pdf
bib
Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024
Haithem Afli
|
Houda Bouamor
|
Cristina Blasi Casagran
|
Sahar Ghannay
pdf
bib
abs
Deciphering Political Entity Sentiment in News with Large Language Models: Zero-Shot and Few-Shot Strategies
Alapan Kuila
|
Sudeshna Sarkar
Sentiment analysis plays a pivotal role in understanding public opinion, particularly in the political domain where the portrayal of entities in news articles influences public perception. In this paper, we investigate the effectiveness of Large Language Models (LLMs) in predicting entity-specific sentiment from political news articles. Leveraging zero-shot and few-shot strategies, we explore the capability of LLMs to discern sentiment towards political entities in news content. Employing a chain-of-thought (COT) approach augmented with rationale in few-shot in-context learning, we assess whether this method enhances sentiment prediction accuracy. Our evaluation on sentiment-labeled datasets demonstrates that LLMs, outperform fine-tuned BERT models in capturing entity-specific sentiment. We find that learning in-context significantly improves model performance, while the self-consistency mechanism enhances consistency in sentiment prediction. Despite the promising results, we observe inconsistencies in the effectiveness of the COT prompting method. Overall, our findings underscore the potential of LLMs in entity-centric sentiment analysis within the political news domain and highlight the importance of suitable prompting strategies and model architectures.
pdf
bib
abs
Event Detection in the Socio Political Domain
Emmanuel Cartier
|
Hristo Tanev
In this paper we present two approaches for detection of socio political events: the first is based on manually crafted keyword combinations and the second one is based on a BERT classifier. We compare the performance of the two systems on a dataset of socio-political events. Interestingly, the systems demonstrate complementary performance: both showing their best accuracy on non overlapping sets of event types. In the evaluation section we provide insights on the effect of taxonomy mapping on the event detection evaluation. We also review in the related work section the most important resources and approaches for event extraction in the recent years.
pdf
bib
abs
Multi-Dimensional Insights: Annotated Dataset of Stance, Sentiment, and Emotion in Facebook Comments on Tunisia’s July 25 Measures
Sanaa Laabar
|
Wajdi Zaghouani
On July 25, 2021, Tunisian President Kais Saied announced the suspension of parliament and dismissal of Prime Minister Hichem Mechichi, a move that sparked intense public debate. This study investigates Tunisian public opinion regarding these events by analyzing a corpus of 7,535 Facebook comments collected from the official Tunisian presidency page, specifically the post announcing the July 25 measures. A team of three annotators labeled a subset of 5,000 comments, categorizing each comment’s political stance (supportive, opposing, or neutral), sentiment (positive, negative, or neutral), emotions, presence of hate speech, aggressive tone, and racism. The inter-annotator agreement, measured by Cohen’s kappa, was 0.61, indicating substantial consensus. The analysis reveals that a majority of commenters supported President Saied’s actions, outnumbering those who opposed or took a neutral stance. Moreover, the overall sentiment expressed in the comments was predominantly positive. This study provides valuable insights into the complex landscape of public opinion in Tunisia during a crucial moment in the country’s ongoing political transformation, highlighting the role of social media as a platform for political discourse and engagement.
pdf
bib
abs
Masking Explicit Pro-Con Expressions for Development of a Stance Classification Dataset on Assembly Minutes
Tomoyosi Akiba
|
Yuki Gato
|
Yasutomo Kimura
|
Yuzu Uchida
|
Keiichi Takamaru
In this paper, a new dataset for Stance Classification based on assembly minutes is introduced. We develop it by using publicity available minutes taken from diverse Japanese local governments including prefectural, city, and town assemblies. In order to make the task to predict a stance from content of a politician’s utterance without explicit stance expressions, predefined words that directly convey the speaker’s stance in the utterance are replaced by a special token. Those masked words are also used to assign a golden label, either agreement or disagreement, to the utterance. Finally, we constructed total 15,018 instances automatically from 47 Japanese local governments. The dataset is used in the shared Stance Classification task evaluated in the NTCIR-17 QA-Lab-PoliInfo-4, and is now publicity available. Since the construction method of the dataset is automatic, we can still apply it to obtain more instances from the other Japanese local governments.
pdf
bib
abs
Analysing Pathos in User-Generated Argumentative Text
Natalia Evgrafova
|
Veronique Hoste
|
Els Lefever
While persuasion has been extensively examined in the context of politicians’ speeches, there exists a notable gap in the understanding of the pathos role in user-generated argumentation. This paper presents an exploratory study into the pathos dimension of user-generated arguments and formulates ideas on how pathos could be incorporated in argument mining. Using existing sentiment and emotion detection tools, this research aims to obtain insights into the role of emotion in argumentative public discussion on controversial topics, explores the connection between sentiment and stance, and detects frequent emotion-related words for a given topic.
pdf
bib
abs
Knowledge Graph Representation for Political Information Sources
Tinatin Osmonova
|
Alexey Tikhonov
|
Ivan P. Yamshchikov
With the rise of computational social science, many scholars utilize data analysis and natural language processing tools to analyze social media, news articles, and other accessible data sources for examining political and social discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation of echo-chambers can be partially explained on the level of an individual information consumption rather than a collective topology of individuals’ social networks. Our research findings are presented through knowledge graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the application of knowledge representation techniques to the aforementioned news streams highlights, contrary to common assumptions, shows relative “internal” neutrality of both sources and polarizing attitude towards a small fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
pdf
bib
abs
Analyzing Conflict Through Data: A Dataset on the Digital Framing of Sheikh Jarrah Evictions
Anatolii Shestakov
|
Wajdi Zaghouani
This study empirically investigates the role of social media in tracing the evolution of the May 2021 Israeli-Palestinian crisis, centered on the Sheikh Jarrah evictions. Analyzing a dataset of 370,747 English tweets from 120,173 users from May 9-21, 2021, the research employs a mixed-methods approach combining computational techniques and qualitative content analysis. Findings support the hypothesis that social media interactions reliably map crisis dynamics, as evidenced by hashtags like #SaveSheikhJarrah corresponding to critical shifts, though virality did not correlate with hashtag use. In contrast to prior sentiment-focused studies, the context-driven analysis reveals influencers and state actors shaping polarized narratives along geopolitical lines, with high-profile voices backing Palestinian solidarity while Israeli state accounts endorsed military operations. Evidence of a transcontinental cybercampaign emerged, albeit with limitations due to the English language scope and potential biases from data collection and keyword choices. The study contributes empirical insights into the mediatization of armed conflicts through social media’s competing narratives and information flows within the Israeli-Palestinian context. Recommendations for future multilingual, multi-platform analyses are provided to address limitations.
pdf
bib
abs
Semi-Automatic Topic Discovery and Classification for Epidemic Intelligence via Large Language Models
Federico Borazio
|
Danilo Croce
|
Giorgio Gambosi
|
Roberto Basili
|
Daniele Margiotta
|
Antonio Scaiella
|
Martina Del Manso
|
Daniele Petrone
|
Andrea Cannone
|
Alberto M. Urdiales
|
Chiara Sacco
|
Patrizio Pezzotti
|
Flavia Riccardo
|
Daniele Mipatrini
|
Federica Ferraro
|
Sobha Pilati
This paper introduces a novel framework to harness Large Language Models (LLMs) for Epidemic Intelligence, focusing on identifying and categorizing emergent socio-political phenomena within health crises, with a spotlight on the COVID-19 pandemic. Our approach diverges from traditional methods, such as Topic Models, by providing explicit support to analysts through the identification of distinct thematic areas and the generation of clear, actionable statements for each topic. This supports a Zero-shot Classification mechanism, enabling effective matching of news articles to fine-grain topics without the need for model fine-tuning. The framework is designed to be as transparent as possible, producing linguistically informed insights to make the analysis more accessible to analysts who may not be familiar with every subject matter of inherently emerging phenomena. This process not only enhances the precision and relevance of the extracted Epidemic Intelligence but also fosters a collaborative environment where system linguistic abilities and the analyst’s domain expertise are integrated.
pdf
bib
abs
Towards quantifying politicization in foreign aid project reports
Sidi Wang
|
Gustav Eggers
|
Alexia de Roode Torres Georgiadis
|
Tuan Anh Đo
|
Léa Gontard
|
Ruth Carlitz
|
Jelke Bloem
We aim to develop a metric of politicization by investigating whether this concept can be operationalized computationally using document embeddings. We are interested in measuring the extent to which foreign aid is politicized. Textual reports of foreign aid projects are often made available by donor governments, but these are large and unstructured. By embedding them in vector space, we can compute similarities between sets of known politicized keywords and the foreign aid reports. We present a pilot study where we apply this metric to USAID reports.
pdf
bib
abs
Echo-chambers and Idea Labs: Communication Styles on Twitter
Aleksandra Sorokovikova
|
Michael Becker
|
Ivan P. Yamshchikov
This paper investigates the communication styles and structures of Twitter (X) communities within the vaccination context. While mainstream research primarily focuses on the echo-chamber phenomenon, wherein certain ideas are reinforced and participants are isolated from opposing opinions, this study reveals the presence of diverse communication styles across various communities. In addition to the communities exhibiting echo-chamber behavior, this research uncovers communities with distinct communication patterns. By shedding light on the nuanced nature of communication within social networks, this study emphasizes the significance of understanding the diversity of perspectives within online communities.