our approach, we construct a comprehensive dataset of complex non-standard addresses, which fills the gaps in existing datasets and proves invaluable for training and evaluating the performance of address standardization models in this community. Experimental results demonstrate the efficacy of GeoAgent, showcasing substantial improvements in the performance of address-related models across various downstream tasks.
pdf
bib
abs
HQP: A Human-Annotated Dataset for Detecting Online Propaganda
Abdurahman Maarouf
|
Dominik Bär
|
Dominique Geissler
|
Stefan Feuerriegel
Online propaganda poses a severe threat to the integrity of societies. However, existing datasets for detecting online propaganda have a key limitation: they were annotated using weak labels that can be noisy and even incorrect. To address this limitation, our work makes the following contributions: (1) We present HQP: a novel dataset (N=30000) for detecting online propaganda with high-quality labels. To the best of our knowledge, HQP is the first large-scale dataset for detecting online propaganda that was created through human annotation. (2) We show empirically that state-of-the-art language models fail in detecting online propaganda when trained with weak labels (AUC: 64.03). In contrast, state-of-the-art language models can accurately detect online propaganda when trained with our high-quality labels (AUC: 92.25), which is an improvement of 44%. (3) We show that prompt-based learning using a small sample of high-quality labels can still achieve a reasonable performance (AUC: 80.27) while significantly reducing the cost of labeling. (4) We extend HQP to HQP+ to test how well propaganda across different contexts can be detected. Crucially, our work highlights the importance of high-quality labels for sensitive NLP tasks such as propaganda detection.
pdf
bib
abs
Teaching Language Models to Self-Improve by Learning from Language Feedback
Chi Hu
|
Yimin Hu
|
Hang Cao
|
Tong Xiao
|
JingBo Zhu
Aligning Large Language Models (LLMs) with human intentions and values is crucial yet challenging. Current methods primarily rely on human preferences, which are costly and insufficient in capturing nuanced feedback expressed in natural language. In this paper, we present Self-Refinement Tuning (SRT), a method that leverages model feedback for alignment, thereby reducing reliance on human annotations. SRT uses a base language model (e.g., Tulu2) to generate initial responses, which are critiqued and refined by a more advanced model (e.g., GPT-4-Turbo). This process enables the base model to self-evaluate and improve its outputs, facilitating continuous learning. SRT further optimizes the model by learning from its self-generated feedback and refinements, creating a feedback loop that promotes model improvement. Our empirical evaluations demonstrate that SRT significantly outperforms strong baselines across diverse tasks and model sizes. When applied to a 70B parameter model, SRT increases the win rate from 9.6% to 25.8% on the AlpacaEval 2.0 benchmark, surpassing well-established systems such as GPT-4-0314, Claude 2, and Gemini. Our analysis highlights the crucial role of language feedback in the success of SRT, suggesting potential for further exploration in this direction.
pdf
bib
abs
Exploring Spatial Schema Intuitions in Large Language and Vision Models
Philipp Wicke
|
Lennart Wachowiak
Despite the ubiquity of large language models (LLMs) in AI research, the question of embodiment in LLMs remains underexplored, distinguishing them from embodied systems in robotics where sensory perception directly informs physical action.Our investigation navigates the intriguing terrain of whether LLMs, despite their non-embodied nature, effectively capture implicit human intuitions about fundamental, spatial building blocks of language. We employ insights from spatial cognitive foundations developed through early sensorimotor experiences, guiding our exploration through the reproduction of three psycholinguistic experiments. Surprisingly, correlations between model outputs and human responses emerge, revealing adaptability without a tangible connection to embodied experiences. Notable distinctions include polarized language model responses and reduced correlations in vision language models. This research contributes to a nuanced understanding of the interplay between language, spatial experiences, and the computations made by large language models.Project Website: https://cisnlp.github.io/Spatial_Schemas/
pdf
bib
abs
Efficient Detection of LLM-generated Texts with a Bayesian Surrogate Model
Yibo Miao
|
Hongcheng Gao
|
Hao Zhang
|
Zhijie Deng
The detection of machine-generated text, especially from large language models (LLMs), is crucial in preventing serious social problems resulting from their misuse. Some methods train dedicated detectors on specific datasets but fall short in generalizing to unseen test data, while other zero-shot ones often yield suboptimal performance. Although the recent DetectGPT has shown promising detection performance, it suffers from significant inefficiency issues, as detecting a single candidate requires querying the source LLM with hundreds of its perturbations. This paper aims to bridge this gap. Concretely, we propose to incorporate a Bayesian surrogate model, which allows us to select typical samples based on Bayesian uncertainty and interpolate scores from typical samples to other samples, to improve query efficiency. Empirical results demonstrate that our method significantly outperforms existing approaches under a low query budget. Notably, when detecting the text generated by LLaMA family models, our method with just 2 or 3 queries can outperform DetectGPT with 200 queries.
pdf
bib
abs
Decoding the Narratives: Analyzing Personal Drug Experiences Shared on Reddit
Layla Bouzoubaa
|
Elham Aghakhani
|
Max Song
|
Quang Trinh
|
Shadi Rezapour
Online communities such as drug-related subreddits serve as safe spaces for people who use drugs (PWUD), fostering discussions on substance use experiences, harm reduction, and addiction recovery. Users’ shared narratives on these forums provide insights into the likelihood of developing a substance use disorder (SUD) and recovery potential. Our study aims to develop a multi-level, multi-label classification model to analyze online user-generated texts about substance use experiences. For this purpose, we first introduce a novel taxonomy to assess the nature of posts, including their intended connections (Inquisition or Disclosure), subjects (e.g., Recovery, Dependency), and specific objectives (e.g., Relapse, Quality, Safety). Using various multi-label classification algorithms on a set of annotated data, we show that GPT-4, when prompted with instructions, definitions, and examples, outperformed all other models. We apply this model to label an additional 1,000 posts and analyze the categories of linguistic expression used within posts in each class. Our analysis shows that topics such as Safety, Combination of Substances, and Mental Health see more disclosure, while discussions about physiological Effects focus on harm reduction. Our work enriches the understanding of PWUD’s experiences and informs the broader knowledge base on SUD and drug use.
pdf
bib
abs
Unveiling the Art of Heading Design: A Harmonious Blend of Summarization, Neology, and Algorithm
Shaobo Cui
|
Yiyang Feng
|
Yisong Mao
|
Yifan Hou
|
Boi Faltings
Crafting an appealing heading is crucial for attracting readers and marketing work or products. A popular way is to summarize the main idea with a refined description and a memorable acronym. However, there lacks a systematic study and a formal benchmark including datasets and metrics. Motivated by this absence, we introduce LOgogram, a novel benchmark comprising 6,653 paper abstracts with corresponding descriptions and acronyms. To measure the quality of heading generation, we propose a set of evaluation metrics from three aspects: summarization, neology, and algorithm. Additionally, we explore three strategies for heading generation(generation ordering, tokenization of acronyms, and framework design) under various prevalent learning paradigms(supervised fine-tuning, in-context learning with Large Language Models(LLMs), and reinforcement learning) on our benchmark. Our experimental results indicate the difficulty in identifying a practice that excels across all summarization, neologistic, and algorithmic aspects.
pdf
bib
abs
Understanding Fine-grained Distortions in Reports of Scientific Findings
Amelie Wuehrl
|
Dustin Wright
|
Roman Klinger
|
Isabelle Augenstein
Distorted science communication harms individuals and society as it can lead to unhealthy behavior change and decrease trust in scientific institutions. Given the rapidly increasing volume of science communication in recent years, a fine-grained understanding of how findings from scientific publications are reported to the general public, and methods to detect distortions from the original work automatically, are crucial. Prior work focused on individual aspects of distortions or worked with unpaired data. In this work, we make three foundational contributions towards addressing this problem: (1) annotating 1,600 instances of scientific findings from academic papers paired with corresponding findings as reported in news articles and tweets wrt. four characteristics: causality, certainty, generality and sensationalism; (2) establishing baselines for automatically detecting these characteristics; and (3) analyzing the prevalence of changes in these characteristics in both human-annotated and large-scale unlabeled data. Our results show that scientific findings frequently undergo subtle distortions when reported. Tweets distort findings more often than science news reports. Detecting fine-grained distortions automatically poses a challenging task. In our experiments, fine-tuned task-specific models consistently outperform few-shot LLM prompting.
pdf
bib
abs
MM-SOC: Benchmarking Multimodal Large Language Models in Social Media Platforms
Yiqiao Jin
|
Minje Choi
|
Gaurav Verma
|
Jindong Wang
|
Srijan Kumar
Social media platforms are hubs for multimodal information exchange, encompassing text, images, and videos, making it challenging for machines to comprehend the information or emotions associated with interactions in online spaces. Multimodal Large Language Models (MLLMs) have emerged as a promising solution to address these challenges, yet struggle with accurately interpreting human emotions and complex contents like misinformation. This paper introduces MM-Soc, a comprehensive benchmark designed to evaluate MLLMs’ understanding of multimodal social media content. MM-Soc compiles prominent multimodal datasets and incorporates a novel large-scale YouTube tagging dataset, targeting a range of tasks from misinformation detection, hate speech detection, and social context generation. Through our exhaustive evaluation on ten size-variants of four open-source MLLMs, we have identified significant performance disparities, highlighting the need for advancements in models’ social understanding capabilities. Our analysis reveals that, in a zero-shot setting, various types of MLLMs generally exhibit difficulties in handling social media tasks. However, MLLMs demonstrate performance improvements post fine-tuning, suggesting potential pathways for improvement.
pdf
bib
abs
Instances Need More Care: Rewriting Prompts for Instances with LLMs in the Loop Yields Better Zero-Shot Performance
Saurabh Srivastava
|
Chengyue Huang
|
Weiguo Fan
|
Ziyu Yao
Large language models (LLMs) have revolutionized zero-shot task performance, mitigating the need for task-specific annotations while enhancing task generalizability. Despite its advancements, current methods using trigger phrases such as “Let’s think step by step” remain limited. This study introduces PRomPTed, an approach that optimizes the zero-shot prompts for individual task instances following an innovative manner of “LLMs in the loop”.Our comprehensive evaluation across 13 datasets and 10 task types based on GPT-4 reveals that PRomPTed significantly outperforms both the naive zero-shot approaches and a strong baseline (i.e., “Output Refinement”) which refines the task output instead of the input prompt. Our experimental results also confirmed the generalization of this advantage to the relatively weaker GPT-3.5. Even more intriguingly, we found that leveraging GPT-3.5 to rewrite prompts for the stronger GPT-4 not only matches but occasionally exceeds the efficacy of using GPT-4 as the prompt rewriter. Our research thus presents a huge value in not only enhancing zero-shot LLM performance but also potentially enabling supervising LLMs with their weaker counterparts, a capability attracting much interest recently. Finally, our additional experiments confirm the generalization of the advantages to open-source LLMs such as Mistral 7B and Mixtral 8x7B.
pdf
bib
abs
Benchmarking Retrieval-Augmented Generation for Medicine
Guangzhi Xiong
|
Qiao Jin
|
Zhiyong Lu
|
Aidong Zhang
While large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks, they still face challenges with hallucinations and outdated knowledge. Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted. However, a RAG system can involve multiple flexible components, and there is a lack of best practices regarding the optimal RAG setting for various medical purposes. To systematically evaluate such systems, we propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets. Using MIRAGE, we conducted large-scale experiments with over 1.8 trillion prompt tokens on 41 combinations of different corpora, retrievers, and backbone LLMs through the MedRAG toolkit introduced in this work. Overall, MedRAG improves the accuracy of six different LLMs by up to 18% over chain-of-thought prompting, elevating the performance of GPT-3.5 and Mixtral to GPT-4-level. Our results show that the combination of various medical corpora and retrievers achieves the best performance. In addition, we discovered a log-linear scaling property and the “lost-in-the-middle” effects in medical RAG. We believe our comprehensive evaluations can serve as practical guidelines for implementing RAG systems for medicine.
pdf
bib
abs
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Ruibin Yuan
|
Hanfeng Lin
|
Yi Wang
|
Zeyue Tian
|
Shangda Wu
|
Tianhao Shen
|
Ge Zhang
|
Yuhang Wu
|
Cong Liu
|
Ziya Zhou
|
Liumeng Xue
|
Ziyang Ma
|
Qin Liu
|
Tianyu Zheng
|
Yizhi Li
|
Yinghao Ma
|
Yiming Liang
|
Xiaowei Chi
|
Ruibo Liu
|
Zili Wang
|
Chenghua Lin
|
Qifeng Liu
|
Tao Jiang
|
Wenhao Huang
|
Wenhu Chen
|
Jie Fu
|
Emmanouil Benetos
|
Gus Xia
|
Roger Dannenberg
|
Wei Xue
|
Shiyin Kang
|
Yike Guo
While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.
pdf
bib
abs
Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning
Qingyu Tan
|
Hwee Tou Ng
|
Lidong Bing
Knowledge in the real world is being updated constantly. However, it is costly to frequently update large language models (LLMs). Therefore, it is crucial for LLMs to understand the concept of temporal knowledge. However, prior works on temporal question answering (TQA) did not emphasize multi-answer and multi-hop types of temporal reasoning. In this paper, we propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning. Besides, we also propose a novel data augmentation strategy to improve the complex temporal reasoning capability and robustness of LLMs. We conducted experiments on multiple temporal QA datasets. Experimental results show that our method is able to improve LLMs’ performance on temporal QA benchmarks by significant margins.
pdf
bib
abs
Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements
Anton Voronov
|
Lena Wolf
|
Max Ryabinin
Large language models demonstrate a remarkable capability for learning to solve new tasks from a few examples.The prompt template, or the way the input examples are formatted to obtain the prompt, is an important yet often overlooked aspect of in-context learning.In this work, we conduct a comprehensive study of the template format’s influence on the in-context learning performance.We evaluate the impact of the prompt template across 21 models (from 770M to 70B parameters) and 4 standard classification datasets. We show that a poor choice of the template can reduce the performance of the strongest models and inference methods to a random guess level.More importantly, the best templates do not transfer between different setups and even between models of the same family.Our findings show that the currently prevalent approach to evaluation, which ignores template selection, may give misleading results due to different templates in different works.As a first step towards mitigating this issue, we propose Template Ensembles that aggregate model predictions across several templates.This simple test-time augmentation boosts average performance while being robust to the choice of random set of templates.
pdf
bib
abs
Knowledge Graph-Enhanced Large Language Models via Path Selection
Haochen Liu
|
Song Wang
|
Yaochen Zhu
|
Yushun Dong
|
Jundong Li
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accuracy of LLM-generated outputs. Nevertheless, most existing explorations rely on LLMs themselves to perform KG knowledge extraction, which is highly inflexible as LLMs can only provide binary judgment on whether a certain knowledge (e.g., a knowledge path in KG) should be used. In addition, LLMs tend to pick only knowledge with direct semantic relationship with the input text, while potentially useful knowledge with indirect semantics can be ignored. In this work, we propose a principled framework KELP with three stages to handle the above problems. Specifically, KELP is able to achieve finer granularity of flexible knowledge extraction by generating scores for knowledge paths with input texts via latent semantic matching. Meanwhile, knowledge paths with indirect semantic relationships with the input text can also be considered via trained encoding between the selected paths in KG and the input text. Experiments on real-world datasets validate the effectiveness of KELP.
pdf
bib
abs
OTTAWA: Optimal TransporT Adaptive Word Aligner for Hallucination and Omission Translation Errors Detection
Chenyang Huang
|
Abbas Ghaddar
|
Ivan Kobyzev
|
Mehdi Rezagholizadeh
|
Osmar Zaiane
|
Boxing Chen
Recently, there has been considerable attention on detecting hallucinations and omissions in Machine Translation (MT) systems. The two dominant approaches to tackle this task involve analyzing the MT system’s internal states or relying on the output of external tools, such as sentence similarity or MT quality estimators. In this work, we introduce OTTAWA, a novel Optimal Transport (OT)-based word aligner specifically designed to enhance the detection of hallucinations and omissions in MT systems. Our approach explicitly models the missing alignments by introducing a “null” vector, for which we propose a novel one-side constrained OT setting to allow an adaptive null alignment. Our approach yields competitive results compared to state-of-the-art methods across 18 language pairs on the HalOmi benchmark. In addition, it shows promising features, such as the ability to distinguish between both error types and perform word-level detection without accessing the MT system’s internal states.
pdf
bib
abs
ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model
Xuanqing Yu
|
Wangtao Sun
|
Jingwei Li
|
Kang Liu
|
Chengbao Liu
|
Jie Tan
In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
pdf
bib
abs
Speech-based Slot Filling using Large Language Models
Guangzhi Sun
|
Shutong Feng
|
Dongcheng Jiang
|
Chao Zhang
|
Milica Gasic
|
Phil Woodland
Recently, advancements in large language models (LLMs) have shown an unprecedented ability across various language tasks. This paper investigates the potential application of LLMs to slot filling with noisy ASR transcriptions, via both in-context learning and task-specific fine-tuning. Dedicated prompt designs and noise-robust LoRA fine-tuning are proposed to improve the robustness of LLMs for slot filling with noisy ASR transcriptions. Moreover, a linearised knowledge injection (LKI) scheme is also proposed to integrate dynamic external knowledge into LLMs. Experiments were performed on SLURP to quantify the performance of LLMs, including GPT-3.5-turbo, GPT-4, LLaMA-13B, LLaMA-2-13B and Vicuna-13B (v1.1 and v1.5) with different ASR error rates. The use of the noise-robust fine-tuning together with LKI for Vicuna-13B-v1.5 achieved 6.7% and 17.6% absolute SLU-F1 improvements compared to a fully fine-tuned Flan-T5-XL model on the limited data setup and the zero-shot setup respectively.
pdf
bib
abs
Too Big to Fail: Larger Language Models are Disproportionately Resilient to Induction of Dementia-Related Linguistic Anomalies
Changye Li
|
Zhecheng Sheng
|
Trevor Cohen
|
Serguei Pakhomov
As artificial neural networks grow in complexity, understanding their inner workings becomes increasingly challenging, which is particularly important in healthcare applications. The intrinsic evaluation metrics of autoregressive neural language models (NLMs), perplexity (PPL), can reflect how “surprised” an NLM model is at novel input. PPL has been widely used to understand the behavior of NLMs. Previous findings show that changes in PPL when masking attention layers in pre-trained transformer-based NLMs reflect linguistic anomalies associated with Alzheimer’s disease dementia. Building upon this, we explore a novel bidirectional attention head ablation method that exhibits properties attributed to the concepts of cognitive and brain reserve in human brain studies, which postulate that people with more neurons in the brain and more efficient processing are more resilient to neurodegeneration. Our results show that larger GPT-2 models require a disproportionately larger share of attention heads to be masked/ablated to display degradation of similar magnitude to masking in smaller models. These results suggest that the attention mechanism in transformer models may present an analogue to the notions of cognitive and brain reserve and could potentially be used to model certain aspects of the progression of neurodegenerative disorders and aging.
pdf
bib
abs
HeSum: a Novel Dataset for Abstractive Text Summarization in Hebrew
Tzuf Paz-Argaman
|
Itai Mondshine
|
Asaf Achi Mordechai
|
Reut Tsarfaty
While large language models (LLMs) excel in various natural language tasks in English, their performance in low-resource languages like Hebrew, especially for generative tasks such as abstractive summarization, remains unclear. The high morphological richness in Hebrew adds further challenges due to the ambiguity in sentence comprehension and the complexities in meaning construction.In this paper, we address this evaluation and resource gap by introducing HeSum, a novel benchmark dataset specifically designed for Hebrew abstractive text summarization. HeSum consists of 10,000 article-summary pairs sourced from Hebrew news websites written by professionals. Linguistic analysis confirms HeSum’s high abstractness and unique morphological challenges. We show that HeSum presents distinct difficulties even for state-of-the-art LLMs, establishing it as a valuable testbed for advancing generative language technology in Hebrew, and MRLs generative challenges in general.
pdf
bib
abs
TRAM: Benchmarking Temporal Reasoning for Large Language Models
Yuqing Wang
|
Yun Zhao
Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs.
pdf
bib
abs
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
Alfonso Amayuelas
|
Kyle Wong
|
Liangming Pan
|
Wenhu Chen
|
William Yang Wang
This paper investigates the capabilities of Large Language Models (LLMs) in understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models’ improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.
pdf
bib
abs
Exploring Defeasibility in Causal Reasoning
Shaobo Cui
|
Lazar Milikic
|
Yiyang Feng
|
Mete Ismayilzada
|
Debjit Paul
|
Antoine Bosselut
|
Boi Faltings
Defeasibility in causal reasoning implies that the causal relationship between cause and effect can be strengthened or weakened. Namely, the causal strength between cause and effect should increase or decrease with the incorporation of strengthening arguments (supporters) or weakening arguments (defeaters), respectively. However, existing works ignore defeasibility in causal reasoning and fail to evaluate existing causal strength metrics in defeasible settings. In this work, we present 𝛿-CAUSAL, the first benchmark dataset for studying defeasibility in causal reasoning. 𝛿-CAUSAL includes around 11K events spanning ten domains, featuring defeasible causality pairs, namely, cause-effect pairs accompanied by supporters and defeaters. We further show that current causal strength metrics fail to reflect the change of causal strength with the incorporation of supporters or defeaters in 𝛿-CAUSAL. To this end, we propose CESAR (Causal Embedding aSsociation with Attention Rating), a metric that measures causal strength based on token-level causal relationships. CESAR achieves a significant 69.7% relative improvement over existing metrics, increasing from 47.2% to 80.1% in capturing the causal strength change brought by supporters and defeaters. We further demonstrate even Large Language Models (LLMs) like GPT-3.5 still lag 4.5 and 10.7 points behind humans in generating supporters and defeaters, emphasizing the challenge posed by 𝛿-CAUSAL.
pdf
bib
abs
Better Synthetic Data by Retrieving and Transforming Existing Datasets
Saumya Gandhi
|
Ritu Gala
|
Vijay Viswanathan
|
Tongshuang Wu
|
Graham Neubig
Despite recent advances in large language models, building dependable and deployable NLP models typically requires abundant, high-quality training data. However, task-specific data is not available for many use cases, and manually curating task-specific data is labor-intensive. Recent work has studied prompt-driven synthetic data generation using large language models, but these generated datasets tend to lack complexity and diversity. To address these limitations, we introduce a method, _DataTune_, to make better use of existing, publicly available datasets to improve automatic dataset generation. DataTune performs _dataset transformation_, enabling the repurposing of publicly available datasets into a format that is directly aligned with the specific requirements of target tasks. On a diverse set of language-based tasks from the BIG-Bench benchmark, we find that finetuning language models via DataTune improves over a few-shot prompting baseline by 49% and improves over existing methods that use synthetic or retrieved training data by 34%. We find that dataset transformation significantly increases the diversity and difficulty of generated data on many tasks. We release a Python package and open-source repository to make this method accessible to the community (URL will be added upon acceptance).
pdf
bib
abs
Addressing Order Sensitivity of In-Context Demonstration Examples in Causal Language Models
Yanzheng Xiang
|
Hanqi Yan
|
Lin Gui
|
Yulan He
In-context learning has become a popular paradigm in natural language processing. However, its performance can be significantly influenced by the order of in-context demonstration examples. In this paper, we found that causal language models (CausalLMs) are more sensitive to this order compared to prefix language models (PrefixLMs). We attribute this phenomenon to the auto-regressive attention masks within CausalLMs, which restrict each token from accessing information from subsequent tokens. This results in different receptive fields for samples at different positions, thereby leading to representation disparities across positions. To tackle this challenge, we introduce an unsupervised fine-tuning method, termed the Information-Augmented and Consistency-Enhanced approach. This approach utilizes contrastive learning to align representations of in-context examples across different positions and introduces a consistency loss to ensure similar representations for inputs with different permutations. This enhances the model’s predictive consistency across permutations. Experimental results on five benchmarks suggest that our proposed method can reduce the sensitivity of CausalLMs to the order of in-context examples and exhibit robust generalizability, particularly when demonstrations are sourced from a candidate pool different from that used in the training phase, or when the number of in-context examples differs from what is used during training.
pdf
bib
abs
Perspective Taking through Generating Responses to Conflict Situations
Joan Plepi
|
Charles Welch
|
Lucie Flek
Although language model performance across diverse tasks continues to improve, these models still struggle to understand and explain the beliefs of other people. This skill requires perspective-taking, the process of conceptualizing the point of view of another person. Perspective taking becomes challenging when the text reflects more personal and potentially more controversial beliefs.We explore this task through natural language generation of responses to conflict situations. We evaluate novel modifications to recent architectures for conditioning generation on an individual’s comments and self-disclosure statements. Our work extends the Social-Chem-101 corpus, using 95k judgements written by 6k authors from English Reddit data, for each of whom we obtained 20-500 self-disclosure statements. Our evaluation methodology borrows ideas from both personalized generation and theory of mind literature. Our proposed perspective-taking models outperform recent work, especially the twin encoder model conditioned on self-disclosures with high similarity to the conflict situation.
pdf
bib
abs
LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
Nicholas Lee
|
Thanakul Wattanawong
|
Sehoon Kim
|
Karttikeya Mangalam
|
Sheng Shen
|
Gopala Anumanchipalli
|
Michael Mahoney
|
Kurt Keutzer
|
Amir Gholami
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks. While many real-world applications still require fine-tuning to reach satisfactory levels of performance, many of them are in the low-data regime, making fine-tuning challenging. To address this, we propose LLM2LLM, a targeted and iterative data augmentation strategy that uses a teacher LLM to enhance a small seed dataset by augmenting additional data that can be used for fine-tuning on a specific task. LLM2LLM (1) fine-tunes a baseline student LLM on the initial seed data, (2) evaluates and extracts data points that the model gets wrong, and (3) uses a teacher LLM to generate synthetic data based on these incorrect data points, which are then added back into the training data. This approach amplifies the signal from incorrectly predicted data points by the LLM during training and reintegrates them into the dataset to focus on more challenging examples for the LLM. Our results show that LLM2LLM significantly enhances the performance of LLMs in the low-data regime, outperforming both traditional fine-tuning and other data augmentation baselines. LLM2LLM reduces the dependence on labor-intensive data curation and paves the way for more scalable and performant LLM solutions, allowing us to tackle data-constrained domains and tasks. We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime using a Llama-2-7B student model. Our code is available at https://github.com/SqueezeAILab/LLM2LLM.
pdf
bib
abs
The Power of Summary-Source Alignments
Ori Ernst
|
Ori Shapira
|
Aviv Slobodkin
|
Sharon Adar
|
Mohit Bansal
|
Jacob Goldberger
|
Ran Levy
|
Ido Dagan
Multi-document summarization (MDS) is a challenging task, often decomposed to subtasks of salience and redundancy detection, followed by text generation.In this context, alignment of corresponding sentences between a reference summary and its source documents has been leveraged to generate training data for some of the component tasks. Yet, this enabling alignment step has usually been applied heuristically on the sentence level on a limited number of subtasks.In this paper, we propose extending the summary-source alignment framework by (1) applying it at the more fine-grained proposition span level, (2) annotating alignment manually in a multi-document setup, and (3) revealing the great potential of summary-source alignments to yield several datasets for at least six different tasks. Specifically, for each of the tasks, we release a manually annotated test set that was derived automatically from the alignment annotation. We also release development and train sets in the same way, but from automatically derived alignments.Using the datasets, each task is demonstrated with baseline models and corresponding evaluation metrics to spur future research on this broad challenge.
pdf
bib
abs
An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models
Gantavya Bhatt
|
Yifang Chen
|
Arnav Das
|
Jifan Zhang
|
Sang Truong
|
Stephen Mussmann
|
Yinglun Zhu
|
Jeff Bilmes
|
Simon Du
|
Kevin Jamieson
|
Jordan Ash
|
Robert Nowak
Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, to reach the same generalization performance, our methods save 50% of the annotation cost compared to random sampling.
pdf
bib
abs
Learning Multimodal Contrast with Cross-modal Memory and Reinforced Contrast Recognition
Yuanhe Tian
|
Fei Xia
|
Yan Song
In many practical scenarios, contents from different modalities are not semantically aligned; for instance, visual and textual information may conflict with each other, resulting in non-compositional expression effects such as irony or humor. Effective modeling and smooth integration of multimodal information are crucial for achieving good understanding of the contrast across modalities. Being focusing on image-text matching, most current studies face challenges in identifying such contrast, leading to limitations in exploring the extended semantics when images and texts do not match. In this paper, we propose an LLM-based approach for learning multimodal contrast following the encoding-decoding paradigm, enhanced by a memory module with reinforced contrast recognition, and use a series of tasks that have the nature of multimodal contrast to verify our approach. The memory module learns the integration between visual and textual features with trainable memory vectors and the reinforced contrast recognition uses self-rejection sampling to optimize the memory to further enhance learning multimodal contrast. The resulted information, accompanied with visual and text features, is finally fed into the LLM to predict corresponding labels. We experiment our approach on four English and Chinese benchmark datasets, where it outperforms strong baselines and state-of-the-art studies.
pdf
bib
abs
Text Simplification via Adaptive Teaching
Seyed Ali Bahrainian
|
Jonathan Dou
|
Carsten Eickhoff
Text simplification is the process of rewriting a piece of text using simpler vocabulary and grammatical structure in order to make the text more accessible and understandable for a larger audience. In this paper, we introduce a new text simplification model based on the notion of adaptive teaching using a teacher network and a text generation network. We name this new model Simplification via Adaptive Teaching (SAT). Our proposed model sets a new state-of-the-art performance in terms of standard simplification metrics such as SARI and D-SARI with a significant improvement over the previous state of the art on the D-Wikipedia dataset and the Wiki-Doc benchmark dataset. Moreover, we conduct a human evaluation in terms of text simplicity, correctness, and fluency to substantiate SAT’s performance.
pdf
bib
abs
A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts
Gokcen Gokceoglu
|
Devrim Çavuşoğlu
|
Emre Akbas
|
Özen Dolcerocca
This paper introduces a multi-level, multi-label text classification dataset comprising over 3000 documents. The dataset features literary and critical texts from 19th-century Ottoman Turkish and Russian. It is the first study to apply large language models (LLMs) to this dataset, sourced from prominent literary periodicals of the era. The texts have been meticulously organized and labeled. This was done according to a taxonomic framework that takes into account both their structural and semantic attributes. Articles are categorized and tagged with bibliometric metadata by human experts. We present baseline classification results using a classical bag-of-words (BoW) naive Bayes model and three modern LLMs: multilingual BERT, Falcon, and Llama-v2. We found that in certain cases, Bag of Words (BoW) outperforms Large Language Models (LLMs), emphasizing the need for additional research, especially in low-resource language settings. This dataset is expected to be a valuable resource for researchers in natural language processing and machine learning, especially for historical and low-resource languages. The dataset is publicly available.
pdf
bib
abs
It is Simple Sometimes: A Study On Improving Aspect-Based Sentiment Analysis Performance
Laura Cabello
|
Uchenna Akujuobi
Aspect-Based Sentiment Analysis (ABSA) involves extracting opinions from textual data about specific entities and their corresponding aspects through various complementary subtasks. Several prior research has focused on developing ad hoc designs of varying complexities for these subtasks. In this paper, we build upon the instruction tuned model proposed by Scaria et al. (2023), who present an instruction-based model with task descriptions followed by in-context examples on ABSA subtasks. We propose PFInstruct, an extension to this instruction learning paradigm by appending an NLP-related task prefix to the task description. This simple approach leads to improved performance across all tested SemEval subtasks, surpassing previous state-of-the-art (SOTA) on the ATE subtask (Rest14) by +3.28 F1-score, and on the AOOE subtask by an average of +5.43 F1-score across SemEval datasets. Furthermore, we explore the impact of the prefix-enhanced prompt quality on the ABSA subtasks and find that even a noisy prefix enhances model performance compared to the baseline. Our method also achieves competitive results on a biomedical domain dataset (ERSA).
pdf
bib
abs
Whose Emotions and Moral Sentiments do Language Models Reflect?
Zihao He
|
Siyi Guo
|
Ashwin Rao
|
Kristina Lerman
Language models (LMs) are known to represent the perspectives of some social groups better than others, which may impact their performance, especially on subjective tasks such as content moderation and hate speech detection. To explore how LMs represent different perspectives, existing research focused on positional alignment, i.e., how closely the models mimic the opinions and stances of different groups, e.g., liberals or conservatives. However, human communication also encompasses emotional and moral dimensions. We define the problem of affective alignment, which measures how LMs’ emotional and moral tone represents those of different groups. By comparing the affect of responses generated by 36 LMs to the affect of Twitter messages written by two ideological groups, we observe significant misalignment of LMs with both ideological groups. This misalignment is larger than the partisan divide in the U.S. Even after steering the LMs towards specific ideological perspectives, the misalignment and liberal tendencies of the model persist, suggesting a systemic bias within LMs.
pdf
bib
abs
LLM can Achieve Self-Regulation via Hyperparameter Aware Generation
Siyin Wang
|
Shimin Li
|
Tianxiang Sun
|
Jinlan Fu
|
Qinyuan Cheng
|
Jiasheng Ye
|
Junjie Ye
|
Xipeng Qiu
|
Xuanjing Huang
In the realm of Large Language Models (LLMs), users commonly employ diverse decoding strategies and adjust hyperparameters to control the generated text. However, a critical question emerges: Are LLMs conscious of the existence of these decoding strategies and capable of regulating themselves? The current decoding generation process often relies on empirical and heuristic manual adjustments to hyperparameters based on types of tasks and demands. However, this process is typically cumbersome, and the decoding hyperparameters may not always be optimal for each sample. To address the aforementioned challenges, we propose a novel text generation paradigm termed Hyperparameter Aware Generation (HAG). By leveraging hyperparameter-aware instruction tuning, the LLM autonomously determines the optimal decoding strategy and configs based on the input samples, enabling self-regulation. Our approach eliminates the need for extensive manual tuning, offering a more autonomous, self-regulate model behavior. Experimental results spanning six datasets across reasoning, creativity, translation, and mathematics tasks demonstrate that hyperparameter-aware instruction tuning empowers the LLMs to self-regulate the decoding strategy and hyperparameter. HAG extends the current paradigm in the text generation process, highlighting the feasibility of endowing the LLMs with self-regulate decoding strategies.
pdf
bib
abs
Forward-Backward Reasoning in Large Language Models for Mathematical Verification
Weisen Jiang
|
Han Shi
|
Longhui Yu
|
Zhengying Liu
|
Yu Zhang
|
Zhenguo Li
|
James Kwok
Self-Consistency samples diverse reasoning chains with answers and chooses the final answer by majority voting. It is based on forward reasoning and cannot further improve performance by sampling more reasoning chains when saturated. To further boost performance, we introduce backward reasoning to verify candidate answers. Specifically, for mathematical tasks, we mask a number in the question and ask the LLM to answer a backward question created by a simple template, i.e., to predict the masked number when a candidate answer is provided. Instead of using forward or backward reasoning alone, we propose **FOBAR** to combine **FO**rward and **BA**ckward **R**easoning for verification. Extensive experiments on six standard mathematical data sets and three LLMs show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency, which uses forward reasoning alone, demonstrating that combining forward and backward reasoning is more accurate in verification. In addition, FOBAR achieves higher accuracy than existing verification methods, showing the effectiveness of the simple template used in backward reasoning and the proposed combination.
pdf
bib
abs
Towards Uncertainty-Aware Language Agent
Jiuzhou Han
|
Wray Buntine
|
Ehsan Shareghi
While Language Agents have achieved promising success by placing Large Language Models at the core of a more versatile design that dynamically interacts with the external world, the existing approaches neglect the notion of uncertainty during these interactions. We present the Uncertainty-Aware Language Agent (UALA), a framework that orchestrates the interaction between the agent and the external world using uncertainty quantification. Compared with other well-known counterparts like ReAct, our extensive experiments across 3 representative tasks (HotpotQA, StrategyQA, MMLU) and various LLM sizes demonstrate that UALA brings a significant improvement of performance, while having a substantially lower reliance on the external world (i.e., reduced number of tool calls and tokens). Our analyses provide various insights including the great potential of UALA compared with agent fine-tuning, and underscore the unreliability of verbalised confidence of LLMs as a proxy for uncertainty.
pdf
bib
abs
Detection and Positive Reconstruction of Cognitive Distortion Sentences: Mandarin Dataset and Evaluation
Shuya Lin
|
Yuxiong Wang
|
Jonathan Dong
|
Shiguang Ni
This research introduces a Positive Reconstruction Framework based on positive psychology theory. Overcoming negative thoughts can be challenging, our objective is to address and reframe them through a positive reinterpretation. To tackle this challenge, a two-fold approach is necessary: identifying cognitive distortions and suggesting a positively reframed alternative while preserving the original thought’s meaning. Recent studies have investigated the application of Natural Language Processing (NLP) models in English for each stage of this process. In this study, we emphasize the theoretical foundation for the Positive Reconstruction Framework, grounded in broaden-and-build theory. We provide a shared corpus containing 4001 instances for detecting cognitive distortions and 1900 instances for positive reconstruction in Mandarin. Leveraging recent NLP techniques, including transfer learning, fine-tuning pretrained networks, and prompt engineering, we demonstrate the effectiveness of automated tools for both tasks. In summary, our study contributes to multilingual positive reconstruction, highlighting the effectiveness of NLP in cognitive distortion detection and positive reconstruction.
pdf
bib
abs
PiVe: Prompting with Iterative Verification Improving Graph-based Generative Capability of LLMs
Jiuzhou Han
|
Nigel Collier
|
Wray Buntine
|
Ehsan Shareghi
Large language models (LLMs) have shown great abilities of solving various natural language tasks in different domains. Due to the training objective of LLMs and their pre-training data, LLMs are not very well equipped for tasks involving structured data generation. We propose a framework, Prompting with Iterative Verification (PiVe), to improve graph-based generative capability of LLMs. We show how a small language model could be trained to act as a verifier module for the output of an LLM(i.e., ChatGPT, GPT-4), and to iteratively improve its performance via fine-grained corrective instructions. We also show how the verifier module could apply iterative corrections offline for a more cost-effective solution to the text-to-graph generation task. Experiments on three graph-based datasets show consistent improvement gained via PiVe. Additionally, we create GenWiki-HIQ and highlight that the verifier module can be used as a data augmentation tool to help improve the quality of automatically generated parallel text-graph datasets.
pdf
bib
abs
Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models
Yifu Gao
|
Linbo Qiao
|
Zhigang Kan
|
Zhihua Wen
|
Yongquan He
|
Dongsheng Li
Temporal knowledge graph question answering (TKGQA) poses a significant challenge task, due to the temporal constraints hidden in questions and the answers sought from dynamic structured knowledge. Although large language models (LLMs) have made considerable progress in their reasoning ability over structured data, their application to the TKGQA task is a relatively unexplored area. This paper first proposes a novel generative temporal knowledge graph question answering framework, GenTKGQA, which guides LLMs to answer temporal questions through two phases: Subgraph Retrieval and Answer Generation. First, we exploit LLM’s intrinsic knowledge to mine temporal constraints and structural links in the questions without extra training, thus narrowing down the subgraph search space in both temporal and structural dimensions. Next, we design virtual knowledge indicators to fuse the graph neural network signals of the subgraph and the text representations of the LLM in a non-shallow way, which helps the open-source LLM deeply understand the temporal order and structural dependencies among the retrieved facts through instruction tuning. Experimental results on two widely used datasets demonstrate the superiority of our model.
pdf
bib
abs
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Syeda Nahida Akter
|
Sangwu Lee
|
Yingshan Chang
|
Yonatan Bisk
|
Eric Nyberg
Verifying a question’s validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VisReas, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VisReas contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, Logic2Vision that reasons by producing and executing pseudocode without any external modules to generate the answer. Logic2Vision outperforms generative models in VisReas (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
pdf
bib
abs
A Unified Generative Framework for Bilingual Euphemism Detection and Identification
Yuxue Hu
|
Junsong Li
|
Tongguan Wang
|
Dongyu Su
|
Guixin Su
|
Ying Sha
Various euphemisms are emerging in social networks, attracting widespread attention from the natural language processing community. However, existing euphemism datasets are only domain-specific or language-specific. In addition, existing approaches to the study of euphemisms are one-sided. Either only the euphemism detection task or only the euphemism identification task is accomplished, lacking a unified framework. To this end, we construct a large-scale Bilingual Multi-category dataset of Euphemisms named BME, which covers a total of 12 categories for two languages, English and Chinese. Then, we first propose a unified generative model to Jointly conduct the tasks of bilingual Euphemism Detection and Identification named JointEDI. By comparing with LLMs and human evaluation, we demonstrate the effectiveness of the proposed JointEDI and the feasibility of unifying euphemism detection and euphemism identification tasks. Moreover, the BME dataset also provides a new reference standard for euphemism detection and euphemism identification.
pdf
bib
abs
StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing
Gaoxiang Cong
|
Yuankai Qi
|
Liang Li
|
Amin Beheshti
|
Zhedong Zhang
|
Anton Hengel
|
Ming-Hsuan Yang
|
Chenggang Yan
|
Qingming Huang
Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The code will be made available at https://github.com/GalaxyCong/StyleDubber.
pdf
bib
abs
ETAS: Zero-Shot Transformer Architecture Search via Network Trainability and Expressivity
Jiechao Yang
|
Yong Liu
Transformer Architecture Search (TAS) methods aim to automate searching for the optimal Transformer architecture configurations for a given task. However, they are impeded by the prohibitive cost of evaluating Transformer architectures. Recently, several Zero-Shot TAS methods have been proposed to mitigate this problem by utilizing zero-cost proxies to evaluate Transformer architectures without training. Unfortunately, they are limited to specific computer vision or natural language processing tasks. Nonetheless, most of them are developed based on empirical observations and lack theoretical guarantees. To solve this problem, we develop a new zero-cost proxy called NTSR that combines two theoretically-inspired indicators to measure the trainability and expressivity of Transformer networks separately. We then integrate it into an effective regularized evolution framework called ETAS to demonstrate its efficacy on various tasks. The results show that our proposed NTSR proxy can consistently achieve a higher correlation with the true performance of Transformer networks on both computer vision and natural language processing tasks. Further, it can significantly accelerate the search process for finding the best-performing Transformer architecture configurations.
pdf
bib
abs
Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
Kaishuai Xu
|
Yi Cheng
|
Wenjun Hou
|
Qiaoyu Tan
|
Wenjie Li
Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians’ diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians’ diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician’s reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians’ diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
pdf
bib
abs
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
Yanan Wu
|
Jie Liu
|
Xingyuan Bu
|
Jiaheng Liu
|
Zhanhui Zhou
|
Yuanxing Zhang
|
Chenchen Zhang
|
ZhiqiBai ZhiqiBai
|
Haibin Chen
|
Tiezheng Ge
|
Wanli Ouyang
|
Wenbo Su
|
Bo Zheng
This paper introduces ConceptMath, a bilingual (English and Chinese), fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs). Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systemically organizes math problems under a hierarchy of math concepts, so that mathematical reasoning can be evaluated at different granularity with concept-wise accuracies. Based on our ConcepthMath, we then evaluate a broad range of LLMs, and we observe existing LLMs, though achieving high average accuracies on traditional benchmarks, exhibit significant performance variations across different math concepts and may even fail catastrophically on the most basic ones. Besides, we also introduce an efficient fine-tuning strategy to enhance the weaknesses of existing LLMs. Finally, we hope ConceptMath could guide the developers to understand the fine-grained mathematical abilities of their models and facilitate the growth of foundation models. Code is available at https://github.com/conceptmath/conceptmath.
pdf
bib
abs
REInstruct: Building Instruction Data from Unlabeled Corpus
Shu Chen
|
Xinyan Guan
|
Yaojie Lu
|
Hongyu Lin
|
Xianpei Han
|
Le Sun
Manually annotating instruction data for large language models is difficult, costly, and hard to scale. Meanwhile, current automatic annotation methods typically rely on distilling synthetic data from proprietary LLMs, which not only limits the upper bound of the quality of the instruction data but also raises potential copyright issues. In this paper, we propose REInstruct, a simple and scalable method to automatically build instruction data from an unlabeled corpus without heavy reliance on proprietary LLMs and human annotation.Specifically, REInstruct first selects a subset of unlabeled texts that potentially contain well-structured helpful and insightful content and then generates instructions for these texts. To generate accurate and relevant responses for effective and robust training, REInstruct further proposes a rewriting-based approach to improve the quality of the generated instruction data. By training Llama-7b on a combination of 3k seed data and 32k synthetic data from REInstruct, fine-tuned model achieves a 65.41% win rate on AlpacaEval leaderboard against text-davinci-003, outperforming other open-source, non-distilled instruction data construction methods. The code is publicly available at
https://github.com/cs32963/REInstruct.
pdf
bib
abs
Learning to Maximize Mutual Information for Chain-of-Thought Distillation
Xin Chen
|
Hanxian Huang
|
Yanjun Gao
|
Yi Wang
|
Jishen Zhao
|
Ke Ding
Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step (DSS), a novel method utilizing chain-of-thought (CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Codes are available at https://github.com/xinchen9/cot_distillation_ACL2024.
pdf
bib
abs
PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning
Zhisheng Lin
|
Han Fu
|
Chenghao Liu
|
Zhuo Li
|
Jianling Sun
Parameter-efficient fine-tuning (PEFT) has emerged as an effective method for adapting pre-trained language models to various tasks efficiently. Recently, there has been a growing interest in transferring knowledge from one or multiple tasks to the downstream target task to achieve performance improvements. However, current approaches typically either train adapters on individual tasks or distill shared knowledge from source tasks, failing to fully exploit task-specific knowledge and the correlation between source and target tasks. To overcome these limitations, we propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning. PEMT extends the mixture-of-experts (MoE) framework to capture the transferable knowledge as a weighted combination of adapters trained on source tasks. These weights are determined by a gated unit, measuring the correlation between the target and each source task using task description prompt vectors. To fully exploit the task-specific knowledge, we also propose the Task Sparsity Loss to improve the sparsity of the gated unit. We conduct experiments on a broad range of tasks over 17 datasets. The experimental results demonstrate our PEMT yields stable improvements over full fine-tuning, and state-of-the-art PEFT and knowledge transferring methods on various tasks. The results highlight the effectiveness of our method which is capable of sufficiently exploiting the knowledge and correlation features across multiple tasks.
pdf
bib
abs
MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
Hongwei Liu
|
Zilong Zheng
|
Yuxuan Qiao
|
Haodong Duan
|
Zhiwei Fei
|
Fengzhe Zhou
|
Wenwei Zhang
|
Songyang Zhang
|
Dahua Lin
|
Kai Chen
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, which fall short in providing a holistic assessment of the LLMs’ math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model’s mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs’ mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context.
pdf
bib
abs
Identifying Semantic Induction Heads to Understand In-Context Learning
Jie Ren
|
Qipeng Guo
|
Hang Yan
|
Dongrui Liu
|
Quanshi Zhang
|
Xipeng Qiu
|
Dahua Lin
Although large language models (LLMs) have demonstrated remarkable performance, the lack of transparency in their inference logic raises concerns about their trustworthiness. To gain a better understanding of LLMs, we conduct a detailed analysis of the operations of attention heads and aim to better understand the in-context learning of LLMs. Specifically, we investigate whether attention heads encode two types of relationships between tokens present in natural languages: the syntactic dependency parsed from sentences and the relation within knowledge graphs. We find that certain attention heads exhibit a pattern where, when attending to subject tokens, they recall object tokens and increase the output logits of those object tokens. More crucially, the formulation of such semantic induction heads has a close correlation with the emergence of the in-context learning ability of language models. The study of semantic attention heads advances our understanding of the intricate operations of attention heads in transformers, and further provides new insights into the in-context learning of LLMs.
pdf
bib
abs
Chinese Spelling Corrector Is Just a Language Learner
Lai Jiang
|
Hongqiu Wu
|
Hai Zhao
|
Min Zhang
This paper emphasizes Chinese spelling correction by means of self-supervised learning, which means there are no annotated errors within the training data. Our intuition is that humans are naturally good correctors with exposure to error-free sentences, which contrasts with current unsupervised methods that strongly rely on the usage of confusion sets to produce parallel sentences. In this paper, we demonstrate that learning a spelling correction model is identical to learning a language model from error-free data alone, with decoding it in a greater search space. We propose Denoising Decoding Correction (D2C), which selectively imposes noise upon the source sentence to determine the underlying correct characters. Our method is largely inspired by the ability of language models to perform correction, including both BERT-based models and large language models (LLMs). We show that the self-supervised learning manner generally outperforms the confusion set in specific domains because it bypasses the need to introduce error characters to the training data which can impair the error patterns not included in the introduced error characters.
pdf
bib
abs
Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models
Junfei Wu
|
Qiang Liu
|
Ding Wang
|
Jinghao Zhang
|
Shu Wu
|
Liang Wang
|
Tieniu Tan
Object hallucination has been an Achilles’ heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.
pdf
bib
abs
RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering
Zihan Zhang
|
Meng Fang
|
Ling Chen
Adaptive retrieval-augmented generation (ARAG) aims to dynamically determine the necessity of retrieval for queries instead of retrieving indiscriminately to enhance the efficiency and relevance of the sourced information. However, previous works largely overlook the evaluation of ARAG approaches, leading to their effectiveness being understudied. This work presents a benchmark, RetrievalQA, comprising 1,271 short-form questions covering new world and long-tail knowledge. The knowledge necessary to answer the questions is absent from LLMs; therefore, external information must be retrieved to answer correctly. This makes RetrievalQA a suitable testbed to evaluate existing ARAG methods. We observe that calibration-based methods heavily rely on threshold tuning, while vanilla prompting is inadequate for guiding LLMs to make reliable retrieval decisions. Based on our findings, we propose Time-Aware Adaptive Retrieval (TA-ARE), a simple yet effective method that helps LLMs assess the necessity of retrieval without calibration or additional training.
pdf
bib
abs
LLaST: Improved End-to-end Speech Translation System Leveraged by Large Language Models
Xi Chen
|
Songyang Zhang
|
Qibing Bai
|
Kai Chen
|
Satoshi Nakamura
We introduces ***LLaST***, a framework for building high-performance Large Language model based Speech-to-text Translation systems. We address the limitations of end-to-end speech translation (E2E ST) models by exploring model architecture design and optimization techniques tailored for LLMs. Our approach includes LLM-based speech translation architecture design, ASR-augmented training, multilingual data augmentation, and dual-LoRA optimization. Our approach demonstrates superior performance on the CoVoST-2 benchmark and showcases exceptional scaling capabilities powered by LLMs.We believe this effective method will serve as a strong baseline for speech translation and provide insights for futureimprovements of the LLM-based speech translation framework.
pdf
bib
abs
Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation
Ming Gu
|
Yan Yang
Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model’s capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ.
pdf
bib
abs
DMoERM: Recipes of Mixture-of-Experts for Effective Reward Modeling
Shanghaoran Quan
The performance of the reward model (RM) is a critical factor in improving the effectiveness of the large language model (LLM) during alignment fine-tuning. There remain two challenges in RM training: 1) training the same RM using various categories of data may cause its generalization performance to suffer from multi-task disturbance, and 2) the human annotation consistency rate is generally only 60% to 75%, causing training data to contain a lot of noise. To tackle these two challenges, we introduced the idea of Mixture-of-Experts (MoE) into the field of RM for the first time. We propose the Double-Layer MoE RM (DMoERM). The outer layer MoE is a sparse model. After classifying an input into task categories, we route it to the corresponding inner layer task-specific model. The inner layer MoE is a dense model. We decompose the specific task into multiple capability dimensions and individually fine-tune a LoRA expert on each one. Their outputs are then synthesized by an MLP to compute the final rewards. To minimize costs, we call a public LLM API to obtain the capability preference labels. The validation on manually labeled datasets confirms that our model attains superior consistency with human preference and outstrips advanced generative approaches. Meanwhile, through BoN sampling and RL experiments, we demonstrate that our model outperforms state-of-the-art ensemble methods of RM and mitigates the overoptimization problem. Our code is available at: https://github.com/quanshr/DMoERM.
pdf
bib
abs
LEIA: Facilitating Cross-lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation
Ikuya Yamada
|
Ryokan Ri
Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages.
pdf
bib
abs
Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective
Yijie Chen
|
Yijin Liu
|
Fandong Meng
|
Yufeng Chen
|
Jinan Xu
|
Jie Zhou
Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strate