Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)

Danushka Bollegala, Vered Shwartz (Editors)


Anthology ID:
2024.starsem-1
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Venue:
*SEM
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2024.starsem-1/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/2024.starsem-1.pdf

pdf bib
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)
Danushka Bollegala | Vered Shwartz

pdf bib
MASSIVE Multilingual Abstract Meaning Representation: A Dataset and Baselines for Hallucination Detection
Michael Regan | Shira Wein | George Baker | Emilio Monti

Abstract Meaning Representation (AMR) is a semantic formalism that captures the core meaning of an utterance. There has been substantial work developing AMR corpora in English and more recently across languages, though the limited size of existing datasets and the cost of collecting more annotations are prohibitive. With both engineering and scientific questions in mind, we introduce MASSIVE-AMR, a dataset with more than 84,000 text-to-graph annotations, currently the largest and most diverse of its kind: AMR graphs for 1,685 information-seeking utterances mapped to 50+ typologically diverse languages. We describe how we built our resource and its unique features before reporting on experiments using large language models for multilingual AMR and SPARQL parsing as well as applying AMRs for hallucination detection in the context of knowledge base question answering, with results shedding light on persistent issues using LLMs for structured parsing.

pdf bib
How Does Stereotype Content Differ across Data Sources?
Kathleen Fraser | Svetlana Kiritchenko | Isar Nejadgholi

For decades, psychologists have been studying stereotypes using specially-designed rating scales to capture people’s beliefs and opinions about different social groups. Now, using NLP tools on extensive collections of text, we have the opportunity to study stereotypes “in the wild” and on a large scale. However, are we truly capturing the same information? In this paper we compare measurements along six psychologically-motivated, stereotype-relevant dimensions (Sociability, Morality, Ability, Assertiveness, Beliefs, and Status) for 10 groups, defined by occupation. We compute these measurements on stereotypical English sentences written by crowd-workers, stereotypical sentences generated by ChatGPT, and more general data collected from social media, and contrast the findings with traditional, survey-based results, as well as a spontaneous word-list generation task. We find that while the correlation with the traditional scales varies across dimensions, the free-text data can be used to specify the particular traits associated with each group, and provide context for numerical survey data.

pdf bib
Polysemy through the lens of psycholinguistic variables: a dataset and an evaluation of static and contextualized language models
Andrea Bruera | Farbod Zamani | Massimo Poesio

Polysemes are words that can have different senses depending on the context of utterance: for instance, ‘newspaper’ can refer to an organization (as in ‘manage the newspaper’) or to an object (as in ‘open the newspaper’). Contrary to a large body of evidence coming from psycholinguistics, polysemy has been traditionally modelled in NLP by assuming that each sense should be given a separate representation in a lexicon (e.g. WordNet). This led to the current situation, where datasets used to evaluate the ability of computational models of semantics miss crucial details about the representation of polysemes, thus limiting the amount of evidence that can be gained from their use. In this paper we propose a framework to approach polysemy as a continuous variation in psycholinguistic properties of a word in context. This approach accommodates different sense interpretations, without postulating clear-cut jumps between senses. First we describe a publicly available English dataset that we collected, where polysemes in context (verb-noun phrases) are annotated for their concreteness and body sensory strength. Then, we evaluate static and contextualized language models in their ability to predict the ratings of each polyseme in context, as well as in their ability to capture the distinction among senses, revealing and characterizing in an interpretable way the models’ flaws.

pdf bib
Post-Hoc Answer Attribution for Grounded and Trustworthy Long Document Comprehension: Task, Insights, and Challenges
Abhilasha Sancheti | Koustava Goswami | Balaji Srinivasan

Attributing answer text to its source document for information-seeking questions is crucial for building trustworthy, reliable, and accountable systems. We formulate a new task of post-hoc answer attribution for long document comprehension (LDC). Owing to the lack of long-form abstractive and information-seeking LDC datasets, we refactor existing datasets to assess the strengths and weaknesses of existing retrieval-based and proposed answer decomposition and textual entailment-based optimal selection attribution systems for this task. We throw light on the limitations of existing datasets and the need for datasets to assess the actual performance of systems on this task.

pdf bib
A Benchmark Suite of Japanese Natural Questions
Takuya Uematsu | Hao Wang | Daisuke Kawahara | Tomohide Shibata

To develop high-performance and robust natural language processing (NLP) models, it is important to have various question answering (QA) datasets to train, evaluate, and analyze them. Although there are various QA datasets available in English, there are only a few QA datasets in other languages. We focus on Japanese, a language with only a few basic QA datasets, and aim to build a Japanese version of Natural Questions (NQ) consisting of questions that naturally arise from human information needs. We collect natural questions from query logs of a Japanese search engine and build the dataset using crowdsourcing. We construct Japanese Natural Questions (JNQ) and a Japanese version of BoolQ (JBoolQ), which is derived from NQ and consists of yes/no questions. JNQ consists of 16,871 questions, and JBoolQ consists of 6,467 questions. We also define two tasks from JNQ and one from JBoolQ and establish baselines using competitive methods drawn from related literature. We hope that these datasets will facilitate research on QA and NLP models in Japanese. We are planning to release JNQ and JBoolQ.

pdf bib
ROUGE-K: Do Your Summaries Have Keywords?
Sotaro Takeshita | Simone Ponzetto | Kai Eckert

Keywords, that is, content-relevant words in summaries play an important role in efficient information conveyance, making it critical to assess if system-generated summaries contain such informative words during evaluation. However, existing evaluation metrics for extreme summarization models do not pay explicit attention to keywords in summaries, leaving developers ignorant of their presence. To address this issue, we present a keyword-oriented evaluation metric, dubbed ROUGE-K, which provides a quantitative answer to the question of – How well do summaries include keywords? Through the lens of this keyword-aware metric, we surprisingly find that a current strong baseline model often misses essential information in their summaries. Our analysis reveals that human annotators indeed find the summaries with more keywords to be more relevant to the source documents. This is an important yet previously overlooked aspect in evaluating summarization systems. Finally, to enhance keyword inclusion, we propose four approaches for incorporating word importance into a transformer-based model and experimentally show that it enables guiding models to include more keywords while keeping the overall quality.

pdf bib
Investigating Aspect Features in Contextualized Embeddings with Semantic Scales and Distributional Similarity
Yuxi Li | Emmanuele Chersoni | Yu-Yin Hsu

Aspect, a linguistic category describing how actions and events unfold over time, is traditionally characterized by three semantic properties: stativity, durativity and telicity. In this study, we investigate whether and to what extent these properties are encoded in the verb token embeddings of the contextualized spaces of two English language models – BERT and GPT-2. First, we propose an experiment using semantic projections to examine whether the values of the vector dimensions of annotated verbs for stativity, durativity and telicity reflect human linguistic distinctions. Second, we use distributional similarity to replicate the notorious Imperfective Paradox described by Dowty (1977), and assess whether the embedding models are sensitive to capture contextual nuances of the verb telicity. Our results show that both models encode the semantic distinctions for the aspect properties of stativity and telicity in most of their layers, while durativity is the most challenging feature. As for the Imperfective Paradox, only the embedding similarities computed with the vectors from the early layers of the BERT model align with the expected pattern.

pdf bib
WikiScenes with Descriptions: Aligning Paragraphs and Sentences with Images in Wikipedia Articles
Özge Alaçam | Ronja Utescher | Hannes Grönner | Judith Sieker | Sina Zarrieß

Research in Language & Vision rarely uses naturally occurring multimodal documents as Wikipedia articles, since they feature complex image-text relations and implicit image-text alignments. In this paper, we provide one of the first datasets that provides ground-truth annotations of image-text alignments in multi-paragraph multi-image articles. The dataset can be used to study phenomena of visual language grounding in longer documents and assess retrieval capabilities of language models trained on, e.g., captioning data. Our analyses show that there are systematic linguistic differences between the image captions and descriptive sentences from the article’s text and that intra-document retrieval is a challenging task for state-of-the-art models in L&V (CLIP, VILT, MCSE).

pdf bib
Relevance, Diversity, and Exclusivity: Designing Keyword-augmentation Strategy for Zero-shot Classifiers
Taro Yano | Kunihiro Takeoka | Masafumi Oyamada

Zero-shot text classification involves categorizing text into classes without labeled data, typically using a pre-trained language model to compute the correlation between text and class names. This makes it essential for class names to contain sufficient information. Existing methods incorporate semantically similar keywords related to class names, but the properties of effective keywords remain unclear. We demonstrate that effective keywords should possess three properties: 1) keyword relevance to the task objective, 2) inter-class exclusivity, and 3) intra-class diversity. We also propose an automatic method for acquiring keywords that satisfy these properties without additional knowledge bases or data. Experiments on nine real-world datasets show our method outperforms existing approaches in fully zero-shot and generalized zero-shot settings. Ablation studies further confirm the importance of all three properties for superior performance.

pdf bib
Lexical Substitution as Causal Language Modeling
Ning Shi | Bradley Hauer | Grzegorz Kondrak

Causal language models such as the GPT series have achieved significant success across various domains. However, their application to the lexical substitution task (LST) remains largely unexplored due to inherent limitations in autoregressive decoding. Our work is motivated by our observation that existing LST approaches tend to suffer from a misalignment between the pre-training objectives of the language models that they employ, and their subsequent fine-tuning and application for substitute generation. We introduce PromptSub, the first system to use causal language modeling (CLM) for LST. Through prompt-aware fine-tuning, PromptSub not only enriches the given context with additional knowledge, but also leverages the unidirectional nature of autoregressive decoding. PromptSub consistently outperforms GeneSis, the best previously published supervised LST method. Further analysis demonstrates the potential of PromptSub to further benefit from increased model capacity, expanded data resources, and retrieval of external knowledge. By framing LST within the paradigm of CLM, our approach indicates the versatility of general CLM-based systems, such as ChatGPT, in catering to specialized tasks, including LST.

pdf bib
Paraphrase Identification via Textual Inference
Ning Shi | Bradley Hauer | Jai Riley | Grzegorz Kondrak

Paraphrase identification (PI) and natural language inference (NLI) are two important tasks in natural language processing. Despite their distinct objectives, an underlying connection exists, which has been notably under-explored in empirical investigations. We formalize the relationship between these semantic tasks and introduce a method for solving PI using an NLI system, including the adaptation of PI datasets for fine-tuning NLI models. Through extensive evaluations on six PI benchmarks, across both zero-shot and fine-tuned settings, we showcase the efficacy of NLI models for PI through our proposed reduction. Remarkably, our fine-tuning procedure enables NLI models to outperform dedicated PI models on PI datasets. In addition, our findings provide insights into the limitations of current PI benchmarks.

pdf bib
Identifying Emotional and Polar Concepts via Synset Translation
Logan Woudstra | Moyo Dawodu | Frances Igwe | Senyu Li | Ning Shi | Bradley Hauer | Grzegorz Kondrak

Emotion identification and polarity classification seek to determine the sentiment expressed by a writer. Sentiment lexicons that provide classifications at the word level fail to distinguish between different senses of polysemous words. To address this problem, we propose a translation-based method for labeling each individual lexical concept and word sense. Specifically, we translate synsets into 20 different languages and verify the sentiment of these translations in multilingual sentiment lexicons. By applying our method to all WordNet synsets, we produce SentiSynset, a synset-level sentiment resource containing 12,429 emotional synsets and 15,567 polar synsets, which is significantly larger than previous resources. Experimental evaluation shows that our method outperforms prior automated methods that classify word senses, in addition to outperforming ChatGPT. We make the resulting resource publicly available on GitHub.

pdf bib
A Closer Look at Claim Decomposition
Miriam Wanner | Seth Ebner | Zhengping Jiang | Mark Dredze | Benjamin Van Durme

As generated text becomes more commonplace, it is increasingly important to evaluate how well-supported such text is by external knowledge sources. Many approaches for evaluating textual support rely on some method for decomposing text into its individual subclaims which are scored against a trusted reference. We investigate how various methods of claim decomposition—especially LLM-based methods—affect the result of an evaluation approach such as the recently proposed FActScore, finding that it is sensitive to the decomposition method used. This sensitivity arises because such metrics attribute overall textual support to the model that generated the text even though error can also come from the metric’s decomposition step. To measure decomposition quality, we introduce an adaptation of FActScore, which we call DecompScore. We then propose an LLM-based approach to generating decompositions inspired by Bertrand Russell’s theory of logical atomism and neo-Davidsonian semantics and demonstrate its improved decomposition quality over previous methods.

pdf bib
Speedy Gonzales: A Collection of Fast Task-Specific Models for Spanish
José Cañete | Felipe Bravo-Marquez

Large language models (LLM) are now a very common and successful path to approach language and retrieval tasks. While these LLM achieve surprisingly good results it is a challenge to use them on more constrained resources. Techniques to compress these LLM into smaller and faster models have emerged for English or Multilingual settings, but it is still a challenge for other languages. In fact, Spanish is the second language with most native speakers but lacks of these kind of resources. In this work, we evaluate all the models publicly available for Spanish on a set of 6 tasks and then, by leveraging on Knowledge Distillation, we present Speedy Gonzales, a collection of inference-efficient task-specific language models based on the ALBERT architecture. All of our models (fine-tuned and distilled) are publicly available on: https://huggingface.co/dccuchile.

pdf bib
Exploring Factual Entailment with NLI: A News Media Study
Guy Mor-Lan | Effi Levi

We explore the relationship between factuality and Natural Language Inference (NLI) by introducing FactRel – a novel annotation scheme that models factual rather than textual entailment, and use it to annotate a dataset of naturally occurring sentences from news articles. Our analysis shows that 84% of factually supporting pairs and 63% of factually undermining pairs do not amount to NLI entailment or contradiction, respectively, suggesting that factual relationships are more apt for analyzing media discourse. We experiment with models for pairwise classification on the new dataset, and find that in some cases, generating synthetic data with GPT-4 on the basis of the annotated dataset can improve performance. Surprisingly, few-shot learning with GPT-4 yields strong results on par with medium LMs (DeBERTa) trained on the labelled dataset. We hypothesize that these results indicate the fundamental dependence of this task on both world knowledge and advanced reasoning abilities.

pdf bib
The Emergence of High-Level Semantics in a Signaling Game
Timothée Bernard | Timothee Mickus | Hiroya Takamura

The symbol grounding problem—how to connect a symbolic system to the outer world—is a longstanding question in AI that has recently gained prominence with the progress made in NLP in general and surrounding large language models in particular. In this article, we study the emergence of semantic categories in the communication protocol developed by neural agents involved in a well-established type of signaling game. In its basic form, the game requires one agent to retrieve an image based on a message produced by a second agent. We first show that the agents are able to, and do, learn to communicate high-level semantic concepts rather than low-level features of the images even from very indirect training signal to that end. Second, we demonstrate that the introduction of an adversarial agent in the game fosters the emergence of semantics by producing an appropriate training signal when no other method is available.

pdf bib
PDDLEGO: Iterative Planning in Textual Environments
Li Zhang | Peter Jansen | Tianyi Zhang | Peter Clark | Chris Callison-Burch | Niket Tandon

Planning in textual environments have been shown to be a long-standing challenge even for current models. A recent, promising line of work uses LLMs to generate a formal representation of the environment that can be solved by a symbolic planner. However, existing methods rely on a fully-observed environment where all entity states are initially known, so a one-off representation can be constructed, leading to a complete plan. In contrast, we tackle partially-observed environments where there is initially no sufficient information to plan for the end-goal. We propose PDDLEGO that iteratively construct a planning representation that can lead to a partial plan for a given sub-goal. By accomplishing the sub-goal, more information is acquired to augment the representation, eventually achieving the end-goal. We show that plans produced by few-shot PDDLEGO are 43% more efficient than generating plans end-to-end on the Coin Collector simulation, with strong performance (98%) on the more complex Cooking World simulation where end-to-end LLMs fail to generate coherent plans (4%).

pdf bib
VOLIMET: A Parallel Corpus of Literal and Metaphorical Verb-Object Pairs for English–German and English–French
Prisca Piccirilli | Alexander Fraser | Sabine Schulte im Walde

The interplay of cultural and linguistic elements that characterizes metaphorical language poses a substantial challenge for both human comprehension and machine processing. This challenge goes beyond monolingual settings and becomes particularly complex in translation, even more so in automatic translation. We present VOLIMET, a corpus of 2,916 parallel sentences containing gold standard alignments of metaphorical verb-object pairs and their literal paraphrases, e.g., tackle/address question, from English to German and French. On the one hand, the parallel nature of our corpus enables us to explore monolingual patterns for metaphorical vs. literal uses in English. On the other hand, we investigate different aspects of cross-lingual translations into German and French and the extent to which metaphoricity and literalness in the source language are transferred to the target languages. Monolingually, our findings reveal clear preferences in using metaphorical or literal uses of verb-object pairs. Cross-lingually, we observe a rich variability in translations as well as different behaviors for our two target languages.

pdf bib
Improving Word Sense Induction through Adversarial Forgetting of Morphosyntactic Information
Deniz Ekin Yavas | Timothée Bernard | Laura Kallmeyer | Benoît Crabbé

This paper addresses the problem of word sense induction (WSI) via clustering of word embeddings. It starts from the hypothesis that contextualized word representations obtained from pre-trained language models (LMs), while being a valuable source for WSI, encode more information than what is necessary for the identification of word senses and some of this information affect the performance negatively in unsupervised settings. We investigate whether using contextualized representations that are invariant to these ‘nuisance features’ can increase WSI performance. For this purpose, we propose an adaptation of the adversarial training framework proposed by Jaiswal et al. (2020) to erase specific information from the representations of LMs, thereby creating feature-invariant representations. We experiment with erasing (i) morphological and (ii) syntactic features. The results of subsequent clustering for WSI show that these features indeed act like noise: Using feature-invariant representations, compared to using the original representations, increases clustering-based WSI performance. Furthermore, we provide an in-depth analysis of how the information about the syntactic and morphological features of words relate to and affect WSI performance.

pdf bib
What’s wrong with your model? A Quantitative Analysis of Relation Classification
Elisa Bassignana | Rob van der Goot | Barbara Plank

With the aim of improving the state-of-the-art (SOTA) on a target task, a standard strategy in Natural Language Processing (NLP) research is to design a new model, or modify the existing SOTA, and then benchmark its performance on the target task. We argue in favor of enriching this chain of actions by a preliminary error-guided analysis: First, explore weaknesses by analyzing the hard cases where the existing model fails, and then target the improvement based on those. Interpretable evaluation has received little attention for structured prediction tasks. Therefore we propose the first in-depth analysis suite for Relation Classification (RC), and show its effectiveness through a case study. We propose a set of potentially influential attributes to focus on (e.g., entity distance, sentence length). Then, we bucket our datasets based on these attributes, and weight the importance of them through correlations. This allows us to identify highly challenging scenarios for the RC model. By exploiting the findings of our analysis, with a carefully targeted adjustment to our architecture, we effectively improve the performance over the baseline by >3 Micro-F1.

pdf bib
Disambiguating Emotional Connotations of Words Using Contextualized Word Representations
Akram Sadat Hosseini | Steffen Staab

Understanding emotional nuances in written content is crucial for effective communication; however, the context-dependent nature of language poses challenges in precisely discerning emotions in text. This study contributes to the understanding of how the emotional connotations of a word are influenced by the sentence context in which it appears. Leveraging the contextual understanding embedded in contextualized word representations, we conduct an empirical investigation to (i) evaluate the varying abilities of these representations in distinguishing the diverse emotional connotations evoked by the same word across different contexts, (ii) explore potential biases in these representations toward specific emotions of a word, and (iii) assess the capability of these representations in estimating the number of emotional connotations evoked by a word in diverse contexts. Our experiments, utilizing four popular models—BERT, RoBERTa, XLNet, and GPT-2—and drawing on the GoEmotions and SemEval 2018 datasets, demonstrate that these models effectively discern emotional connotations of words. RoBERTa, in particular, shows superior performance and greater resilience against biases. Our further analysis reveals that disambiguating the emotional connotations of words significantly enhances emotion identification at the sentence level.

pdf bib
Length-Aware Multi-Kernel Transformer for Long Document Classification
Guangzeng Han | Jack Tsao | Xiaolei Huang

Lengthy documents pose a unique challenge to neural language models due to substantial memory consumption. While existing state-of-the-art (SOTA) models segment long texts into equal-length snippets (e.g., 128 tokens per snippet) or deploy sparse attention networks, these methods have new challenges of context fragmentation and generalizability due to sentence boundaries and varying text lengths. For example, our empirical analysis has shown that SOTA models consistently overfit one set of lengthy documents (e.g., 2000 tokens) while performing worse on texts with other lengths (e.g., 1000 or 4000). In this study, we propose a Length-Aware Multi-Kernel Transformer (LAMKIT) to address the new challenges for the long document classification. LAMKIT encodes lengthy documents by diverse transformer-based kernels for bridging context boundaries and vectorizes text length by the kernels to promote model robustness over varying document lengths. Experiments on five standard benchmarks from health and law domains show LAMKIT outperforms SOTA models up to an absolute 10.9% improvement. We conduct extensive ablation analyses to examine model robustness and effectiveness over varying document lengths.

pdf bib
Investigating Wit, Creativity, and Detectability of Large Language Models in Domain-Specific Writing Style Adaptation of Reddit’s Showerthoughts
Tolga Buz | Benjamin Frost | Nikola Genchev | Moritz Schneider | Lucie-Aimée Kaffee | Gerard de Melo

Recent Large Language Models (LLMs) have shown the ability to generate content that is difficult or impossible to distinguish from human writing. We investigate the ability of differently-sized LLMs to replicate human writing style in short, creative texts in the domain of Showerthoughts, thoughts that may occur during mundane activities. We compare GPT-2 and GPT-Neo fine-tuned on Reddit data as well as GPT-3.5 invoked in a zero-shot manner, against human-authored texts. We measure human preference on the texts across the specific dimensions that account for the quality of creative, witty texts. Additionally, we compare the ability of humans versus fine-tuned RoBERTa-based classifiers to detect AI-generated texts. We conclude that human evaluators rate the generated texts slightly worse on average regarding their creative quality, but they are unable to reliably distinguish between human-written and AI-generated texts. We further provide the dataset for creative, witty text generation based on Reddit Showerthoughts posts.

pdf bib
Multilingual and Code-Switched Sentence Ordering
Alexandre Salle | Shervin Malmasi

Sentence Ordering (SO) is a linguistic task which requires re-ordering of shuffled sentences into a coherent paragraph. SO has downstream applications, but also serves as a semantic probe for computational models as this capability is essential for understanding narrative structures, causal and temporal relations within texts. Despite its importance, prior research has been limited to predictable English language structures and has not thoroughly addressed the complexities of multilingual and varied narrative contexts. To fill this gap, we introduce a novel and comprehensive Multilingual Sentence Ordering task that extends SO to diverse narratives across 12 languages, including challenging code-switched texts. We have developed MultiSO, a new benchmark dataset that represents these challenges. Our findings reveal that both specialized sentence ordering models and advanced Large Language Models like GPT-4 face significant challenges with this task.

pdf bib
HANS, are you clever? Clever Hans Effect Analysis of Neural Systems
Leonardo Ranaldi | Fabio Zanzotto

Large Language Models (LLMs) have been exhibiting outstanding abilities to reason around cognitive states, intentions, and reactions of all people involved, letting humans guide and comprehend day-to-day social interactions effectively. In fact, several multiple-choice questions (MCQ) benchmarks have been proposed to construct solid assessments of the models’ abilities. However, earlier works demonstrate the presence of inherent “order bias” in LLMs, posing challenges to the appropriate evaluation. In this paper, we investigate LLMs’ resilience abilities through a series of probing tests using four MCQ benchmarks. Introducing adversarial examples, we show a significant performance gap, mainly when varying the order of the choices, which reveals a selection bias and brings into discussion reasoning abilities. Following a correlation between first positions and model choices due to positional bias, we hypothesized the presence of structural heuristics in the decision-making process of the LLMs, strengthened by including significant examples in few-shot scenarios. Finally, by using the Chain-of-Thought (CoT) technique, we elicit the model to reason and mitigate the bias by obtaining more robust models.

pdf bib
Exploring Semantics in Pretrained Language Model Attention
Frédéric Charpentier | Jairo Cugliari | Adrien Guille

Abstract Meaning Representations (AMRs) encode the semantics of sentences in the form of graphs. Vertices represent instances of concepts, and labeled edges represent semantic relations between those instances. Language models (LMs) operate by computing weights of edges of per layer complete graphs whose vertices are words in a sentence or a whole paragraph. In this work, we investigate the ability of the attention heads of two LMs, RoBERTa and GPT2, to detect the semantic relations encoded in an AMR. This is an attempt to show semantic capabilities of those models without finetuning. To do so, we apply both unsupervised and supervised learning techniques.

pdf bib
Enhancing Self-Attention via Knowledge Fusion: Deriving Sentiment Lexical Attention from Semantic-Polarity Scores
Dongjun Jang | Jinwoong Kim | Hyopil Shin

In recent years, pre-trained language models have demonstrated exceptional performance across various natural language processing (NLP) tasks. One fundamental component of these models is the self-attention mechanism, which has played a vital role in capturing meaningful relationships between tokens. However, a question still remains as to whether injecting lexical features into the self-attention mechanism can further enhance the understanding and performance of language models. This paper presents a novel approach for injecting semantic-polarity knowledge, referred to as Sentiment Lexical Attention, directly into the self-attention mechanism of Transformer-based models. The primary goal is to improve performance on sentiment classification task. Our approach involves consistently injecting Sentiment Lexical Attention derived from the lexicon corpus into the attention scores throughout the training process. We empirically evaluate our method on the NSMC sentiment classification benchmark, showcasing significant performance improvements and achieving state-of-the-art results. Furthermore, our approach demonstrates robustness and effectiveness in out-of-domain tasks, indicating its potential for broad applicability. Additionally, we analyze the impact of Sentiment Lexical Attention on the view of the CLS token’s attention distribution. Our method offers a fresh perspective on synergizing lexical features and attention scores, thereby encouraging further investigations in the realm of knowledge injection utilizing the lexical features.

pdf bib
Handling Ontology Gaps in Semantic Parsing
Andrea Bacciu | Marco Damonte | Marco Basaldella | Emilio Monti

The majority of Neural Semantic Parsing (NSP) models are developed with the assumption that there are no concepts outside the ones such models can represent with their target symbols (closed-world assumption). This assumption leads to generate hallucinated outputs rather than admitting their lack of knowledge. Hallucinations can lead to wrong or potentially offensive responses to users. Hence, a mechanism to prevent this behavior is crucial to build trusted NSP-based Question Answering agents. To that end, we propose the Hallucination Simulation Framework (HSF), a general setting for stimulating and analyzing NSP model hallucinations. The framework can be applied to any NSP task with a closed-ontology. Using the proposed framework and KQA Pro as the benchmark dataset, we assess state-of-the-art techniques for hallucination detection. We then present a novel hallucination detection strategy that exploits the computational graph of the NSP model to detect the NSP hallucinations in the presence of ontology gaps, out-of-domain utterances, and to recognize NSP errors, improving the F1-Score respectively by ~21%, ~24% and ~1%. This is the first work in closed-ontology NSP that addresses the problem of recognizing ontology gaps. We release our code and checkpoints at https://github.com/amazon-science/handling-ontology-gaps-in-semantic-parsing.

pdf bib
PipeNet: Question Answering with Semantic Pruning over Knowledge Graphs
Ying Su | Jipeng Zhang | Yangqiu Song | Tong Zhang

It is well acknowledged that incorporating explicit knowledge graphs (KGs) can benefit question answering. Existing approaches typically follow a grounding-reasoning pipeline in which entity nodes are first grounded for the query (question and candidate answers), and then a reasoning module reasons over the matched multi-hop subgraph for answer prediction. Although the pipeline largely alleviates the issue of extracting essential information from giant KGs, efficiency is still an open challenge when scaling up hops in grounding the subgraphs. In this paper, we target at finding semantically related entity nodes in the subgraph to improve the efficiency of graph reasoning with KG. We propose a grounding-pruning-reasoning pipeline to prune noisy nodes, remarkably reducing the computation cost and memory usage while also obtaining decent subgraph representation. In detail, the pruning module first scores concept nodes based on the dependency distance between matched spans and then prunes the nodes according to score ranks. To facilitate the evaluation of pruned subgraphs, we also propose a graph attention network (GAT) based module to reason with the subgraph data. Experimental results on CommonsenseQA and OpenBookQA demonstrate the effectiveness of our method.

pdf bib
A Trip Towards Fairness: Bias and De-Biasing in Large Language Models
Leonardo Ranaldi | Elena Sofia Ruzzetti | Davide Venditti | Dario Onorati | Fabio Massimo Zanzotto

Cheap-to-Build Very Large-Language Models (CtB-LLMs) with affordable training are emerging as the next big revolution in natural language processing and understanding. These CtB-LLMs are democratizing access to trainable Very Large-Language Models (VLLMs) and, thus, may represent the building blocks of many NLP systems solving downstream tasks. Hence, a little or a large bias in CtB-LLMs may cause huge harm. In this paper, we performed a large investigation of the bias of three families of CtB-LLMs, and we showed that debiasing techniques are effective and usable. Indeed, according to current tests, the LLaMA and the OPT families have an important bias in gender, race, religion, and profession. In contrast to the analysis for other LMMs, we discovered that bias depends not on the number of parameters but on the perplexity. Finally, the debiasing of OPT using LORA reduces bias up to 4.12 points in the normalized stereotype score.

pdf bib
Compositional Structured Explanation Generation with Dynamic Modularized Reasoning
Xiyan Fu | Anette Frank

In this work, we propose a new task, compositional structured explanation generation (CSEG), to facilitate research on compositional generalization in reasoning. Despite the success of language models in solving reasoning tasks, their compositional generalization capabilities are under-researched. Our new CSEG task tests a model’s ability to generalize from generating entailment trees with a limited number of inference steps – to more steps, focusing on the length and shapes of entailment trees. CSEG is challenging in requiring both reasoning and compositional generalization abilities, and by being framed as a generation task. Besides the CSEG task, we propose a new dynamic modularized reasoning model, MORSE, that factorizes the inference process into modules, where each module represents a functional unit. We adopt modularized self-attention to dynamically select and route inputs to dedicated heads, which specializes them to specific functions. Using CSEG, we compare MORSE to models from prior work. Our analyses show that the task is challenging, but that the dynamic reasoning modules of MORSE are effective, showing competitive compositional generalization abilities in a generation setting.

pdf bib
Inspecting Soundness of AMR Similarity Metrics in terms of Equivalence and Inequivalence
Kyung Seo Ki | Bugeun Kim | Gahgene Gweon

In this study, we investigate soundness of current Abstract Meaning Representation (AMR) similarity metrics in terms of equivalence and inequivalence. Specifically, AMR guidelines provide several equivalence and inequivalence conditions to reflect the meaning aspect of the semantics. Thus, it is important to examine an AMR metric’s soundness, i.e., whether the metric correctly reflects the guidelines. However, the existing metrics have less investigated their soundness. In this work, we propose a new experimental method using simulated data and a series of statistical tests to verify the metric’s soundness. Our experimental result revealed that all existing metrics such as Smatch, SemBLEU, S2match, Smatch++, WWLK-theta, WWLK-k3e2n, and SEMA did not fully meet the AMR guidelines in terms of equivalence and inequivalence aspects. Also, to alleviate this soundness problem, we suggest a revised metric called Smatch#, which adopts simple graph standardization technique that can improve the soundness of an existing metric.

pdf bib
Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation
Aleksei Dorkin | Kairit Sirts

We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, Sõnaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task.

pdf bib
Do large language models and humans have similar behaviours in causal inference with script knowledge?
Xudong Hong | Margarita Ryzhova | Daniel Biondi | Vera Demberg

Recently, large pre-trained language models (LLMs) have demonstrated superior language understanding abilities, including zero-shot causal reasoning. However, it is unclear to what extent their capabilities are similar to human ones. We here study the processing of an event B in a script-based story, which causally depends on a previous event A. In our manipulation, event A is stated, negated, or omitted in an earlier section of the text. We first conducted a self-paced reading experiment, which showed that humans exhibit significantly longer reading times when causal conflicts exist (¬ A → B) than under logical conditions (A → B). However, reading times remain similar when cause A is not explicitly mentioned, indicating that humans can easily infer event B from their script knowledge. We then tested a variety of LLMs on the same data to check to what extent the models replicate human behavior. Our experiments show that 1) only recent LLMs, like GPT-3 or Vicuna, correlate with human behavior in the ¬ A → B condition. 2) Despite this correlation, all models still fail to predict that nil → B is less surprising than ¬ A → B, indicating that LLMs still have difficulties integrating script knowledge.

pdf bib
EDM3: Event Detection as Multi-task Text Generation
Ujjwala Anantheswaran | Himanshu Gupta | Mihir Parmar | Kuntal Pal | Chitta Baral

We present EDM3, a novel approach for Event Detection (ED) based on decomposing and reformulating ED, and fine-tuning over its atomic subtasks. EDM3 enhances knowledge transfer while mitigating prediction error propagation inherent in pipelined approaches. EDM3 infers dataset-specific knowledge required for the complex primary task from its atomic tasks, making it adaptable to any set of event types. We evaluate EDM3 on multiple ED datasets, achieving state-of-the-art results on RAMS (71.3% vs 65.1% F1), and competitive performance on WikiEvents, MAVEN (∆ = 0.2%), and MLEE (∆ = 1.8%). We present an ablation study over rare event types (<15 instances in training data) in MAVEN, where EDM3 achieves ~90% F1. To the best of the authors’ knowledge, we are the first to analyze ED performance over non-standard event configurations (i.e., multi-word and multi-class triggers). Experimental results show that EDM3 achieves ~90% exact match accuracy on multi-word triggers and ~61% prediction accuracy on multi-class triggers. This work establishes the effectiveness of EDM3 in enhancing performance on a complex information extraction task.